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On Lie Powers of Regular Modules
in Characteristic 2.

L. G. KOVÁCS (*) - RALPH STÖHR (**)

ABSTRACT - We study Lie powers of regular modules for finite groups over a field
of characteristic 2 . First we prove two rather general reduction theorems,
and then we apply them to Lie powers of the regular module for the Klein four
group. For the latter, we solve the decomposition problem for the Lie power
in degree 8, a module of dimension 8160. It has been known that of the infini-
tely many possible indecomposables, only four occur as direct summands in
Lie powers of degree not divisible by 4, but that a fifth makes its appearance
in the Lie power of degree 4. It is quite a surprise that no new indecomposa-
bles appear among the direct summands in degree 8.

1. Introduction.

Let G be a group, K a field of positive characteristic p , V a KG-modu-
le, let L4L(V) denote the free Lie algebra on V and write L4Ln (V) for

the degree n homogeneous component of L . Then L(V) 4 5
n41

Q

Ln (V) is a

graded KG-module and the submodule Ln (V) is termed the nth Lie
power of V over K . In recent years, modular Lie powers have been stu-
died in a number of papers. The eventual aim of these investigations is
the solution of the decomposition problem, that is the identification of
the indecomposable KG-modules occurring as direct summands in the Lie
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powers Ln (V) and their respective Krull-Schmidt multiplicities. Most
of the results obtained so far refer to the case where G is a group with
cyclic p-Sylow subgroup (see [3], [4], [6] and references therein). How-
ever, very little is known about modular Lie powers for groups with non-
cyclic p-Sylow subgroup. In this paper we investigate Lie powers of re-
gular modules for arbitrary finite groups over fields of characteristic 2 .
In Section 3 we prove a rather general reduction theorem, which reduces
the decomposition problem for Lie powers of regular modules to the de-
composition problem for a specific free Lie algebra L(S(X) ). In the spe-
cial case where G has order 2 , this Lie algebra turns out to be one di-
mensional, and results from [8], where the decomposition problem for
the regular module for a group of order 2 was solved, occur as a special
case. In general, however, the decomposition problem for L(S(X) ) seems
to be rather hard. The main disadvantage is that the action of G on
L(S(X) ) is not homogeneous. Nevertheless our reduction theorem provi-
des a fascinating insight into the overall module structure of the free Lie
algebra on a regular KG-module, and it is a direct generalization of con-
clusive results for the group of order 2 . Moreover, in Sections 5 and 6 we
exploit our reduction theorem to obtain information about the smallest
non-trivial instance of a regular module for a group with non-cyclic 2-
Sylow subgroup, namely the case where V is the regular module for the
Klein four group. In particular, we solve the decomposition problem for
the 8th Lie power L8 (V), thus demonstrating that our reduction theorem
provides access to the decomposition problem for Lie powers of small,
yet previously inaccessible degrees. In Section 4 we prove another re-
duction theorem, which reduces the decomposition problem for the regu-
lar module of an arbitrary finite group to that of the augmentation ideal.

In this paper we restrict ourselves to modular Lie powers in charac-
teristic 2 only. The reason for this (at a first glance strange) restriction is
that our main technical tool, the so called restricted elimination in free
restricted Lie algebras, takes a particularly simple form in the characte-
ristic 2 case. We hope that our methods can be further developed and
modified to provide deeper insight into the structure of modular Lie po-
wers both in characteristic 2 and in arbitrary positive characteristic.

2. Notation and preliminaries.

Throughout this paper K is a field of characteristic 2 . Our main
technical tools in this paper are various elimination results for free Lie
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algebras and free restricted Lie algebras. Let L4L(X) be the free Lie
algebra on a set X over K . The Lazard Elimination Theorem (see Propo-
sition 10 in § 2.9, Chapter 2, of [2]) reads as follows (here, and throu-
ghout this paper, we use the left normed convention for Lie brackets).

LEMMA 2.1. Suppose that X4X1 NX2 is the disjoint union of its
subsets X1 and X2 . Then L4L(X) is the direct sum of its free subalgebra
L(X1 ) and the ideal I(X2 ) that is generated by X2 . Moreover, I(X2 ) is it-
self a free Lie algebra with free generating set

X2 ı X1 4 ][z , y1 , y2 , R , yk ]; z�X2 , y1 , y2 , R , yk �X1 , kF0(.

Thus Lazard Elimination yields a direct decomposition (over K)

L4L(X1 )5L(X2 ı X1 )

which will be referred to as elimination of the subalgebra L(X1 ). In the
special case where X1 4 ]x( is a singleton, this direct decomposition
turns into

L4 axb5L(XNx)(2.1)

where

XNx4 (X0]x() ı ]x( 4 ][y , x k ]; y�X0]x(, kF0(,

axb denotes the K-span of x in L(X) and

[y , x k ] 4 [y , x , x , R , x
���

k

] .

The direct decomposition (2.1) will be referred to as elimination of the
free generator x . In this paper, we use exponential notation only in the
sense of the last display, or for the «powering» operation in a restricted
Lie algebra: when x is an element of a multiplicative group, we never
write x k to denote the kth power of x formed in that group. Now let R4

4R(X) be the free restricted Lie algebra on X over K . Throughout this pa-
per we will identify the free Lie algebra L(X) with the Lie subalgebra
that is generated by X in R . An immediate consequence of Lemma 2 is
that under the above assumptions on X there are direct decompositions

R4R(X1 )5R(X2 ı X1 ), R4 ax 2a
; aF0 b5R(XNx)(2.2)

of the free restricted Lie algebra R . These will be used alongside a va-
riation of elimination that is specific to free restricted Lie algebras.
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LEMMA 2.2. Let x�X , and let J be the ideal of R that is generated
by x 2 and X0]x(. Then R is the direct sum of its subspace axb and the
ideal J . Moreover, J is itself a free restricted Lie algebra with free gene-
rating set

XNr x4 ]x 2 , z , [z , x]; z�X0]x(( .

For a proof of Lemma 2.2 we refer to the proof of Theorem 2.7.4 in
[1]. This lemma yields a direct decomposition (over K)

R4 axb5R(XNr x)

which will be referred to as restricted elimination of the free generator
x . Note that the second decomposition in (2.2) can, in fact, be obtained by
using restricted elimination repeatedly, that is by eliminating the free
generators x , x 2 , x 22

, R successively in the obvious way. The first de-
composition in (2.2) will be referred to as elimination of the subalgebra
R(X1 ) and the second decomposition in (2.2) will be referred to as full eli-
mination of the free generator x .

Another technical tool that is frequently used in this paper is that of
replacing free generating sets by other more suitable free generating
sets. Let L(X) be as before and assume that X is the disjoint union

X4X1 NX2 NX3 NR

of its finite subsets X1 , X2 , R . Let L(Em) denote the subalgebra of
L(X) that is generated by X1 , X2 , R , Xm21 . For each nF1, let W n �
�GL(aXn b) be a linear automorphism of the space aXn b, and let W : XK

KL(X) be a map that is, for all x�Xn , n41, 2 , R, of the form

W(x) 4W n (x)1wx(2.3)

where wx �L(En). We need the following

LEMMA 2.3. If W : XKL(X) is a map of the form (2.3), then W(X) is
a free generating set of L(X).

A proof of this simple fact can be found in [5], Section 2.3.
On several occasions later in the text we will use the decomposition of

a free Lie algebra into the direct sum of multihomogeneous components.
Let X4 ]x1 , R , xr ( and, for any string (m1 , R , mr ) of non-negative in-
tegers, let L(m1 , R , mr ) denote the span of all Lie monomials of partial de-
gree m1 , R , mr in the free generators x1 , R , xr , respectively. The sub-
space L(m1 , R , mr ) is termed the (m1 , R , mr )-multihomogeneous compo-
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nent of L(X). Clearly, L(X) is the direct sum (over K) of its multihomoge-
neous components, and each Ln (X) is the direct sum of the multihomoge-
neous components L(m1 , R , mr ) with m1 1R1mr 4n . If all entries of the
defining string (m1 , R , mr ) are equal to 0 or 1 we refer to L(m1 , R , mr ) as
a multilinear component.

Finally, if G is a group and V is a KG-module, then the free Lie alge-
bra on the module V is the free Lie algebra L(V) 4L(X) on X , where X is
an arbitrary K-basis of the module V . In this context L(V) and its homo-
geneous components Ln (V)4Ln (X), the Lie powers of V , will be regard-
ed as KG-modules with G-action induced by the G-action on L1 (V) 4V .
We write R(V) 4R(X) for the free restricted Lie algebra on V and
Rn (V) 4Rn (X) for its homogeneous component of degree n , which will
also be regarded as a KG-module in the obvious way. All KG-modules in
this paper will be right modules.

3. A reduction theorem.

Let G be a finite group of order r and let V4KG denote the regular
module for G . We will assume that the elements of G are ordered in such
a way that the identity element e�G is the smallest in this ordering.
Consider the free Lie algebra L4L(V) 4L(X), where X is the basis of
KG consisting of the elements of G . Our first observation is that the multi-
homogeneous components of L(V) are permuted under the action of G .
It is easily seen that the only multihomogeneous components L(m1 , R , mr )

with non-trivial stabilizer H in G are the ones for which the partial de-
grees in the defining string are constant on the left cosets of H in G . In
particular, the total degree of those multihomogeneous components is
divisible by the order of H . An immediate consequence of this observa-
tion is the following easy

FACT 1. The Lie powers Ln (V) of the regular KG-module V are free
whenever (n , NGN) 41.

Here (n, NGN) denotes the highest common factor of n and NGN . Tow-
ards our first reduction theorem, consider the free restricted Lie alge-
bra R(V) 4R(X). Consecutive restricted elimination of all the elements
of the free generating set X , according to their order and starting with
the smallest, gives a direct decomposition

R(X) 4 aXb5R(Y)(3.1)
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where Y consists of the elements

[x1 , x2 , R , xk ] with x1 , R , xk �X , x1 Dx2 ERExk , kF2(3.2)

and the elements

[x1
2 , x2 , R , xk ] with x1 , R , xk �X , x1 Ex2 ERExk , kF1.(3.3)

Clearly, (3.1) is a direct decomposition of KG-modules. Note that the ele-
ments (3.2) are left normed basic commutators in X of two types. On the
one hand, these elements include all multilinear left normed basic com-
mutators of degree k with 2 GkGr (that is, the left normed basic com-
mutators in (3.2) in which each element of X occurs at most once). The
remaining elements in (3.2) are the left normed basic commutators of de-
gree k with 3 GkGr11 in which one element of X occurs exactly twice
(namely as the first entry x1 and once more), and all the other elements
of X occur with multiplicity at most 1 . Now we rewrite Y as the disjoint
union

Y4Y1 NY2

where Y1 consists of all multilinear left normed basic commutators in X
of degrees 2 , 3 , R , r , and Y2 consists of the remaining elements from
(3.2) and (3.3). We write Y1

(n) and Y2
(n) for the sets consisting of all ele-

ments of degree n in Y1 and Y2 , respectively. Note that Y2
(2) 4X 2 4

4 ]x 2 ; x�X(. Let L 8 (Y) denote the derived algebra of L(Y).

LEMMA 3.1. Modulo L 8 (Y), the elements of Y2
(n) with n42,

3 , R , r11 and the elements of Y1
(r21) span free KG-modules. More-

over, each of these free KG-modules has a free generating set consisting
of Lie monomials from Y2

(n) (n42, 3 , R , r11) and Y1
(r21) , respecti-

vely.

PROOF. Let Y2
(n , e) denote the set of all elements (3.3) of degree n

with x1 4e . If u4 [e 2 , x2 , R , xn22 ] �Y2
(n , e) (2 GnGr11) and g�G ,

then

ug4 [g 2 , x2 g , R , xn22 g] .

Using the fact that modulo L 8 (Y) commutators of the form [u0 , u1 ,
u2 , R , uk ] and [u1

2 , u2 , R , uk ] with u0 , u1 , R , uk �X are symme-
tric in the entries u2 , R , uk , it is easily seen that, modulo L 8 (Y), ug is
congruent to a unique element of Y2

(n) , and conversely, every element of
Y2

(n) is congruent to an element of the form ug for some u�Y2
(n , e) and
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g�G . This is trivial for n42 where Y2
(2)4X 2. Now let nD2, and consider

the element ug . Because of the symmetry mentioned above, we may as-
sume (working modulo L 8 (Y)) that x2 gERExn22 g . If gEx2 g , then
the element ug is congruent to an element of the form (3.3), and if
gDx2 g , we get (by using that symmetry again)

ugf [g 2 , x2 g , R , xn22 g]

f [x2 g , g , g , R , xn22 g]

f [g , x2 g , R , g , R , xn22 g]

where the latter is an element of the form (3.2) from Y2
(n) . Hence Y2

(n)

spans a free KG-module in the quotient L(Y) /L 8 (V), and the elements of
Y2

(n , e) generate this module freely. This proves the assertion about Y2
(n) .

Now consider the set Y1
(r21) . It consist of all left normed multilinear

basic commutators of degree r21 with entries in X . Each element of
Y1

(r21) involves exactly r21, that is, all but one, of the free generators
from X . For x�X , let Y1

(r21) (x) denote the subset of Y1
(r21) consisting of

all elements not involving x . Then

Y1
(r21) 4 0

x�X
Y1

(r21) (x) and aY1
(r21) b 4 5

x�X
aY1

(r21) (x)b.

It is easily seen that modulo L 8 (Y) the action of G on the set of sub-
spaces aY1

(r21) (x)b (x�X) is given by

aY1
(r21) (x)bg4 aY1

(r21) (xg)b.

Consequently, G acts regularly on the set of these subspaces. This im-
plies the assertion about Y1

(r21) . Any of the r subsets aY1
(r21) (x)b(x�X)

may be taken as a free generating set of the free KG-submodule aY1
(r21) b

of L(Y) /L 8 (Y). r

Now let Y (n) denote the set of all elements of degree n in Y , and write
the latter as a disjoint union

Y4Y (2) NY (3) NRNY (r) NY (r11) .

Here Y (n) 4Y1
(n) NY2

(n) for n42, R , r and Y (r11) 4Y2
(r11) . By Lemma

3.1, we can find sets W2
(n) (n43, R , r11) and W1

(r21) of Lie monomials
in Y2

(n) and Y1
(r21) , respectively, such that the sets

W2
(n) G4 ]ug ; u�W2

(n) , g�G(



L. G. Kovács - Ralph Stöhr48

and

W1
(r21) G4 ]ug ; u�W1

(r21) , g�G(

are linearly independent, and, moreover, modulo L 8 (Y) we have

aW2
(n) Gb 4 aY2

(n) b mod L 8 (Y) (n43, R , r11)

and

aW1
(r21) Gb 4 aY1

(r21) b mod L 8 (Y).

It follows easily that every element ug of W2
(n) G (n43, R , r11) can be

written as

ug4W n (y)1wy

where y�Y2
(n) , W n is a linear automorphism of aY2

(n) b, and wy �L 8 (Y).
Since both ug and y are elements of degree n , so is wy , and hence

wy �L 8 (Y)OLn (X) ’L(Y (2) NRNY (n21) ).

Similarly, every element ug of W1
(r21) G can be written as

ug4c r21 (y)1wy

where y�Y1
(r21) , c r21 is a linear automorphism of aY1

(r21) b, and

wy �L(Y (2) NRNY (r22) ).

Now a straightforward application of Lemma 2.3 gives that the elements
of Y2

(n) with 3GnGr11 and the elements of Y1
(r21) in the free generat-

ing set Y can be replaced by the elements of the set WG where

W4W2
(3) NRNW2

(r) NW2
(r11) NW1

(r21) .

By construction, the set WG consists of monomials and G acts freely on
WG . We denote the resulting new free generating set of R(Y) by Z . Let
S(X) 4Y1 0Y1

(r21) . Thus S(X) is the set of all left normed multilinear
basic commutators of degree 2 , 3 , R , r22 and degree r in X (that is, all
those of degree at most r , excluding the degrees 1 and r21).
Clearly,

Z4S(X)NX 2 NWG ,

and G acts freely on both X 2 and WG . Next we observe that the elements
of S(X) generate a G-invariant subalgebra in R(Z). This is because of the
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obvious fact that if u4 [x1 , R , xn ] is a multilinear left normed basic
commutator with entries x1 , R , xn �X then, for any g�G , ug4

4 [x1 g , R , xn g] involves n distinct elements x1 g , R , xn g�X , and when
written as a linear combination of Hall basic commutators, each of those
basic commutators is multilinear with entries x1 g , R , xn g�X , and hen-
ce it is either multilinear left-normed of degree n or a Lie product of
multilinear left normed basic commutators of degree at least 2 and at
most n22 with disjoint entry sets. We may now summarize our discus-
sion so far as follows.

ELIMINATION STEP 1. There exists a set W of Lie monomials in
L3 5L4 5R5Lr11 such that

R4 aXb5R(Z)(3.4)

where

Z4S(X)NX 2 NWG .

Moreover, S(X) generates a G-invariant subalgebra of R(Z) and G acts
freely on both X 2 and WG .

Elimination of the subalgebra generated by S(X) from R(Z) yields a
direct decomposition

R(Z) 4R(S(X) )5R(U)(3.5)

where

U4 ][a , b1 , R , bk ] ; a�X 2 NWG , b1 , R , bk �S(X), kF0(.

It is not hard to see that the span of U in R(U) is G-invariant. Moreover,
there is an isomorphism

aUb ` aX 2 NWGb7T(S(X) )

where T(S(X) ) 4 5
n40

Q

Tn (S(X) ) denotes the tensor algebra on S(X), re-

garded as a graded KG-module in the obvious way. Since aX 2 NWGb is a
free KG-module, so is aUb. In fact, the elements of U with a� ]e 2 (NW
form a free generating set for aUb as a free KG-module. Evidently, with
the sole exception of e 2 this free generating set consists of Lie mono-
mials in X . A straightforward application of Lemma 2 gives that the free
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generating set U of R(U) can be replaced by

U1 4 ][a , b1 , R , bk ] g ; a� ]e 2 (NW , b1 , R , bk �S(X), g�G , kF0( .

Note that G acts freely on U1 . Observe also that U1 contains X 2 as a sub-
set, and the elements of the latter generate a free restricted Lie sub-
algebra in R(U1 ). Moreover, U1 0X 2 consists of Lie monomials in X . Eli-
mination of the subalgebra generated by X 2 from R(U1 ) gives a direct
decomposition

R(U) 4R(X 2 )5R(U2 )(3.6)

where

U2 4 ][a , b1 , b2 , R , bk ] ; a�U1 0X 2 , b1 , R , bk �X 2 , kF0(.

It is evident that G acts freely on the set U2 , and it is also clear that U2

consists of Lie monomials. By combining (3.6) with (3.5) and (3.4) we
obtain the following.

ELIMINATION STEP 2. There exists a set U2 of Lie monomials in
L(X) such that

R(X) 4 aXb5R(S(X) )5R(X 2 )5R(U2 ),(3.7)

and G acts freely on U2 .

Since R(X) `R(X 2 ), we can now apply (3.7) to R(X 2 ). The results is
the direct decomposition

R(X 2 ) 4 aX 2 b5R(S(X)W)5R(X 4 )5R(U2 W)

where W is the endomorphism of R(X) determined by x O x 2 for all x�X .
This direct decomposition of R(X 2 ) involves R(X 4 ) as a direct summand,
to which (3.7) can be applied once more. Iterative application of (3.7)
eventually gives in the limit the direct decomposition of R(X) that is
given in Elimination Step 3 below. In the statement we adopt the con-
vention that W 0 is the identity map.

ELIMINATION STEP 3. There exists a set U2 of Lie monomials in
L(X) such that

R(X) 4 o 0
iF0

X 2ip5 5
iF0

R(S(X) W i )5 5
iF0

R(U2 W i ).(3.8)

Moreover, G acts freely on the set U2 , and hence on the sets U2 W i , and



On Lie powers of regular modules etc. 51

all the sets U2 W i and S(X) W i (iF0) are free generating sets for the free
restricted Lie algebras they generate.

Now consider the free Lie algebra L(X). Since the free generating
sets U2 W i and S(X) W i (aF0) consist of Lie elements, the following is an
easy consequence of (3.8).

ELIMINATION STEP 4. For the free Lie algebra L(X) there is a di-
rect decomposition

L(X) 4 aXb5 5
iF0

L(S(X) W i )5 5
iF0

L(U2 W i )(3.9)

where S(X), U2 and W are as in Elimination Step 3.

This is the crucial step in the proof of our reduction theorem. It provi-
des a direct decomposition of L(V) 4L(X) into the direct sum of V4 aXb,
an infinite series of isomorphic G-invariant free Lie algebras L(S(X) W i )
(iF0), and another infinite series of isomorphic G-invariant free Lie al-
gebras L(U2 W i ). Since G acts freely on the sets U2 W i , the latter are free
Lie algebras on free KG-modules. Our aim is to decompose the whole of
L(X) into a direct sum of terms of the form

aXj b5 5
iF0

L(S(Xj ) W j
i ),(3.10)

that is, terms similar to the first two direct summands on the right hand
side in (3.9). To be more precise, we introduce some more notation.

DEFINITION. Let Xj be a set of Lie monomials in R(X) such that G
acts regularly on Xj and Xj is a free generating set for the subalgebra it
generates in R(X). Furthermore, suppose we are given an arbitrary but
fixed bijective map XKXj that agrees with the G-action on X and Xj .
Then we write S(Xj ) for the image of S(X) under the endomorphism of
R(X) that is determined by the given G-map XKXj , and we write W j for
the endomorphism of R(Xj ) given by x O x 2 for all x�Xj .

Roughly speaking, S(Xj ) and W j are for Xj defined in exactly the same
way as S(X) and W for X . In what follows, when writing S(Xj ), we will
always assume that an appropriate choice for the map XKXj has been
made, and the existence of such a map will be obvious from the context.
With these definitions in place and with Elimination Step 4 at our dispo-
sal, the above stated aim is not hard to achieve.
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LEMMA 3.2. In L(X) there exist an infinite sequence u1 (4e),
u2 , u3 , R of Lie monomials with deg u1 G deg u2 G deg u3 GR and sub-
sets Yk , s (where k41, 2 , 3 , R and s runs over some countable index
set Ik ) such that, for each kF1,

(i) the sets Yk , s with s�Ik consist of Lie monomials of degree
greater than or equal to deg uk ,

(ii) G acts regularly on the set Xk 4 ]uk g ; g�G(,
(iii) G acts freely on the sets Yk , s for all s�Ik , and

(iv) L(X) decomposes into the direct sum

L(X) 4 5
j41

k
(aXj b5 5

iF0
L(S(Xj ) W j

i ) )5 5
s�Ik

L(Yk , s )

where each of direct summands L(S(Xj ) W j
i ) is freely generated by the

set S(Xj ) W j
i and each of the direct summands L(Yk , s ) is freely generated

by Yk , s .

PROOF. The required sequence and the associated sets Yk , s are con-
structed by induction. We start by setting u1 4e . Then X1 4X , and Eli-
mination Step 4 gives that (i)-(iv) hold for k41 with the sets U2 W i in the
place of the Y1, s . Now suppose that we have a finite sequence u1 , R , uk

such that (i)-(iv) hold. Let uk11 be an element of smallest possible de-
gree in 0

s�Ik
Yk , s ; say, uk11�Yk , t for t�Ik . Then elimination of the Lie sub-

algebra generated by Xk11 4 ]uk11 g ; g�G( from L(Yk , t ) gives a direct
decomposition

L(Yk , t ) 4L(Xk11 )5L(XAk11 )

where

XAk11 4 (Yk , t 0Xk11 ) ı Xk11 .

It is easily seen that XAk11 consists of Lie monomials of degree greater
than or equal to deg uk11 and that G acts freely on XAk11 . The inductive
step now follows by applying Elimination Step 4 to L(Xk11 ) and by tak-
ing the sets U2 (more precisely, the canonical image of U2 ’L(X) in
L(Xk11 )), XAk11 and Yk , s with s�Ik 0]t( as the sets Yk11, s . r

REMARK. It may be seen from the proof that our construction of the
sequence u1 , u2 , u3 , R is effective in that it allows us to compute its ele-
ments explicitly up to any given degree n . Indeed, although the con-
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struction involves infinite collections of infinite sets Yk , s and various
choices to be made, it is easily seen that all of these sets contain only fini-
tely many elements of any given degree, and that all elements of degree
larger than n can be ignored if we want the ui only up to degree n .

Since each homogeneous component of L(X) has finite dimension,
Lemma 3.2 (iv) gives in the limit (kKQ) the desired decomposition of
L(X) into a direct sum of terms of the form (3.10).

THEOREM 1. In L(V) 4L(X) there exists a sequence u1 (4e),
u2 , u3 , R of Lie monomials such that the sets Xj 4 ]uj g ; g�G(

span regular KG-submodules of L(X), and L(X) decomposes into the di-
rect sum

L(X) 4 5
j41

Q

(aXj b5 5
i40

Q
L(S(Xj ) W j

i ) )

where each of direct summands L(S(Xj ) W j
i ) is freely generated by the

set S(Xj ) W j
i .

Since the free Lie algebras L(S(Xj ) W j
i ) are for all iF0, jF1 isomor-

phic to L(S(X) ) (as graded KG-modules), this theorem reduces the de-
composition problem for L(V) to the decomposition problem of L(S(X) ).
Moreover, the theorem reveals a peculiar feature of the free Lie algebra
L(V) as a KG-module: it contains an infinite series aX1 b, aX2 b, R of regu-
lar submodules, and each of those gives rise to an infinite series of direct
summands L(S(Xj ) W j

i ) (i40, 1 , 2 , R) which are free Lie algebras iso-
morphic to L(S(X) ). Furthermore, the members of such a series are ob-
tained from the first member, L(S(Xj ) ), via the powering maps W j . This
bears a striking analogy to results in [8], [9] and [4] where similar featu-
res of free Lie algebras on modules for groups of order p (over fields of
characteristic p) are exhibited. In fact, in the case where p42, our theo-
rem is a straight generalization of these results. Indeed, let G be the
group of order 2 with generator g , V the regular KG-module with basis
X4 ]e , g(. Then the set S(X) consists of a single element, [g , e], and
hence the free Lie algebra L(S(X) ) is one-dimensional. Since [g , e] is fix-
ed under the action of G , all the free Lie algebras L(S(Xj ) W j

i ) in the
theorem are just one-dimensional trivial KG-modules. Thus the theorem
turns into the following result which was first proved in [8].

COROLLARY. Let G be the group of order 2 with generator g , V the re-
gular module for V and L(V) the free Lie algebra on V. Then there exists
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a sequence of monomials u1 , u2 , u3 , R in L(V) such that the elements
uj , uj g ( j41, 2 , R) together with the elements

[uj
2i

g , uj
2i

] ( j41, 2 , 3 , R , i40, 1 , 2 , R)

form a basis of L(V).

In fact, our corollary is slightly stronger than the original result from
[8] since it ensures that the sequence u1 , u2 , R , and hence the whole basis
of L(V), consists of monomials. It should be pointed out, however, that sin-
ce the publication of [8], the main result of that paper and a number of va-
riations and far reaching generalizations thereof have been obtained by
different methods (see [11], [9], [4], [5], [13]). In particular, a monomial
basis similar to the one in the corollary has been obtained in [13].

REMARK. The above corollary extends to the case where V is an arbi-
trary free KG-module of countable rank (see Theorem 1 in [13] for the finite
rank case and the proof of Corollary 1 in [5] for how to extend it to the
case of countably infinite rank). We will make use of that in Section 5.

4. Another reduction theorem.

Let G , V and X4 ]e , a , b , R , c( be as before, and consider the free
restricted Lie algebra R4R(X). Restricted elimination of the identity
element e gives a direct decomposition

R(X) 4 aeb5R(Y)

where

Y4 ]e 2 , a , b , R , c , [a , e], [b , e], R , [c , e](.

Now consider L(Y), the free Lie subalgebra generated by Y in R(X). Sin-
ce L(Y) contains all left normed basic commutators of degree F2 in X ,
we have that L(Y) contains the derived algebra L 8 (X) 4L2 (X)5
5L3 (X)5R . On the other hand, since all elements of Y except e 2 are Lie
elements, we have L(Y)ORn (X) ’Ln (X) for all nF3. Hence

L(Y)ORn (X) 4Ln (X) for all nF3.(4.1)

Now let

XA 4 ]e , a1e , b1e , R , c1e(.
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Clearly, R(X) 4R(XA) and L(X) 4L(XA). Note that the elements a1e ,
b1e , R , c1e span an (r21)-dimensional KG-submodule D of the re-
gular module V . If V is identified with KG , this submodule is the aug-
mentation ideal of KG . Now restricted elimination of e gives a direct
decomposition

R(X) 4R(XA) 4 aeb5R(YA)

where

YA 4 ]e 2 , a1e , b1e , R , c1e , [a , e], [b , e], R , [c , e](.

Since

a 2 4 [a , e]1 (a1e)2 1e 2 ,

we may replace the free generating set YA by

Y× 4 ]e 2 , a 2 , b 2 , R , c 2 , a1e , b1e , R , c1e(.

Thus

R(X) 4 aeb5R(Y×).

The advantage of the free generating set Y× is that it spans a KG-submo-
dule of R(X). Indeed, the elements e 2 , a 2 , b 2 , R , c 2 span a regular mo-
dule and the elements a1e , b1e , R , c1e span D . Now consider the
free Lie algebra L(Y×). Obviously, L(Y×)ORn (X) ’Ln (X) for all nF3. On
the other hand, since both Y and Y× consist of r21 elements of degree 1
and r elements of degree 2, it follows that

dim (L(Y×)ORn (X) ) 4 dim (L(Y)ORn (X) ) for all nF2,

and then (4.1) implies that L(Y×)ORn (X) ) 4Ln (X) for all nF3. Thus we
have proved the following

THEOREM 2. In the free restricted Lie algebra R(V) 4R(X) of the
regular KG-module V with X4 ]e , a , b , R , c(, let

Y× 4 ]e 2 , a 2 , b 2 , R , c 2 , a1e , b1e , R , c1e(.

Then the Lie subalgebra L(Y×) is freely generated by Y×, and

L(Y×)ORn (X) 4Ln (X) for all nF3.
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Moreover,

ae 2 , a 2 , b 2 , R , c 2 b `V and aa1e , b1e , R , c1eb `D ,

so that

L(Y×) `L(D5V).

This theorem reduces the decomposition problem for the Lie powers
of the regular module V to the decomposition problem for the Lie powers
of D . However, since we are not able to solve either of those we will not
elaborate on that. Instead, we record some consequences of the theorem
which are of independent interest. Since Ln (a1e , b1e , R , c1e) is a
direct summand of L(Y×), it is also a direct summand of L(Y×)ORn (X), and
since the latter coincides with Ln (X) for all nF3, we have the
following

COROLLARY. For all nF3, Ln (D) is a direct summand of
Ln (V).

Combining this with Fact 1 in Section 3 gives

COROLLARY. The Lie powers Ln(D) are free KG-modules for all nF3
such that (n , NGN) 41.

In the concluding two sections we study the Lie powers of the regu-
lar module for the Klein four group.

5. The Klein four group: preliminary discussion.

For the rest of this paper G4 ]e , x , y , z( is the Klein four group,
and V4 aXb with X4 ]e , x , y , z( is the regular module for G . The inde-
composable KG-modules have been fully classified by Conlon [10]. In
this paper, however, we need only a few of them, namely, the regular mo-
dule V , the 3-dimensional indecomposable module D (the augmentation
ideal in KG), its dual D* (which is isomorphic to the quotient KG/(e1

1x1y1z)KG), the trivial module K and the three 2-dimensional induced
modules

Vx 4KHaxb
G , Vy 4KHayb

G , and Vz 4KHazb
G .

By Fact 3 in Section 3, Ln (V) is a free KG-module for all odd n .
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Further results have been obtained by Michos [12]. He solved the de-
composition problem for L2q (V) for odd q , and for L4 (V). It turned out
that the only indecomposables occurring in L2q (V) are the regular modu-
le and the induced modules Vx , Vy , Vz , while L4 (V) `2D*5Vx 5Vy 5
5Vz 512V . Michos’ approach was entirely based on studying the restric-
tion of Ln (V) to the cyclic subgroups of G and, for n44, on explicit
calculations.

In this paper we pursue a different approach. By Theorem 1, the de-
composition problem for the Lie powers of the regular module V reduces
to the decomposition problem for the free Lie algebra L(S(X) ), and it is
this Lie algebra we will focus on now. Assuming that X is ordered by eE

ExEyEz , we have

S(X)4][x, e], [z, y], [y, e], [z, x], [z, e], [y, x], [x, e, y, z], [y, e, x, z], [z, e, y, z](.

In order to simplify notation, we set

x4 [x , e], y4 [y , e], z4 [z , e],

x4 [z , y], y4 [z , x], z4 [y , x],

a84 [ [x , e], [y , z] ] 4 [x , x],

b84 [ [y , e], [z , x] ] 4 [y , y],

c84 [ [z , e], [y , x] ] 4 [z , z],

and

a4 [x , e , y , z],

b4 [y , e , x , z]1 [ [y , e], [z , x] ],

c4 [z , e , x , y].

Then we have

L(S(X) ) 4L(x , x, y , y, z , z, a , b , c).

Obviously,

xx4x , yx4y , zx4z ,

xx4x , yy4y , zy4z ,

xy4x , yy4y , zz4z ,

xz4x , yz4y , zz4z ,
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and consequently

ax , xb `Vx , ay , yb `Vy , az , zb `Vz .

In particular, we have

L2 (V) 4 ax , x, y , y, z , zb `Vx 5Vy 5Vz .

As to the action of G on the remaining elements of S(X), it is plain that
a8 , b8 and c8 are fixed by G , and one easily calculates that the action on
a , b and c is given by

(5.1)

ax4a1a8

ay4b1c1c8

az4b1c1c81a8

bx4a1c1a81b8

by4b1b8

bz4a1c1a8

cx4a1b1b8

cy4a1b1b81c8

cz4c1c8.

The latter shows that the action of G on L(S(X) ) is not homogeneous.
This is a major disadvantage which complicates matters tremendously.

We now examine the restrictions of L(S(X) ) to the cyclic subgroups
of G . To this end we first notice that

L(S(X) ) 4L(x , x, y , y, z , z, a , b , bx),

in other words, that the element c in the original free generating set of
L(S(X) ) can be replaced by bx . This follows immediately from (5.1). Now
full elimination of x and x gives a direct decomposition

L(S(X) ) 4 ax , xb5L(Y)

where

Y4 ][x , xk , xm ]; kF1, mF0(N

N][u , xk , xm ]; u� ]y , y , z , z , a , b , bx(, kF0, mF0(

It is easily seen that aYb is a free axb-module. Indeed, since x and x are
fixed by x , the elements [u , xk , xm ] with u� ]y , y(, u� ]z , z( and
u� ]b , bx( are interchanged by x , and for the remaining elements we
have (using (5.1))

[a , xk , xm ] x4[a , xk , xm ]1[x, xk11 , xm ], [x, xk11 , xm ] x4[x, xk11 , xm ] .

Hence these come also in pairs which generate regular axb-modules. By
the corollary to Theorem 1, and the remark thereafter, L(Y) has an axb-
invariant basis consisting of pairs of elements which are swapped by x
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and elements which are fixed by x . Moreover, all of the fixed elements
have even degree with respect to Y . Since the free generators in Y have
even degree with respect to X , it follows that the degrees of the fixed
elements with respect to X are divisible by 4 . This implies that for all
nD2 which are not divisible by 4 , the intersection L(S(X) )OLn (X) is a
free axb-module. The same holds of course for the restrictions to the
other cyclic subgroups of G . We record this result in the following

LEMMA 5.1. For all nD2 such that ng0 mod 4, the restrictions of
L(S(X) )OLn (X) to the cyclic subgroups of G are free modules for those
cyclic groups.

Observe that the elements x , x, y , y, z , z generate a G-invariant free
Lie subalgebra of L(S(X) ) with

L(x , x, y , y, z , z) `L(Vx 5Vy 5Vz ).(5.2)

Set V1 4 ax , xb, V2 4 ay , yb, V3 4 az , zb. By Lemma 3 of [7], the free Lie al-
gebra (5.2) has a direct decomposition

(5.3) L(x , x, y , y, z , z) 4L(x , x)5L(y , y)5L(z , z)5L(U2 5U3 5R)

where, for all nF2, Un is the direct sum of the subspaces

[Vi1
, Vi2

, R , Vin
] (i1 D i2 GRG in ),

and, moreover, all these Un are free KG-submodules of L(x , x, y , y, z , z).
We will use this fact in the concluding section.

Before we continue our examination of L(S(X) ), consider the module
D . Set aA 4x1e , bA 4y1e , cA 4z1e . Then D4 aaA, bA, cAb. The G-action on
D is given by

aA x4 aA

a
A

y4 b
A

1c
A

aA z4 bA 1cA

bA x4 aA 1cA

b
A

y4 b
A

bA z4 aA 1cA

cA x4 aA 1bA

c
A

y4 a
A

1b
A

cA z4 cA.

By comparing this with (5.1) it is easily seen that in L(S(X) )

aa , b , cb `D mod L(x , x, y , y, z , z).
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Elimination of L(x , x, y , y, z , z) from L(S(X) ) gives a direct decom-
position

L(S(X) ) 4L(x , x, y , y, z , z)5L(W)(5.4)

where

W4][u , v1 , R , vk ] ; u� ]a , b , c(, v1 , R , vk � ]x , x, y , y, z , z(, kF0(.

Notice that (5.4) is merely a direct decomposition over K . It is not a di-
rect decomposition of KG-modules, since aWb is not G-invariant. How-
ever, modulo the G-invariant subalgebra L(x , x, y , y, z , z) the span of W
is G-invariant, and its structure as a KG-module is particularly simple.
Let W (m) (m40, 1 , 2 , R) denote the set of elements in W with
k4m .

LEMMA 5.2. For each mF0, consider the map

[u , v1 , R , vm ] O uA 7v1 7R7vm

where u� ]a , b , c( and v1 , R , vm � ]x , x, y , y, z , z(. Modulo the sub-
module L(x , x, y , y, z , z), this may be extended to an isomorphism

aW (m) b KD7T m (Vx 5Vy 5Vz ).

PROOF. This follows immediately from (5.1). r

Clearly,

(5.5) T m (Vx 5Vy 5Vz ) `T m (Vx )5T m (Vy )5T m (Vz )5Qm

where Qm is a free KG-module, and

T m (Vx ) `Vx 5R5Vx (2m21 copies ).

In particular, the dimension of the free KG-module Qm is given by
dim Qm 42m (3m 23).

LEMMA 5.3. Let D4 aaA, bA, cAb and Vx 4 ax , xb. Then there is an
isomorphism of KG-modules

D7Vx `Vx 5V .
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Moreover, the elements

aA 7x , (bA 1cA)7x

span a direct summand isomorphic to Vx in D7Vx .

PROOF. It is easily verified by direct calculation that

D7Vx 4 aaA 7x , (bA 1cA)7xb5 a(bA 7x) KGb,

and that the direct summands on the right hand side are isomorphic to
Vx and V , respectively. This proves the lemma. r

Finally, we record the fact that

L2 (D) 4 [a , b] KG and L2 (D) `D*.(5.6)

This is easily verified by direct calculation.

6. The Klein four group: results.

Now we exploit the results of the previous section and Theorem 1 to
obtain information about the Lie powers Ln (V) of the regular module for
the Klein four group G . Since these are free for all odd n (Fact 1), we re-
strict ourselves to the case where n is even. First we examine the case
where n42q with q odd. Let

u1 , u2 , u3 , R(6.1)

be the sequence from Theorem 1, and X14X, X2 , X3 , R the correspond-
ing sequence of subsets. Note that the free generating sets S(Xj ) W j

i

consist of elements of degree 2i11 deg uj and 2i12 deg uj . Hence the di-
rect summands L(S(Xj ) W j

i with iD0 do not contribute to the homogene-
ous components L2q (V) with q odd. Now let q be an arbitrary but fixed
odd natural number. Then we have, by Theorem 1,

L2q (V) 4 5
j�I

aXj b55
j�J

(L(S(Xj ) )OL2q (V) )(6.2)

where I is the set of all positive integers k such that deg uk 42q and J is
the set of all positive integers m such that deg um divides q .

Let m�J . If deg um 4q , we have obviously

L(S(Xm ) )OL2q (V) 4L2 (Xm ) `Vx 5Vy 5Vz .(6.3)

Now let m�J with d4 deg um cq . Then q4dk where both d and k
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are odd and kD1. We then have

L(S(Xm ) )OL2q (V) 4L(S(Xm ) )OL2k (Xm ).

By Lemma 5.2, this module is free on restriction to the cyclic subgroups
of G . Now consider the multihomogeneous components L(a , b , c , d) (X) with
a1b1c1d42q and a , b , c , d indicating the partial degree in
e , x , y , z , respectively. Let F denote the set of all 4-tuples (a , b , c , d)
with a1b1c1d42q such that that the corresponding multihomoge-
neous components are freely permuted by the action of G . Then the di-
rect sum of these multihomogeneous components is a free KG-module,
and so is its direct summand

L(S(Xm ) )O 5
(a , b , c , d) �F

L(a , b , c , d) (X).

It is easily seen that the remaining multihomogeneous components of to-
tal degree 2q are determined by 4-tuples of the form

(a , a , b , b), (b , b , a , a), (a , b , a , b), (b , a , b , a), (a , b , b , a), (b , a , a , b)

where a1b4q . Obviously, the direct sums

L(a , a , b , b) (X)5L(b , b , a , a) (X),

L(a , b , a , b) (X)5L(b , a , b , a) (X),(6.4)

L(a , b , b , a) (X)5L(b , a , a , b) (X)

are direct summands of the KG-module L2q (X), and hence so are their
intersections with L(S(Xm ) ). Consider the intersection

L(S(Xm ) )O (L(a , a , b , b) (X)5L(b , b , a , a) (X) ) 4

4 (L(S(Xm ) )O (L(a , a , b , b) (X) )5 (L(S(Xm ) )OL(b , b , a , a) (X) ).

Clearly, the two direct summands on the right hand side are permuted
by the action of y and z . But by Lemma 5.1, each of these direct summands
is a free axb-module. It follows that the direct sum of the two is a free
KG-module. The same holds, by a similar argument, for the other two
modules in (6.4). Hence the direct summands L(S(Xm ) )OL2q (V) in (6.2)
are free KG-modules for all m�J except when deg um 4q , where (6.3)
applies. Finally, note that the number of elements um with deg um 4q in

the sequence (6.1) is 1

4
dimLq (X) (since the corresponding Xm span the

free KG-module Lq (X)). Now we can summarize our discussion as
follows.
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THEOREM 3 (Michos [12]). Let V be the regular module for the
Klein four group G . Then, for all odd qF1,

L2q (V) `s(Vx 5Vy 5Vz )5 tV

where

s4
1

4q
!
dNq

m(d)4q/d and t4
1

8q
!
dNq

m(d)(42q/d 24 Q4q/d ).

Our next task is to identify the module structure of L(S(X) )OLn (V)
for n44 and n48. Clearly,

L(S(X) )OL4 (V) 4 aa , b , c , a8 , b8 , c8 b5 aAb

where

A4 ][u , v]; u , v� ]x , x, y , y,z , z((0]a8 , b8 , c8(.

It is easily seen that

aAb `3V ,

and it is easily verified by direct calculation using (5.1) that

aa , b , c , a8 , b8 , c8 b 4aKG5bKG ,

and that

aKG`bKG`D*.

Hence

L(S(X) )OL4 (V) `2D*53V .(6.5)

Now consider the intersection L(S(X) )OL8 (V). In view of (5.4) we have
that

(6.6) L(S(X) )OL8 (V) 4L4 (x , x, y , y, z , z)5

5a[u , v1 , v2 ]; u� ]a , b , c(, v1 , v2 � ]x , x, y , y, z , z(b

5a[a , b], [a , c], [b , c]b.

This again is merely a direct sum of vector spaces and not a direct sum of
KG-modules. However, the first direct summand on the right hand side
of (6.6) is a KG-submodule of L(S(X) )OL8 (V), and so is the direct sum of
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the first and the second, U say. This gives rise to a filtration

L4 (x , x, y , y, z , z) %U%L(S(X) )OL8 (V).(6.7)

It is easily seen that the top quotient of this filtration is ([a , b]1U) KG
and is isomorphic to L2 (D), whence by (5.6) we have

(L(S(X) )OL8 (V) ) /U`D*.(6.8)

We claim that the top quotient (6.8) splits off. To see this, consider the
element

w4 [a , b]1 [a , z , z]1 [b , x , x]1 [c , y , y] .

Clearly, w� [a , b]1U , so wKG1U4L(S(X) )OL8 (V) and wKG has di-
mension at least 3. Using (5.1), one gets

w(e1x1y1z) 4

4

[a , b]1 [a , z , z]1 [b , x , x]1 [c , y , y]

1[a1a8 , a1c1b81a8 ]1 [a1a8 , z, z]

1[a1c1a81b8 , x , x]1 [a1b1b8 , y, y]

1[b1c1c8 , b1b8 ]1 [b1c1c8 , z, z]

1[b1b8 , x, x]1 [a1b1b81c8 , y , y]

1[b1c1a81c8 , a1c1a8 ]1 [b1c1a81c8 , z , z]

1[a1c1a8 , x, x]1 [c1c8 , y, y]

0 ,

so wKG has dimension at most 3 . Consequently, we have a direct
decomposition

L(S(X) )OL8 (V) 4U5wKG with wKG`D*.(6.9)

Now consider the quotient U/L4 (x , x, y , y, z , z). By Lemma 5.2, there is
an isomorphism

U/L4 (x , x, y , y, z , z) `D7T2 (Vx 5Vy 5Vz ),

and by (5.5) this gives

U/L4 (x , x, y , y, z , z) `

` (D7T2 (Vx ) )5 (D7T2 (Vy ) )5 (D7T2 (Vz ) )5 (D7Q2 )

where Q2 is a free KG-module of dimension 24 . Since Q2 is a free KG-mo-
dule, so is the tensor product D7Q2 . For the tensor square T2 (Vx ) we
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have obviously

T2 (Vx ) 4 ax7x , x7xb5 ax7x, x7xb `Vx 5Vx ,

and there are similar decompositions for T2 (Vy ) and T2 (Vz ). Now Lemma
5.3 together with Lemma 5.2 gives that

U/L4 (x , x, y , y, z , z) `2Vx 52Vy 52Vz 5P(6.10)

where P is a free KG-module. Moreover, the elements

[a , x , x], [b1c , x, x] and [a , x , x], [b1c , x, x](6.11)

span two direct summands isomorphic to Vx in U/L4 (x , x, y , y, z , z), and
the elements obtained from (6.11) via the substitutions

x O y , x O y and x O z , x O z

span two direct summands isomorphic to Vy and Vz , respectively. Of
course the direct summand P of U/L4 (x , x, y , y, z , z) splits off from U ,
and it therefore remains to examine the elements (6.11) (and the corre-
sponding elements obtained under the above substitutions). Before we
turn to those elements, we examine L4 (x , x, y , y, z , z), the module at the
bottom of the filtration (6.7). In view of (5.3) one has

(6.12) L4 (x , x, y , y, z , z) 4L4 (x , x)5L4 (y , y)5L4 (z , z)5L2 (U2 )5U4

where U2 and U4 are free KG-modules. Moreover, it is easily seen that U2

is a free KG-module of rank 3 , and hence

L2 (U2 ) `3(Vx 5Vy 5Vz )5P1(6.13)

where P1 is a free KG-module. Finally,

L4 (x , x) 4 a[x, x , x , x], [x, x , x, x]b5 a[x2 , x2 ]b,(6.14)

and similarly for L4 (y , y) and L4 (z , z). Now return to the elements (6.11).
We first examine the first two of them. Note that

[b1c , x, x] f [b1c1c8 , x, x] mod L4 (x , x, y , y, z , z).

Using (5.1) we find that

[a , x , x] x4 [a1a8 , x , x]

[a , x , x] y4 [b1c1c8 , x , x]

[a , x , x] z4 [b1c1c81a8 , x , x]

4 [a , x , x]1 [x , x , x , x]

4 [b1c1c8 , x , x]1 [x , x , x , x].
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This implies that the elements

[a , x , x], [b1c1c8 , x, x], [x, x , x , x], [x, x , x, x](6.15)

span a regular KG-submodule of U , and, clearly, the same holds for their
counterparts under the substitutions described above. Now consider the
remaining two elements in (6.11). First note that

[b1c , x, x] f [b1c1c8 , x, x] mod L4 (x , x, y , y, z , z).

Using (5.1) again, we find that

[a , x , x] x4 [a1a8 , x , x]

[a , x , x] y4 [b1c1c8 , x , x]

[a , x , x] z4 [b1c1c81a8 , x , x]

4 [a , x , x]1 [x , x2 ]

4 [b1c1c8 , x , x]1 [x , x2 ].

This gives that the elements

[a , x , x], [b1c1c8 , x, x], [x2 , x2 ](6.16)

span a 3-dimensional KG-submodule of U , and it is plain that this submo-
dule is isomorphic to D*. As before, the same holds for their counterpar-
ts under the substitutions described above. It follows that U is a direct
sum of three isomorphic copies of D* (coming from the elements (6.15)),
three isomorphic copies of Vx 5Vy 5Vz (coming from L2 (U2 ), see (6.12)
and (6.13)) and a free KG-module coming from the free direct summand
P in (6.10), the free direct summand P1 in (6.13) and the free direct sum-
mand U4 in (6.12). By combining this with (6.9), which provides an addi-
tional direct summand of L(S(X) )OL8 (V), which is isomorphic to D*, we
obtain a complete solution of the decomposition problem for this
module.

LEMMA 6.1. There is an isomorphism

L(S(X) )OL8 (V) `4D*53(Vx 5Vy 5Vz )5F

where F is a free KG-module.

Armed with this lemma, (6.5), and the fact that the second Lie power
of a free module of rank m is a direct sum of a free KG-module and m
isomorphic copies of Vx 5Vy 5Vz , complete decompositions of the Lie
powers L4 (V) and L8 (V) can now be easily obtained from Theorem 1.
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THEOREM 4. Let V be the regular module for the Klein four group
G . Then

L4 (V) `2D*5Vx 5Vy 5Vz 512V

and

L8 (V) `6D*513(Vx 5Vy 5Vz )52016V .

PROOF. As we have pointed out in the Remark after the proof of
Lemma 3.2, the construction in Section 3 provides us with an explicit re-
cipe for constructing the sequence u1 , u2 , u3 , R . A straightforward
analysis of the elimination procedure leading to this sequence shows that
in the case where V is the regular module for the Klein four group, this
sequence contains precisely one element of degree 1 , namely u1 4e , no
elements of degree 2 , and nine elements of degree 4 . In fact, the ele-
ments of degree 4 emerge already after the execution of Elimination
Steps 1 and 2. Three of them,

[e 2 , x , y], [e 2 , x , z] and [e 2 , y , z]

(elements of the form (3.3)) are created in the Elimination Step 1, and six
more,

[e 2 , x], [e 2 , x], [e 2 , y], [e 2 , y], [e 2 , z], [e 2 , z]

are added when the subalgebra R(S(X) ) is eliminated from R(Z) in Eli-
mination Step 3. It is easily seen that no more elements of degree 1 , 2 or
4 emerge in the whole elimination procedure. For each positive integer
m , set N (m) 4 ] j ; deg uj 4m(. Then we have by Theorem 1,

L4 (X) 4 (L(S(X) )OL4 (X) )5 (L(S(X 2 )OL4 (X) )5 5
j�N (4)

aXj b.

Since L(S(X) )OL4 (X) `2D*53V by (6.5),

L(S(X 2 )OL4 (X) 4L(S(X 2 )OL2 (X 2 ) `Vx 5Vy 5Vz ,

and NN (4) N49 this proves the assertion about L4 (X). For L8 (X), Theo-
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rem 1 gives

L8 (X) 4 (L(S(X) )OL8 (X) )

5(L(S(X 2 ) )OL8 (X) )

5(L(S(X 4 ) )OL8 (X) )

5 5
j�N (4)

(L(S(Xj ) )OL8 (X) )

5 5
j�N (8)

aXj b.

(6.17)

The first direct summand on the right hand side, (L(S(X) )OL8 (X) ), has
been identified in Lemma 6.1. For the second and third we have

L(S(X 2 ) )OL8 (X) 4L(S(X 2 ) )OL4 (X 2 ) `2D*53V

by (6.5) and

L(S(X 4 ) )OL8 (X) 4L(S(X 2 ) )OL2 (X 4 ) `Vx 5Vy 5Vz .

Similarly, one has

L(S(Xj ) )OL8 (X) 4L(S(Xj ) )OL2 (Xj ) `Vx 5Vy 5Vz

for all j�N (4) . Since the terms under the last big direct sum sign in
(6.17) are regular KG-modules, we have now identified all non-regular
direct summands in L8 (X). The multiplicity of the regular module V in
L8 (X) is then easily calculated from the corresponding dimen-
sions. r

As we have pointed out earlier, the result for L4 (V) is due to Michos
[12]. Our result for L8 (V) disproves a conjecture from [12] about the de-
composition of Lie powers of 2-power degree.
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