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Let G be a finite group, F a free group of finite rank, R the kernel of a ho-
momorphism tp of F onto G, and let [ i i , f] , [R,R] denote mutual commuta-
tor subgroups. Conjugation in F yields a G-module structure on R/[R,R]; let
da[R/[R, R]) be the number of elements required to generate this module. Define
d(R/[R, F]) similarly. By an earlier result of the first author, for a fixed G, the
difference dG(R/[R,R]) - d(R/[R,F]) is independent of the choice of F and <p\
here it is called the proficiency gap of G. If this gap is 0, then G is said to be
proficient. It has been more usual to consider dp(R), the number of elements
required to generate R as normal subgroup of F: the group G has been called
efficient if F and <p can be chosen so that dF(R) = da{R/[R,F]). An efficient
group is necessarily proficient; but (though usually expressed in different terms)
the converse has been an open question for some time.

The first part of the paper discusses similar issues in the category of profinite
groups and continuous homomorphisms. One of the conclusions is that a finite
group is proficient as discrete group if and only if it is efficient as profinite group.

Returning to the discrete setting, the second part explores the proficiency of
a direct product in terms of conditions on the direct factors.

INTRODUCTION

There are three natural integers associated with every finite free presentation of
a finitely presentable group. If F/R 3 G is such a presentation, then these numbers
are, in order of decreasing size, dF(R), dG{R/[R,R]), d(R/[R,F]). (Our notation is
standard: if P is a group of operators on a group X, then dp(X) denotes the minimum
number of elements of X needed to generate X as P-group.) It is convenient (and
usual) to involve d(F) and we define the defect of the presentation to be def F/R =
dF(R) - d(F); the abelianised defect to be adefF/R = dG(R/[R,R]) - d(F); and the
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centralised defect to be cdefF/R = d(R/[R,F]) - d(F). This last is an invariant of G
(meaning it is independent of the choice of F/R) because

cdefF/R = d(H2(G,Z)) - dimQQ<8> (G/[G,G]).

We may therefore write it as cdef G.
Abelianised defects can vary with the choice of free presentation: recall Dunwoody's

famous result [6] that (x, y \ x2 — y3) has a non-obvious free presentation with
abelianised defect 0. However, if G is finite, then adef F/R is independent of F/R
[7], giving the invariant adefG.

We remark that if G is any finitely presentable group, { adef F/R \ F/R ~ G } is
bounded below, whence its lower bound may be taken as defining adefG. Then defG
will denote the lower bound of all def F/R. But our interest in this note is exclusively
with finite groups. Note that here cdefG = d(H2(G,Z)), whence defG > 0.

The existence of a finite (or even finitely presentable) group G having a free pre-
sentation F/R ^ G with def F/R > adef F/R remains open (this is the relation gap
problem). There is even the tantalising possibility that such a free presentation exists
and yet defG = adefG.

The difference adef F/R — cdef F/R is much better understood. We shall call this
the proficiency gap of the finite group G; and when this is 0, we say G is proficient.

To explain this terminology we point out that our finite group G lives not only
in the universe of discrete groups but also in that of profinite groups. Every finite free
presentation F/R ^ G in the category of profinite groups yields invariants of the same
type as those discussed above. We shall write these as def, adef, cdef respectively, and
shall prove that always
(1) def F/R = adef F/R; and
(2) adef F/R - adefG (whence is independent of F/R). Moreover,
(3) cdefF/ii = cdefG.

Thus there is no profinite relation gap problem and proficiency has the same mean-
ing in both categories. A discrete G is called efficient if defG = cdefG. Adopting the
same term in the profinite category, we have that the finite group G is efficient as
profinite group if, and only if, G is proficient.

After these preliminaries (proofs of (1), (2) and (3) are in Section 1), we turn to our
main interest here: how proficiency behaves under direct products. Recall that a group
G is called superperfect if G is perfect (that is, Hi(G,Z) = 0) and H2(G,Z) = 0. Also,
G'n) shall mean the direct product G x • • • x G with n factors. We shall prove (all
groups are finite) that
(4) for any G and any non-superperfect H, E = G x H^ is proficient for all
sufficiently large n (2.6);
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(5) if E = G x H is perfect and (IE(AE) — 2 (where AE denotes the augmentation
ideal of ZE), then G, H proficient implies E proficient (2.8);

(6) if E — G x H is superperfect, then E proficient implies G, H proficient (2.9);

(7) if G is superperfect and n > 1, then G^ is proficient if, and only if, G x G is
proficient if, and only if, G is proficient and do(AG) = 2 (2.10).

A special case of (4) is quoted in Harlander's paper [10]. Related arguments occur
also in Campbell, Robertson, Williams [3]. Results (4)-(7) are proved in Section 2.
The last two sections deal with some questions raised by our results and give examples
to illustrate them.

1. PROFINITE GROUPS

When dealing with profinite groups, terms such as subgroup, normal subgroup,
commutator subgroup, et cetera, are always to be understood in the profinite sense.

( 1 . 1 ) If H is a normal subgroup of the finitely generated profinite group G and

a i , . . . ,an are elements in H whose normal closure A in G satisfies AH1 = H (where

H' is the commutator subgroup of H), then there exists c in H' such that H is the

normal closure of aiC, a,2, • • •, an .

PROOF: Let us write the normal closure of a subset X of G as (G(X). Thus
A — (G(ai,. • •, an) and we are given AH' — H, whence H/A is perfect.

Since G is finitely generated, G — Urn G/Ni, where the Ni form a descending
chain of open normal subgroups with i S Z>o and NQ — G. Then H = hm H/Mi,
where Mi = NiOH and MQ — H. Find the smallest integer r > 1 so that AMr < H:

if no such r exists, then AMt — H for all i > 1, whence A — H and we are done.
Thus AMr-i = H and we use the following result (whose proof we postpone):

( 1 . 2 ) With H, A as above, let K be a G-invariant open subgroup of H satisfying

AK = H. If M is any G -invariant open subgroup of H contained in K, then there

exists x in K' such that (G(a\X, a^, • • •, an)M — H.

Returning to AMr-\ = H, we can find x € M'T_X < MQ = H' so that ArMr = H,
where Ar = {G(a\x,a2,- • - , a n ) . If Ar ^ H, we take s to be the smallest integer
exceeding r so that ArMs < H. Then ArM8_i = H and, again by (1.2), there is an
element y in M's_1 so tha t A3MS = H, where As = (G(a.\xy, 0 2 , . . . ,an).

Changing notation, we obtain a sequence of G-invariant open subgroups of H,

H = L o > L i > L 2 > •••

(in the above notation, LQ = M o , L\ = Mr, £-2 = M8) and elements C{ e L\
such that (Gfaxci •••Cfc,a2, . . . ,an)Lfc = H. Now (c i , c i c 2 , c i c 2 c 3 , . . . ) is a Cauchy
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sequence in H (since p | Li = 1), whence it converges, say to c. Thus c 6 H' and
{G{d\c, a 2 , . . . ,an)Lk = H for all k, which establishes (1.1). D

PROOF OF (1.2): This is a result about a finite normal subgroup of a profinite
group, because we may work modulo M. Thus H is finite and we take a sequence of
G -invariant subgroups from K to 1, of maximal length: say

K = Mo > Mi > • • • > Mr = 1,

where Mi/Mi+i is minimal normal in G/Mi+i. We prove our result by induction on r.
So we may assume K is minimal normal in G. Then A n K — 1 as otherwise K < A,
whence A — H. Now H = A x K and K ~ H/A is perfect. We may choose x in
K' — K so that x does not belong to any proper normal subgroup of K. Then the
normal closure of [a\X, K] = [x, K] is equal to K, whence {G(a,\X, a%,..., an) contains
K and so equals H. U

An immediate consequence of (1.1) is

( 1 . 3 ) Let F/R i (G bea finite free presentation of the finitely presentable profinite
group G. Then dF(R) = dG(R/R').

Of course, CIF(R) denotes the minimum number of generators of R as profinite
F-group; and similarly for the topological G-module R/R'. Thus in the notation of
our introduction, (1.3) tells us that

( 1 . 4 ) def F/R = adef F/R.

Now assume G is a finite group and consider F/R c$ G , with F the free profinite
group on x i , . . . , xd. If Fo is the discrete subgroup generated by xi,..., xd, then Fo

is the free (discrete) group on these elements. Let RQ — FoC\R. Then R is the closure
of Ro, and F = RF0 shows F/R =* G restricts to Fo/Ro c* G.

It is an elementary fact (for example, [14, 5.4.4]) that if Y is a free generating set of
Ro constructed from X\,..., Xd in the standard way by means of a Schreier transversal
to Ro in Fo, then R is the free profinite group on Y. Hence d(R) = d(R0).

( 1 . 5 ) Given F/R c* G and Fo, Ro as above, then

adef F/R = adefF0/Ro.

PROOF: We have a natural profinite surjection ip: R—t R/R'RP for any prime p,
since R'RP is open in R. This also implies Ro(R'Rp) = iZ, which shows (p restricts to
a surjection R0/R'QRl -> R/R'RP. But

dimFp R/R'RP = d(R) = d{R0) - dimFp
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and so we have the commutative square

R —

1
Ro —

—> R/R'Rp

1
—> Ro/R'QRP

O

in which the horizontal maps are surjective, the left vertical map is inclusion, and the
right vertical map is an isomorphism of FpG-modules. Our prime p can be chosen
so that dG{Ro/R'o) = dG{RQ/R'0Rl) (see [7] or [8], Sections 7.3, 7.4 for a less terse
account of these matters). Then

dG{R/R') < dG(Ro/R'o), because R0R'/R' is dense in R/R'

= dG(R0/R'0R
p)

= dG{R/R'Rp), by the commutative square above

< d(R/R'), obviously.

Hence we have equality throughout and (1.5) is proved. D

In view of the fact that adefFo/-Ro is constant, (1.5) yields

( 1 . 6 ) adef F/R is independent of F/R and its value equals adef G.

Note that we established (1.4) for any finitely presentable profinite group G, but

(1.6) only for finite G. We leave open the question whether (1.6) remains true for
non-finite profinite groups.

It remains to prove

( 1 . 7 ) In the notation of (1.5), cdef F/R = cdef Fo/Ro.

PROOF: The argument is essentially the same as for (1.5) but is entirely elementary.

Since RQ is dense in R and Fo is dense in F, therefore [iZoi-Fb] is dense in [R, F].
So the inclusion Ro —> R induces a surjection Ro/[Ro,Fo}R% -t R/[R,F]RP for every
prime p. This is an isomorphism because RQ and R are free on the same set Y and
the image of Y is a basis of ilo/l^o.^ol^o and also of R/[R,F}RJ>. Thus

d(R/[R,F]Rp) = d(Ro/[Ro,Fo]Rp
o).

Choose p so that d(Ro/[Ro, Fo]) = d(Ro/[Ro,F0\R
p
t). Then

d{R/[R,F}) < d(Ro/[Ro,F0]) = d{R/[R,F]Rp) < d(R/[R,F])

and we are done. D
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2. DIRECT PRODUCTS

Our basic tools are the first two partial Euler characteristics fi(G) and v2{G) of

the finite group G. Let us recall some facts from [9].

By [9, (1) and (2)], we have

( 2 . 1 ) i/1(G) = d G ( A G ) - l and u2{G) = adefG + 1.

Hence

( 2 . 2 ) G is proHcient if, and only if, u2(G) = 1 + d(H2(G,Z)).

To calculate i/2(G) one proceeds as follows. For each prime p dividing \G\ (the
other primes are irrelevant) choose a finite splitting field K(p) for G, and all its sub-
groups, of characteristic p; for each irreducible K(p)G-module M set

j/2(G, M) = |~d i m~M (dim#2(G, M) - dimH^G,M) + dim#°(G, M))]

(where [a] means the smallest integer > a), and

v2(K{p)G) = ma,x(v2(G,M) | all AT).

Then u2(G) = max(v2 (K(p)G) \ all p) . (See [9, (7)].)

It is clear (or see [9, (6)]) that u2(G,K(p)) = ^2(G,FP) and (see [9, (13)])

(2.3) ^2(G,FP) = l + d\m(H2(G,Z)/pH2(G,Z)).

Let E — G\ x • • • x Gn and if be a finite splitting field for E. Every irreducible
KE-module A has the form A = Ax fl • • • J An (outer tensor product), where each Ai
is an irreducible KGi -module, and every such product is KE-irreducible (for example,
[5, 10.33]).

For every q > 1,

(2.4) H«(E,A) =

(for example, [9], the argument on p.271 leading to (8)).

Suppose now that in A = Ax fl • • • | An, the modules Ax, . . . ,Am are non-trivial
and Am+i = • • • = An = K (m > 0). Thus H°{Gi, Ai) = 0 for i < m and so (2.4)
gives

0 i f m > 2 ,

H1(E,A)=, ifm =

<$H\GUK) ifm = 0;
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and

r o

H2(E,A)={

Hl(G1,A1)®H1(G2,A2)

•=2

ifm>3,

ifm = 2,

if m — 1,

1{Gi,K)<S)H1(Gj,K)>j © (@H2(GUK)) ifm = O.

Writing a{ = dimAi, hk(Ai) = dimHk{Gi,Ai), hk{Gi) = dimHk(Gi,K) we now

Am (I K |j • • • H K with Ai^K, then

have

(2 .5 ) If A = Ax tt

r o if m > 3,

if m = 2,

fe hl{Gi)\ + h\A{) - h^AM ifm = 1,

+ i) - ft^G*)) + 1 ifm = 0.

All our results on direct products flow from (2.5).
Suppose first that E — G x H^, where H is assumed not superperfect. So (2.5)

with n = r + 1, G\ = G and Gi = H for i > 2, shows V2(K(p)E) is the maximum of
all

(0

(ii)

x H, Ai II A2), A3),

i - ((r - lJft^

(iii) rhl{G)h\H)

/i1(G)/i1(A2) + /1
2(A2)-/i1(A2))j,

h h2(G) - h\G) + r(h2{H) - h1

Thus ^2(£) is the maximum of these expressions as p is also allowed to vary over the
prime divisors of \G\ \H\. As functions of r, these expressions are (finitely many) poly-
nomials of degree at most 2, so one of them will dominate the others for all sufficiently
large r. If hx{H) ^ 0 for at least one choice of p, we have at least one polynomial with
positive leading coefficient and degree precisely 2, and the dominant one will have to
be one of these. Since all these are of type (iii), so is the dominant one. If hl{H) — 0
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for all p, then # i ( i / , Z ) = 0, so H2{H,Z) ^ 0, and then (2.3) shows that h2{H) ^ 0
for at least one choice of p. Now there is no quadratic, but there is at least one linear
polynomial with positive leading coefficient, and all these are of type (iii), so in this case
also the dominant polynomial comes from (iii). Say, po is one of the (possibly several)
characteristics where (iii) gives this dominant polynomial. Then, for r sufficiently large,

v2(E,K(p0)) = u2(K(p0)E) > u2{K{p)E) for all p,

and so

u2{E) = maxz/2(£,Fp) = 1 + maxdim(H2{E,Z)/pH2(E,Z)) = 1 +d(H2(E,Z)).

(2.6) If H is not superperfect, then G x H^ is proficient for all sufficiently large r.

Return to the general case E = Gi x •• • x Gn but now assume E is perfect. Here
(2.5) with m = 1 is

Mi) ~ ^(Ai))] = ^(GuAx) = u2{Gx x G2, A, « K);

and H2(E,K) = @H2{GUK) (by (2.4)), whence IA,(GX X G2,K) < u2{E,K). This
i

gives the first part of
( 2 . 7 ) Assume E = G\ x • • • x Gn is perfect.

(i) v2{E) = max(u2(Gi x Gj) for all i < j ; 1 + d(H2(E, Z))).
(ii) If ^(K^G^vxiK^Gj) < 1 + d(H2(E,Z)) for all p and all i < j ,

then v2{E) = max(iA,(Gi) for al i i ; 1 + d(H2(E, Z))).

PROOF OF (ii): Since Gi is perfect, vi(Gi) is the maximum of \hl(Ai)/ai] for
all Ai ^ K(p) and all p. Thus our hypothesis and (2.5) show that if m = 2, then
u2(E, A) < 1 + d(H2(E, Z)). We already know that u2(E, A) = v2(Gi,Ai) if m = 1.
Also, v2(GuK(jp)) < u2(E,K(p)) < l+d(H2(E,Z)) for all p, and v2{E,K(p)) =
1 + d(H2(E, Z)) for at least one p. As u2(E) is the maximum of the u2(E, A) over all
p and all simple K(p)E-modules A, our result follows. D

(2.7)(i) shows, using also H2(E,Z) - ($H2(Gi,1), that if E is perfect, then the
i

proficiency of all Gi x Gj implies the proficiency of E. We shall see that the converse
is true when E is superperfect (2.9); but in the non-superperfect case nothing obvious
seems possible: take any perfect direct product G\ x G2 and any perfect, but not
superperfect H\ then G\xG2x H^ is proficient for sufficiently large r (by (2.6)).

Along the same lines, (2.7)(ii) shows E is proficient if all Gi are proficient provided
the hypotheses of (ii) hold. Recall from (2.1) that these hypotheses are size restrictions
on d G . (AGi) . Since each d is perfect, dGi(AGj) > 2. If dGi(AGj) = 2 for all i,
there is no restriction and we have
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(2 . 8 ) Assume E = Gi x •• • x Gn is perfect and that each dc,(AGi) = 2 . Then
Gi proficient for all i implies E is proficient.

The converse question is more subtle and we shall deal only with the superperfect
case.

( 2 . 9 ) If E = Gi x • • • x Gn is superperfect, then E proficient implies that each Gi

is proficient.

This is easy: vi{E) = 1 gives t/2(Gi,Ai) < 1 by (2.5) with m = 1 and so

i) = l.

(2.8) and (2.9) combine with the old result [4, Theorem 2] that

dE(AE) = max^c^AGi), all i)

to show that a direct product is superperfect, proficient and has 2 -generator augmenta-

tion ideal if, and only if, each direct factor has the same properties.

Does the proficiency of a superperfect direct product already impose restrictions
on the number of generators of its augmentation ideal? We return to this question in
the next section. The only general result we have in this direction is

( 2 . 1 0 ) If G is superperfect then G x G is proficient if, and only if, G is proficient

and dG{A.G) = 2.

To complete the proof of (2.10) we only need to show that the proficiency of

G x G implies dc(AG) = 2, that is, that v2{G x G) = 1 implies that i>i(G) = 1.

If A is a non-trivial KG -module (K being, as usual, a suitable splitting field) then

i/2(G *G,A$A) = {(^(Aj/a)2] < 1 shows hl(A)/a < 1, which is what we need.

3. MORE ON SUPERPERFECT GROUPS

We recall that superperfect groups with arbitrarily large proficiency gap were con-
structed in [12] and that by (2.9) every direct product of superperfect groups is non-
proficient provided one factor is non-proficient.

Suppose, on the other hand, that E = G x H is superperfect and G, H are
proficient. We know from (2.7)(ii) that the condition vx{K{p)G)vi{K(p)H) < 1 for
all p, is sufficient to make E proficient. If G and H could be constructed to be like
this, but in such a way that, as p varies, one of V\(K(p)G) and v\(K{p)H} is very
small whenever the other is large, then one could hope to obtain G and H with neither
having a 2-generator augmentation ideal (see (2.1)).

A related question is whether it is sufficient for the proficiency of E to assume
that at least one of G, H has 2-generator augmentation ideal. In this direction we
shall show (3.1) that to each superperfect, proficient group G, irrespective of the value
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of dc(AG), there is a superperfect, proficient group H such that G x H is proficient.
Let HT = SL(2,r), where r is a prime such that r = 3 (mod 4) and r > 3. Since
HT has a 2-generator, 2-relator presentation [2], Hr is superperfect, proficient, and
dHr(AHr) = 2.

(3.1) If G is any superperfect, proficient group, then G x Hr is proficient for all
sufficiently large r.

To prove this we need

( 3 . 2 ) If A is an absolutely simple Hr-module whose characteristic is different from
r, then h1(A)/a< 1 0 / ( r - l ) .

(In fact, characteristic r need not be excluded and much better bounds must be well
known, but even this weak result will be good enough here.)

PROOF: We can assume that A is non-trivial (else h}{A) = 0, because Hr is
perfect). Consider any element h of order r in HT. This element does not lie in any
proper normal subgroup, so must act nontrivially on A. Since the characteristic of
A is not r , h has an eigenvalue A on A which is a primitive rth root of 1. As h
is conjugate in Hr to all its powers to square exponents, it follows that all powers of
A to square exponents are eigenvalues of h on A. This exhibits (r — l)/2 distinct
eigenvalues, whence a > (r - l ) /2 . It remains to prove that h}(A) < 5.

All odd order Sylow subgroups of HT are cyclic, therefore in odd characteristic
all semisimple sections of the projective indecomposable modules are multiplicity-free
(see Proposition 21.6 in Alperin [1]). Thus it follows from [8, Lemma 2.11] that if
the characteristic of A is odd then h}(A) < 1. Now consider characteristic 2. The
Hr -module induced from the 1-dimensional trivial module of an odd order subgroup
of index 2(r + 1) is projective, and the projective cover of the 1-dimensional trivial •
Hr -module is a direct summand of that, so this projective cover has dimension at most
2(r + 1). So if A occurs s times as a composition factor of this projective module,
as + 2 < 2(r + 1) and therefore ((r — l)s)/2 < 2r, whence s < 5, because r > 5.
Again by [8, 2.11] we now have ^(A) < 5. The proof of (3.2) is complete. D

PROOF OF (3.1): Choose r = 3 (mod 4) and such that r > max{|G|, 10<2G(AG)} .
By (3.2), u^K^Hr) < 10/(r - 1) provided p + r. Moreover, u1(K(p)G) <

( r -10 ) /10 for all p, while vx{K{r)G) = 0. Hence v^Kip^v^K^Hr) < 1,
and (3.1) is proved. D

4. SOME EXAMPLES

The most intriguing problem concerning presentations of finite groups remains
whether there exist finite groups with positive relation gap. Such a group cannot be
efficient; it may or may not be proficient; the only connection with proficiency is that
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a proficient group which is not efficient must have positive relation gap. Thus one
fragment of the problem is: must every proficient group be efficient? We expect that the
answer may be negative, and that relevant examples need not be too complicated. This
would be in line with the experience that Swan's examples (see below) were completely
transparent once they were recognised.

It was shown by Kenne [11] that the smallest non-efficient group is the semidirect
product Q of the rank 2 free group of exponent 3 with a group of order 2, the nontrivial
element of the latter inverting both free generators of the former. Since this group
is not perfect, by (2.6) all sufficiently large direct powers of it are proficient. It is
straightforward to calculate that the proficiency gaps of Q, Q^ and Q^ are 1, 2
and 0, respectively, so the first proficient direct power is Q^3K Wotherspoon [15] had
already drawn attention to the question whether this group is efficient, but at the time
of writing this seems to be still open.

We also know from (2.6) that Q x G2 ( ^ usual, Ck stands for the cyclic group
of order k) is proficient for all large n. In fact, Wotherspoon [15] proved that this
group is efficient whenever n > 0. There are no surprises among the Q x Cp for odd
p either.

Other small non-efficient groups come from the infinite sequence of groups Gk of
order 7fc3 constructed by Swan in [13]. These are famous as the first examples of
groups with i?2(Gfc,Z) = 0 but adefGfc —> 00. In fact, adefGi = adefG2 = 0 while
adefGs = 2, so G3 is the smallest non-proficient group among them. Before turning to
that, let us note that while G2 is proficient, its direct square is not, but then all higher
direct powers are. It would be interesting therefore to decide whether these higher
direct powers are efficient. Let us ask specifically: is G2 efficient?

Our (2.6) shows that G3 x C3 is proficient for all sufficiently large n. By Corollary

5.4 of Harlander [10] (see also the note added in proof there), if n is large enough then

G3 x G^"' is not only proficient but even efficient. If 'large enough' meant different

things in these two contexts, we would have a finite group with positive relation gap.

It is not hard to calculate that the proficiency gaps of G3, G3 x C3 and G3 x C3

are 2, 1 and 0, respectively, so the first question is whether G3 x G3 is efficient.

As H2(G3 x G|2),Z) = C f \ this is the same as asking whether G3 x c£2 ) has a

presentation of deficiency 3. Such a presentation

<ai, a2, a3, c I a\ = aj~5, a\ = a j 5 , [a2, ax) = c3, [al,a[] = 1,

a% = al, [a3, ax] = a\\ [a3, a2] = a? )

was found for us by by M.F. Newman, so this group does not have positive relation gap

after all.
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The heart of Newman's proof for the claim that (4.1) presents G3 x C3
2^ is a coset

enumeration showing that the group denned by (4.1) has order 7333. This number is
also the order of G3 x C3 , and G3 x C3 does have a generating set which satisfies
the relations in (4.1), so nothing more is needed. The way to finding this presentation
went via considering several smaller groups, and establishing (by similar methods) the
following efficient presentations for the groups indicated:

G2 - (ai,a2,c\al= a\, a\ - a\, [a2,ax] - c 3 ) ,

G2xC3 = (ai,a2,c I a\ = a^5, a\ = a\, [a2,a{\ = c3, af = l ) ,

G2 x C(
z
2) = (01,a2 ,c I a\ = a~b, ac

2 = a^5, [a2,ai] = c3, a\l = af = 1, [a\,a\} = \)

and

G3 = ( 01, a2, a3, c \ a\ = a\, a% = a\, [a2,ax] = c3,

ag = al, [o3, ai] = 1, [a3, a2] = 1) ,

G3 x C3 ~ ( ai , a2, a3, c | a\ - aj"5, a2 - a\, [a2, ax] = c3,
a3 = al [as,01] = a?1, [a3, a2] = 1).

Of course (2.6) also implies that almost all direct powers of G3 are proficient.
However, the first four are not, and the fifth is far too large a group to attempt finding
an efficient presentation for it when we do not even have one for the direct cube of G2.
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