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Abstract

Let r be a positive integer, F a field of odd prime characteristic p, and L the free Lie algebra of rank r
over F. Consider L a module for the symmetric group &r of all permutations of a free generating set
of L. The homogeneous components L" of L are finite dimensional submodules, and L is their direct
sum. For p < r < 2p, the main results of this paper identify the non-projective indecomposable direct
summands of the L" as Specht modules or dual Specht modules corresponding to certain partitions. For
the case r = p, the multiplicities of these indecomposables in the direct decompositions of the L" are
also determined, as are the multiplicities of the projective indecomposables. (Corresponding results for
p = 2 have been obtained elsewhere.)

1991 Mathematics subject classification (Amer. Math. Soc): primary 17B01; secondary 20C30.

1. Introduction

Let r be an integer with r > 2 and L a free Lie algebra over a field F, freely generated
by r elements. Each permutation of these free generators extends uniquely to an
automorphism of L, and so L becomes a module for the symmetric group &r of
degree r. For each positive integer n, let L" denote the homogeneous component of
degree n in L. Each L" is an F©r-submodule, and L is the direct sum of the L", so the
investigation of the module structure of L reduces to that of the Ln. In particular, each
indecomposable direct summand of L is isomorphic to a direct summand of some
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L". When the characteristic of F is 0, the character Xn of 6 r afforded by L" can be
obtained from a formula due to Brandt [3]: for each x in ©r,

where p, is the Mobius function. Using this, the multiplicities of the simple modules in
L" may be determined by a straightforward application of the orthogonality relations.
If the characteristic is a prime p, the same formula yields the relevant Brauer character,
and orthogonality relations enable one to identify the composition factors and calculate
their multiplicities. When r < p, the modules are semisimple so this information
is decisive, but in general the L" cannot be expected to be semisimple. The aim of
this paper is to resolve the difficulties which arise from this in the easiest cases, when
p < r < 2p. For p — 2, the matter has been settled in [4] and [8], so to avoid having
to deal with exceptions we assume p > 2.

Perhaps the most important modules for ©r are the Specht modules Sx, one for each
partition X of r. Recall that these may be defined over Z, and can then be interpreted
over any other commutative ring with 1 by the usual 'change of scalars'. Over a field
of characteristic 0, they form a complete set of representatives of the isomorphism
classes of simple ©r-modules. When working over a field of characteristic p, one
focuses on p-regular partitions: partitions which do not have p (or more) equal parts.
(Among the partitions of p, only (lp) fails to be /?-regular.) Each Specht module
corresponding to a p -regular partition of r has a unique maximal submodule, and the
simple quotients form a complete set of representatives of the isomorphism classes
of simple ©r-modules. Consequently, the projective covers of these Specht modules
form a complete set of representatives of the isomorphism classes of projective in-
decomposable ©r-modules. Over any field, all simple @r-modules are self-dual and
absolutely simple. For notation and details, see James [7], particularly Theorem 11.5.

Our first result concerns the case r = p.

THEOREM 1. Let p be an odd prime, F afield of characteristic p, and L a free Lie
algebra of rank p over F, viewed as an F©p -module where ©p acts by permuting a
free generating set of L. Then each non-projective indecomposable direct summand
of L is isomorphic to a Specht module Sx or its dual, where X is a partition of the
form (p - k, \k) with k odd and 1 < k < p - 2.

In other words, L is a direct sum of copies of projective indecomposable modules,
Specht modules and dual Specht modules (corresponding to partitions of the kind
indicated). This is a special case of the following somewhat more general result.

THEOREM 2. Letp be an odd prime, r an integer such that p < r <2p, F afield of
characteristic p, and L a free Lie algebra of rank r over F, viewed as an fQr-module
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where &r acts by permuting a free generating set of L. Then each non-projective
simple direct summand of L is isomorphic to a Specht module Sk corresponding to
a partition X of r such that X] > p and Xi > k2 + p, while each non-projective
non-simple indecomposable direct summand is isomorphic either to an SK such that X
contains a p -hook of odd leg-length or to the dual of such an Sk.

We prove Theorem 1 and Theorem 2 in Section 4 and Section 5, respectively.
In the case of Theorem 1 we also completely settle the question of Krull-Schmidt
multiplicities: we give a method for calculating, for each n, the multiplicity of each
indecomposable (projective or not) in an unrefinable direct decomposition of L". Our
result is Theorem 4, stated and proved in the second half of Section 4.

The arguments we use are much more general than required for the results already
stated. To describe these arguments, we need some notation.

Given a field F, a group G and an FG-module V, let L( V) be the free Lie algebra
over F of rank equal to the (possibly infinite) dimension of V, identify the first
homogeneous component with V, and extend the action of G on V to an action on
L( V) by Lie algebra automorphisms. The homogeneous components L" (V) of L( V)
are then also FG-modules, known as the Lie powers of V.

Now suppose that F has prime characteristic p (not necessarily odd) while G is
finite and a Sylow p-subgroup P of G has order p and is its own centralizer in G.
Suppose also that V is finite dimensional and projective. (These assumptions hold in
Theorem 1 with G — 6P and V = V.) [5, Theorem 1] yields that all non-projective
indecomposable direct summands of L"(V) as FP-module have dimension p — 1.
We use the Green correspondence to derive from this, in Lemma 2 of Section 2, that
the non-projective indecomposable direct summands of L"( V) as FG-module are odd
Heller translates £22'~'FG of the 1-dimensional trivial FG-module FG. Exploiting the
methods of [5] further, in Theorem 3 of Section 3 we show how to obtain the Krull-
Schmidt multiplicities of all indecomposables in L"( V). In the case where G = <5P,
the relevant Heller translates may be recognized as Specht modules or dual Specht
modules.

When G — &r with p < r < 2p, Ll is no longer a projective module. If
p + 1 < r < 2p, then the Sylow subgroup P, while still of order p, is not its own
centralizer. Nevertheless, the proof of Theorem 1 can be readily adapted to yield
Theorem 2 as well.

2. Groups with a self-centralizing Sylow subgroup of prime order

In this section and in the next one, we shall not need the assumption that p > 2.
Let G be any finite group with a self-centralizing Sylow subgroup P of prime

order p. The representation theory of such a group over the field of p elements (and
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over the ring of p-adic integers) has been elaborated in the last two sections of the
lecture notes [6] of Green. Except for using g, h and j where [6] uses <5, a and a,
respectively, we keep to the notation of [6] as we recall what we need here. What
we do need does not depend on keeping to the prime field: F can be any field of
characteristic p.

Let N be the normalizer of P in G; set e = \N : P\, and let g be a generator of P.
There exist cyclic complements to P in N: let h be a generator for one of them, and
let / be the smallest positive integer such that h~lgh = g1. We shall also write / for the
coset I + pi regarded as an element of F (in this sense, / is a primitive eth root of 1).
Each indecomposable ¥N-module is uniserial, even as FP-module. Representatives
of the isomorphism classes of the indecomposable FA^-modules may be labelled as
Tij with 1 < i < e and 1 < j < p in such a way that dim TUj — j and, on the top
composition factor of this module, h acts as multiplication by /' (and of course g acts
trivially). In particular, the simple F/V-modules are the 71,i, with Tej being the trivial
simple module which is also denoted by ¥N, while the projective indecomposables are
the TLp. If j > 1, the unique maximal submodule of Tu is 7i+ij_i (with i + 1 read
modulo e: a similar convention applies throughout). From this, it is easy to see that
each eigenspace of h in 7J,p_i has dimension (p — l)/e, while in TiiP the dimension
of the eigenspace with eigenvalue I' is I + (p — \)/e and all other eigenspaces have
dimension (p — \)/e.

LEMMA 1. If an $N-module U of dimension j can be generated by an eigenvector
for h with eigenvalue V, then 1 < j < p and U = 7];.

PROOF. Each element of N is the product of a power of h and an element of P:
therefore the N-orbit of an eigenvector for h spans the same subspace as its P-orbit.
Since the regular FP-module is uniserial, so is every FF-module generated by a single
element, and therefore U is uniserial. The generating eigenvector has non-zero image
in the top composition factor of U, and so the claim follows. •

By [6, 18.3], the odd Heller translates of ¥N range through the (p — ^-dimen-
sional indecomposables and form a periodic sequence with period e. Specifically,
7],p_i = Q2'"1 F;v (not Q2l+l¥N: that was a typographical error in the last line of 18.3).
The Green correspondence (the inverse pair of the operators called / and g in [6])
commutes with the Heller operator Q (see [6,17.6b]), and the Green correspondent of
the trivial simple FG-module FG can only be \FN; therefore the Green correspondents
of the 7j,p_i are the odd Heller translates of FG. Being Heller translates of a non-
projective indecomposable, the latter are also non-projective indecomposables (see
[6, 17.5b]). By the definition of Green correspondence, this yields the following.

LEMMA 2. If U is a finite dimensional ¥G-module, then the multiplicity o
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in U (with 1 < i < e) is the same as the multiplicity of 7],p_i in the restriction
If all non-projective indecomposable direct summands of U\.P have dimension p — 1,
then each non-projective indecomposable direct summand of U is an Q2'~1¥G.

3. Non-projective indecomposables in Lie powers of projectives

We continue with the assumptions and notation of the previous section. We are
interested in the structure of the Lie powers L"(V), where V is a finite dimensional
projective FG-module. In this case the restriction of V to P is free so that the
restriction of L"( V) to P is a Lie power of a free FP-module.

In a recent paper [5], the first and last authors determined the FP-module structure
of such Lie powers. They proved that the indecomposable direct summands fall into
two isomorphism types, one of dimension p and the other of dimension p — 1, and
gave formulas for the relevant multiplicities. The key to those formulas was that if
in the nth Lie power the multiplicity of the (p — 1)-dimensional indecomposable is
denoted by a(n) and the multiplicity of the p-dimensional (regular) indecomposable
is denoted by p(n), then a(n) is the sum of the p(n/d) with d ranging over the powers
of p that divide n and are different from 1. With the dimension of the Lie power
available from Witt's formula, once a(n) is known, so is p(n). The link between
(p — 1)-dimensional direct summands in one Lie power and p -dimensional direct
summands in smaller Lie powers was made quite explicit in [5], matching generators
of one to generators of the other. The way this was done was designed to facilitate
the extension of the result to projective modules for ¥N, though the extension was
not fully elaborated there. A more detailed analysis will take up most of the present
section.

In [5], the group N was defined somewhat differently, and only for e — p — 1. But
it is easy to see that the arguments of [5] work equally well for N as defined here (with
arbitrary e). Thus we shall interpret the results of [5] as applying to the situation here.

Let U be a finite dimensional projective FiV-module. Then the restriction L1 (U)iP

is free, so by [5, Theorem 1] all indecomposable direct summands of L" (£/)!/> have
dimension at least p — 1. In terms of the previous section, it follows that we may write

(3.1) L*(C/) =

so that a(n) = £ \ a(n, i) and p(n) = £ \ p(n, i). By assumption, all the a(\, i)
vanish, and the p(l , i) describe the structure of U. The next task is to calculate the
a(n, i) and the p(n, i) for n > 1.

It is easy to see that each Ti<p has a basis which is a P-orbit of an eigenvector of
h, so U has a basis which is the union of such orbits. This is exactly what is needed
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to make the results of [5] applicable here. Let A(U) denote the universal enveloping
algebra of L(U). The action of N on U extends not only to an action on L(U) but
also to an action on A(U). We shall make use of a map <p (not a homomorphism) of
A(U) into itself which, like pth powering, takes each eigenspace of h into itself. Let
us defer the definition of <f> and the proof of this property until later in this section: for
the moment we need to know nothing more about <p. Recall that g is a generator of P.
By Theorem 6.4 and Proposition 6.5 of [5], there exist subsets j£?i, j£?2. • • • of L(U)
which consist of eigenvectors of h and are such that, for each positive n, the union of

and

|J
fi>l, p'\n

is a basis of L"(U). (The union in the last display is, in effect, over the p-power
divisors p^ofn which are greater than 1. It is not obvious, but proved in [5], that the
(up'")<p(l - gk) lie in L([/) even when p > 1.)

By Lemma 1 and the linear independence of the elements of the union, the span of
any one {ugk | k = 0, 1 , . . . , p — 1} is an indecomposable FiV-moduIe, isomorphic
to TiiP, where i satisfies uh — I'u. Given any u in an J£n/Pi>, the span of {(up"~'(p)gk |
k = 0 , . . . , p — 1 } is an F/V-module (being a submodule of A(U)). By Lemma 1, this
module is indecomposable. It has the span of {(up/>~'<p)(l — gk) k = 1,... , p — 1}
as a submodule of dimension p — 1. Thus it has dimension p and is isomorphic to
TitP, where / satisfies uh — I'u. It follows that the span of {(up'~'<p)(l — gk) | k =
1, . . . , p — 1 } is isomorphic to 7]+iiP_]. Our !_"([/) is thus the direct sum of the Tip

corresponding to the u in Jfn, and of the 7]+IIP_I corresponding to the u in the -Sfn/p/i.
This proves that precisely p(«, i) elements of _Sfn correspond to the eigenvalue /', and
that

(3.2) a(ri,i)= £ pin/p", i - 1),

where z — 1 is read modulo e. (In terms of the usual convention that the sum of an
empty set of summands is 0, this formula is consistent with all a ( l , i) being 0.)

Let 9(n, i) denote the dimension of the eigenspace of h in L"(U) correspond-
ing to the eigenvalue /'. Using the eigenspace dimensions in the summands of the
decomposition (3.1), we get that

= p(n, i) + E-Z-{a(n) + p(n))
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for i = 1 , . . . , e. On the other hand, a(n) + p(n) is the dimension of the fixed point
space of g in L"(U), and that has been determined in [5, Corollary 1]. Hence

(3.3) p(n,i) = 0(n,i)-?^- V /i(af)(dim U)n/d.
ePn d£iv

(As before, \i stands for the Mobius function.)
In view of (3.2), this has reduced matters to calculating the eigenspace dimensions

0(n, i). Of course,

(3.4) 0(1, i) = p(l, i) + £—- dim U.
ep

Given a free Lie algebra on free generators x {, i , . . . , x i _ r,, x2, i , . . . , x2, n, • • • and a
sequence of non-negative integers m\,m2, . . . with finite, non-zero sum J2mj< l e t

the dimension of the space spanned by the Lie monomials with m\ entries from
[xlA,... ,Xi,r,}, m2 entries from {*2,i, • • • ,*2,rjK • • • be denoted by ACfa, r2,...; mu

m2,...). It was shown in Witt [11, Satz 6 and (7) page 201] that

(3.5) « : f a , r 2 > . . . ; m , , m 2 , . . . ) = — > ^ T i T 7~KT I 1 0

with summation over all common divisors d of m x, m2,.... Apply this with {XJJ, ...,
Xj<rj} a basis for the eigenspace of h in U with eigenvalue V, fory = 1,2, ... ,e. Then
rj = 6(1, j), and the subspace whose dimension we have denoted by K(ru ..., re;
mx,..., me) is part of the eigenspace with eigenvalue lm where m = X^=i Jmj- ^
follows that

(3.6) 6(n, i) =

with summation over all sequences mu ... ,me of non-negative integers such that
J2 rrij = n and YlJ mj = ' (mod e).

This completes the description of our method for calculating the multiplicities
a(n, i) and p{n, i).

It is time to give the deferred definition of the map <p and establish the only
property of it that we have used. To this end, let A denote the free associative ring on
free generators x0, xu ... , xp_i and take the usual Lie bracket operation defined by
[a, b] = ab — ba for all a, b in A. Consider the element w of A given by

w — —| / ^ — / J.

where n runs over all permutations of (0, 1 , . . . , p — 1}, a runs over all permutations
of { 1 , . . . , p — 1}, and the terms in the second sum are left-normed Lie products. (At
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first sight, division by p does not make sense here, but it was shown by Wall [10] that
the expression in parentheses belongs to p A.) Given an element u in A( U), we define
ucp as the image of w under the ring homomorphism <pu which, for j — 0 , . . . , p — 1,
maps xj to ug'.

Suppose now that u is an eigenvector for h in A(U), with eigenvalue /': our last
debt is to show that in this case u(j> is also an eigenvector, with the same eigenvalue.
Notice first that the element w is symmetric in x i , . . . , xp _ j (that is, invariant under any
automorphism of A that fixes xo and permutes the other free generators X\,..., JCP_I)

and linear in each Xj (that is, if an endomorphism of A maps xj to a scalar multiple
and fixes each of the other free generators, then it maps w to its multiple by the
same scalar). Given an integer /, consider the endomorphism £, of A defined by
Xj Ej = I'xij for j — 0, 1 , . . . , p — 1 where the subscript Ij is read modulo p: by
the preceding observations, wet = l'pw. Here /' was regarded as an element of
Z; using also its interpretation in uh = Vu as an element of F, one can argue that
(Xj<pu)h = {ug')h = (uh)g'J = Vugli = (xj£l)<pu. As (Xj<pu)h = (Xje,)4>u holds for
each of the generators Xj, it holds for every element of A in place of x,. In particular,
it holds for w, and so (u<p)h — (w<pu)h = (wSi)(j)u — (l'pw)<pu — I'(ucp), as required.

We have established the following result.

LEMMA 3. Let U be any finite dimensional projective ¥N -module, written as U —
© L i 7j®p(1'). The indecomposable direct summands of the Lie power L"(U) of U
are then the Ti-P and the Ti,p~\, as in (3.1); the multiplicities p(n, i) are given by (3.3)
(which relies on (3.6), (3.4), (3.5), in turn), and then the a(n, i) are given by (3.2).

In view of Lemma 2, this proves our main technical result.

THEOREM 3. Let p be any prime, F any field of characteristic p, and G a finite
group in which a Sylow p-subgroup is self-centralizing and of order p. Let e be
the index of that Sylow subgroup in its normalizer N. If V is a finite dimensional
projective §G-module, then the non-projective indecomposable direct summands of
the Lie powers of V are Heller translates f22'~1FG of the l-dimensional trivial FG-
module, with 1 < i < e. Using the notation of the previous section, write the
restriction of V to N as ViN = ©*=1 7j®p(1'° and let the numbers a(n, i) be as given
by Lemma 3. Then the multiplicity ofQ.2'~i¥c in L"( V) is precisely ct(n, i).

There is much more about representations of such groups G in Green's notes [6]
that could be used in this generality. Nevertheless, we now turn to the special case of
central interest here, to G — 6P.

4. Symmetric groups of degree p

To avoid exceptions, from now on we assume that p is odd.
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Consider representations over an arbitrary field F of characteristic p. As in James
[7], if A is a p -regular partition, the unique simple quotient of Sx will be written as
Dx. These Dx are pairwise non-isomorphic.

The only partition of p that is not p -regular is (1p). It has been known at least since
Nakayama [9] that if X is a partition of p that is not a hook partition (that is, if more
than one part of X is greater than 1), then Sx is simple and projective. The remaining
part of the decomposition matrix for F6P is easily deduced from [9, Theorem 4] (or
looked up in [7, 24.1]). Of course, S0^ and Sill>) afford the 1-dimensional trivial and
alternating representations of @p, respectively. (Note that, as (10 is not a/?-regular
partition, the preferred p -modular recognition of the alternating representation of &p

is not as 5(1P) but as D(2-x? ]).) The Specht modules corresponding to the other hook
partitions of p are uniserials of composition length 2, the unique simple submodule
of Sip~k-lk) being isomorphic to D^'k+U lk~>] whenever 1 < k < p - 2. These Specht
modules are non-projective, because their dimensions are prime to p: by the hook
length formula, 20.1 in [7], we have dim S^"^ = (";') .

For each p -regular partition X of p, let Pk denote the projective cover of Sk. If X
is not a hook partition, then Pk = Sk. Now suppose X is a hook partition. Then QSk

is a submodule of Px with quotient Sx, and the top and bottom composition factors
of Px are isomorphic to Dx, so we know that QSX has a unique simple submodule
and that is isomorphic to Dx. The decomposition matrix has, in effect, been described
above. Since all fields are splitting fields for the symmetric groups, the Cartan matrix
is the product of the decomposition matrix and its transpose (in the opposite order). It
follows that the heart of Pw (that is, the quotient of the unique maximal submodule
over the unique simple submodule) is a D^'1-", the heart of P(2' '" 2) is a D(3' 1A"3),
while if 1 < k < p — 3 then the heart of P^~k- '*> has two non-isomorphic composition
factors, a £<*-*+1-1(~'> and a D^"*"1-1<+1>. It can be seen from this that Pk has only
one submodule whose quotient has the same composition factors as Sx. Therefore, if
a uniserial module has the same composition factors, in the same order, as Sl, then it
is isomorphic to Sx. One can also read off the composition factors of the £2SX, and
the orders of these factors, and so conclude that QS*11^lk) = £(P-*-I. it+1) whenever
0 < * < p - 3, while £2S<2' lP'2) £ D(2' v'2\ This proves that

Q.k^ep=Sij"kAk) whenl < £ < p - 2 ,

while

To prove Theorem 1, it remains to exploit Heller's Lemma (see Green [6, 17.5c]).
For a non-projective indecomposable V, this says that Q(V*) = (Q'^V))*. As
D°- 1P"*) (like every simple module for a symmetric group) is self-dual, it follows that
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QDaiP'2) = (S(2-''~2)r while Q((5^-*-''lt+1))*) = (S(P~k'"'>)• whenever 0 < ife <
p —3. Thus

, ^ ) whenp <k<2p-2.

Hence

(4 1) « » - ' F - j ^ 1 - 2 ' - 1 " " ' i f i < / < ( P - D A
' |(5(2/ + l-P,l^—^)r i f ( / , + 1 ) / 2 < ,- < p _ L

(Note that the Specht modules whose duals occur in the second line are the same as
the Specht modules in the first line, just listed in the opposite order.) In view of the
first part of Theorem 3, this proves Theorem 1.

We conclude this section by describing how the Krull-Schmidt multiplicities in L"
may be calculated under the assumptions of Theorem 1.

For each partition A of p, let v(n, X) denote the multiplicity of the Specht module Sk

in the homogeneous component of degree n in the free Lie algebra of rank p over the
rational field Q. The first step is to calculate these numbers (from Brandt's formula
and the orthogonality relations, or otherwise). The v(n,X) corresponding to hook
partitions will enter into our formulas as alternating sums, so it will be convenient to
define, for k — 0, . . . , p — 2,

vn(k) = v(n, (p - k, 1*)) - v(n, (p-k+1, I*"1)) + • • • ± v(n, (/?)).

Next, in Lemma 3 of Section 3, set the initial conditions as p(l, i) — 0 for 1 < i <
p — 2 and p(l , p — 1) = 1, in order to obtain the a(n, i). Fix this as the meaning of
a(n, i) for the sequel. In terms of these numbers, let

1 / P-\ \
7Tn(p -2) =-Up- l)v(n, (1")) + vn(p - 2) - ] T a(n, i) 1

and, for k — 0 , . . . , p — 3,

nn(k) = vn(k) + (-l)k(k + l)(nn(p - 2) - v(n, (lp)))

where summation is over i ranging from 1 to (k + l)/2 (rounded down) and at k = 0
the sum with no summands is interpreted as 0.

THEOREM 4. Let L be as in Theorem 1 and consider a homogeneous component
L" of L. For odd k with 1 < k < p - 2, the multiplicity of 5(p-*'' ' ' in Ln is
a(n, (k + l)/2), and the multiplicity of the dual of S(p~k'x>) is a(n, p - (k + l)/2).
For 0 < k < p — 2, the multiplicity of the projective cover ofS'-p~k-l ) in L" is nn (k).
IfX is a partition of p that is not a hook partition, then the multiplicity of Sl in L" is
v(n, A.).
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PROOF. Theorem 3 and (4.1) justify the claim concerning the multiplicities of the
Specht modules and dual Specht modules corresponding to hook partitions.

For each partition A of p, let xx denote the (ordinary) character of &p afforded by
the Specht module Sx defined over Q. Note that these characters take their values in
Z. By the definition of the multiplicities v, the character Xn of 6P afforded by the
homogeneous component of the free Lie algebra of rank p over Q may be written
as Xn = Yl v ( n ' ^-)xx with summation over all partitions A of p. Restriction to p'-
elements converts Xn into the Brauer character of our L", and the xx into the Brauer
characters of the Specht modules defined over F. As all simple 6P -modules are
self-dual, here the Brauer character of the dual of a module is always the same as the
Brauer character of the original module. It follows that the Brauer character of the
largest projective direct summand of L" is the restriction of

(P-D/2

(4.2) £ v(n, k)X
x - J2 (a ( n' '> + a("' P ~ <'))x<'+1~2'' 1"')-

A. i=l

The restriction of /^
(1") is the negative of the restriction of Ylk^o^'~^kX(p~k' '^ (s e e

James [7, first line of page 99]), so x<1P) may be replaced in (4.2) by this alternating
sum, yielding a linear combination of characters corresponding top-regular partitions.

Given the decomposition matrix described above, Brauer reciprocity (Green [6,
13.5a]) gives that the Brauer character of Pk is the restriction of

*<"-*• 1'> + x<"-*-1-1'+l> ]fk = (j> ~k,lk)with0<k<p - 2 ,

Xx if A is not a hook partition.

For each p -regular partition k of p, write n^ for the multiplicity of PK in L": then
the Brauer character of the largest projective summand of L" is the restriction of

(4.3)
non-hook X k=0

The restrictions of the xx with p -regular k are linearly independent (use James [7,
12.3]), so—after eliminating x(lP) from (4.2) and (4.3) as indicated—we can equate
coefficients in the two resulting expressions for the one Brauer character. This gives
a system of simultaneous linear equations for the nk, and the unique solution of that
is readily seen to be

\nn{k) if k = (p-k, l*)withO<* <p - 2 ,
ni = \

\v(n,k) if A is not a hook partition.

The proof of Theorem 4 is now complete. D

In view of Theorem 1, Theorem 4 accounts for all the Krull-Schmidt multiplicities
inL".
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5. Symmetric groups of degree between p and 2p

It will be convenient to keep to odd p. The aim of this section is to prove Theorem 2.
Except as indicated, the argument has the same structure as the proof of Theorem 1,

so we shall only sketch it. We have seen that all Specht modules mentioned in that
theorem are non-simple; thus, for the case r = p, Theorem 2 follows immediately
from Theorem 1. Suppose for the sequel that p < r < 2p. Note that no partition of
so small an r can have more than one p-hook. If a partition of r is not p -regular, each
of the last p non-zero parts must be 1, and these form a p-hook. In the terminology
of James [7], the leg-length of this hook is p — 1. When A is a partition of r such that
Xi > A2 + p, the unique p-hook has leg-length 0. Thus all partitions mentioned in
Theorem 2 are p -regular.

The normalizer of a Sylow p -subgroup in <5r is now a direct product R x N where
R — 6r-p and TV* is the Sylow normalizer in 6P, as before. The indecomposable
¥(R x N)-modules are the outer tensor products 5" tJ Tjj where ^ ranges through the
partitions of r — p and the T-,j are as defined in Section 2. The 5M jj 7],p-i are readily
seen to be the odd Heller translates of the 5" fl $N.

We need one extra tool: the (Lazard) Elimination Theorem (Bourbaki [2, Chap. II,
§2.9, Proposition 10]), which may be invoked here as follows. We have LiiRxN =
(U tt fl>)©(F« ft 7^_iiA,) where U is the natural FR-module. The Elimination Theorem
yields that

LiRxN = (L(f/) JJ \fN) 0 L(T(C/) tt 7-p_,,p)

where T(U) is the tensor algebra on U. The indecomposables in the first direct
summand are all non-projective, of the form 5M tf FN. On the other hand, as Tp-I%p

is a projective F/V-module, the second direct summand as FA -̂module is a free Lie
algebra on a projective module. This projective module is infinite dimensional, but
the qualitative part of Theorem 1 of [5] still applies (as one readily sees from [5,
Theorem 2]): the non-projective FN-indecomposables involved in L(T(C/) £} 7^-i,P)
are all of dimension p — 1, that is, they are odd Heller translates of Fw. It follows that
the non-projective indecomposable ¥(R x ./V)-modules involved in L(T(f/) tt 7J,-i,P)
are of the form S" tt (^2'"1Fyv), that is, f22'-'(5M ft F*). The Green correspondence
then yields that the non-projective indecomposables involved in L are the Green
correspondents of the 5M tt Fw and the odd Heller translates of these modules. (For
the Green correspondence in this generality, see for example Alperin [1, Section 10].
In that book the ground field is assumed algebraically closed, but this is not used in
Section 10.)

Given any partition /j, of r — p, let A be defined by setting k\ = £ii + p and A, = /ii,
whenever / > 1: we claim that the Green correspondent of S1* Q F/v is Sx. To see
this, note first that Sx is indecomposable, because it is a Specht module corresponding
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to a p -regular partition. Next, the order of R is prime to the characteristic p, so
the indecomposable ¥(R x 6P)-modules are the outer tensor products of the simple
FT?-modules with the indecomposable F©p-modules. Repeated application of the
modular Branching Theorem ([7, 9.3]) yields that S*4 is a direct summand of SxiR

with multiplicity 1, whence SxiRxep has a direct summand that is the outer tensor
product of SM with a 1-dimensional direct summand of Sk lep. It also yields that
Skiep has a series of submodules whose quotients are Specht modules corresponding
to partitions of p different from (lp). We saw in the previous section that none of those
Specht modules has a submodule isomorphic to 5 ( F ) (though one of them does have
such a quotient), so we may conclude that Sl-lep has no 1-dimensional submodule
other than f6p- It follows that the relevant direct summand of Sk lRx6p can only
be 5M ft f6p • Of course, then 5M JJ ¥N is a (non-projective indecomposable) direct
summand of Sk 1RKN. This proves both that Sl is non-projective and that it is the
Green correspondent of 5M tt ¥N.

We have already noted that the unique p -hook of A has leg-length 0; equivalently, in
the terminology of Nakayama [9], it has height 1. Now we can apply [9, Theorem 4],
just as it was in the proof of Theorem 1 above. First, it yields that Sk is simple. Second,
it leads to the conclusions that all odd Heller translates of Sk are Specht modules or
dual Specht modules corresponding to partitions of r which contain p -hooks of odd
leg-length, and that none of these modules is projective or simple. This completes the
proof of Theorem 2.
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