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ABSTRACT. L e t  p  be a prime, G  a  locally fini te p-group, K  a  commutative
ring o f  characteris tic  p .  T h e  anti -automorphi s m g  1—* g
- 1  o f  G  e x t e n d sl inearly to  an anti -automorphism a  1-5 a*  o f  K G .  A n  element a  o f  K G  is
called symmetric  i f  a*  =  a I n  this  paper we answer the question: f o r which
G and  K  do  the symmetric  uni ts  o f  K G  fo rm  a mul tipl icative group.

Let G be a group, K  a commutative ring (with 1), and U(KG)  the group
of units in the group algebra KG.  The  anti-automorphism g g
- 1  o f  Gextends linearly to an anti-automorphism a 1-4 a*  o f  KG;  this  extension
leaves U(KG)  setwise invariant. A n  element a of  K G  is called symmetric
if  a* =  a

It is an open problem to find the noncommutative K G  in which the sym-
metric units form a mult iplicative group. Here we solve this under the as-

1991 Mathematics  Subject Classification. P ri m a ry  16S34.
V. Bov di  is i ndebted to  the Univers i ty  o f  A l berta for wa rm  hospi tal i ty  and generous

support during a period when part of  this work  was done. Hi s  research was also supported
by the Hungarian National  Foundation for Scientific Research grant No. T 014279.

Copyright 1 9 9 6  by Marcel Dekker, Inc.

803



804 B O V D I ,  KOVACS, AND SEHGAL

sumption that K  has prime characteristic, p  say, and G is  a locally finite
p-group. Our  result is the following.

Theorem.  Let  p be a prime, K  a commutative ring of characteristic p, and
G a  nonabelian locally finite p-group. The symmetric units of  KG f orm a
multiplicative group i f  and only i f  p =  2 and G is  the direct product of  an
elementary abelian group and a group H for which one of the following holds:

(i) H  has an abelian subgroup A of  index 2 and an element b of  order 4
such that conjugation by b inverts each element of  A;

(ii) H  is  the direct product of  a quaternion group of  order 8 and a cyclic
group of  order 4,  o r  the direct product of  two quaternion groups o f
order 8;

(iii) H  is  the central product of  the group (x , y  I x
4  =  Y
4  =  1
,  x
2  =  x i )

with a quaternion group of  order 8, the nontriv ial element common to
the two central factors being X
2
y
2

(iv) H  is  isomorphic to one of  the groups H32 and H245 defined below.

The relevant definitions are:
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H245 = y ,  u, v I x
4  =  y
4  =  
[ v ,  
=  
1 ,

= v
2 
=  
[
Y
,  
=  
[
v
,  
Y
]
,

y
2  
u
2  
[
u
,x 2 y 2  [ U ,  =  [ v ,

Note that in case (i) all elements of H outside A have order 4 and so any
one of them can serve as b. The list of groups in this theorem is part of the
list in Theorem 1.2 of Bovdi and KovAcs [1], and the proof relies heavily on
Lemma 1.4 of that paper.
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The proof of the Theorem will occupy the rest of this note.
Set S =  f t  t E G , t
2  =  1 1  
L i  
g  g
- 1  
I  
g  
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,  
g
2  
1
,  
a
n
d  
n
o
t
e  
t
h
a
t

the symmetric elements of K G  are precisely the K-l inear combinations of
the elements of S.  Lik e the fixed points of  any anti-automorphism of  any
group, the symmetric units form a subgroup in U(KG)  i f  and only if  they
commute with each other. I t  is well known that once K  is of characteristic

p and G is a locally finite p-group, the augmentation ideal of KG is locally
nilpotent, and so every element congruent to I  modulo this ideal is a unit.
In particular, —1 g  g
- 1  i s  a  
s y m m e t r i
c  
u n i t  
i n  
K G  
w h e n
e v e r  
g  
E
G
.  
O
f

course, t  is a symmetric unit  whenever t  E G and t
2
= 1 .  T h i s  p r o v e s  
t h a t

the symmetric units form a multiplicative group i f  and only i f  every pair of
elements of  S commutes.

In particular, for a given p this issue is independent of  the choice of  K
It wi l l  be convenient to call a locally finite p-group good if  every pair of
elements in S  commutes (say, in K G  wi t h  K  =  Z/ pZ) .  No t e  that  al l
abelian groups are good, all subgroups of good groups are good, and that a
locally finite p-group is good if  all its 2-generator subgroups are good.

In a good group, any two involutions (that is, elements of order 2) com-
mute. I f  g and t  are as in the definit ion of  S,  then the only way t  and
g + g
- 1  
c a
n  
c
o
m
m
u t
e  
i
s  
i
f  
g
t  
(
=  
t
—
l
g
t
)  
i
s  
e
i
t
h
e
r  
g  
o
r  
g
-
1
.  
I
n  
t
h
e  
s
e
c
o
n
d

case the subgroup (g, t ) generated by g and t  is a nonabelian dihedral group
and therefore contains noncommuting involutions. This  proves that in a good
group every involution is central.

Next we prove that  if  g, h  are noncommuting elements in a good group
G , then there exist x  , y  in G such that (g,  h) =  y )  and xY •  To
this end, note that any two of g, h,  gh generate the nonabelian group (g,h),
so by the previous paragraph none of them can have square 1 O n  the other
hand, g + g
- 1  
a n d  
h  
+  
I I
- 1  
c o
m m
u t e
:  
t
h
u
s

g h +  h g  + h g
- 1  +  +

If gh occurs more than once on the left hand side, we must have gh =
so x  = gh, y  = h wi l l  do. Otherwise gh must equal one of the summands
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on the right hand side. That  summand cannot be hg , for g and h  do not
commute; nor can it  be h
—
l g ' ,  f o r  
( g h )
2  1 .  
T h u s  
e i t h
e r  
g
h  
=  
h g
—
' ,  
i
n

which case x  =  g,  y  =  h wi l l  work, or gh =  h
— l
g ,  a n d  t h e n  
w e  c a n  
t a k e

= h, y  = g.
This already shows that the prime p involved in a nonabelian good group

can only be 2.
The point  established in the second last paragraph can be taken further:

in those circumstances, x  and y  can be chosen so that the order of y is 4.
To see this, note first that  ( x y )
- 1  =  x y
- 1  x y ,  
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) I f  the cosets x (y ) and x
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d i f f e r e n t ,
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to deduce that  this  is the only  nontriv ial coset of  (y ) i n  (x ,  y). Groups
of 2-power order wit h a cyclic subgroup of  index 2 are well known (see
for example Section 109 in Burnside's book [2]); the nonabelian groups of
this kind with all involutions central are precisely the generalized quaternion
groups. (We count the quaternion group of order 8 among the generalized
quaternion groups.) O f  course, each generalized quaternion group can be
generated by a pair of elements x ,  y  such that xY = x
- 1  a n d  y
4  =  1 .

We sum up these conclusions in the following.

Lemma 1.  I f  G is  a nonabelian good group, then p =  2 and each non-
abelian 2-generator subgroup of  C is  either a generalized quaternion group
or a sentidirect product

C 2
,
n  
X  
C
4  
(  
X
,  
y  
X
2
m  
=  
y
4  
=  
1
,  
x
Y  
x
-
1
)

with m > 2.

If m > 2 then there are other semidirect products that  might  be called
C2n1 X C4, but  we shall always mean this one.

Lemma 2. I f  G is  a nonabelian good group and the exponent of  G is  not
4, then G has an abelian subgroup A of  index 2 and an element b o f  order
4 such that conjugation by b inverts each element of  A.
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Proof. Set A = a  E G a '  1 ) .  Suppose first that A is nonabelian. Then
there are noncommuting elements g, h in A whose orders are greater than 4.
In a generalized quaternion group, all elements of order greater than 4 lie in
one cyclic subgroup, so (g, h) cannot be a generalized quaternion group. I n
a C2m X C4 a l l  elements outside y
2
)  h a v e  
o r d e r  
4 ,  
s o  
( g , h )  
c a n n o
t  
b e

a C2m X a l  either. This  contradiction to Lemma 1 proves that A  must be
abelian.

Let b be any element of G outside A:  by the definition of A,  then b' = 1.
If a 1 ,  then a and b cannot commute (else we would have (ab)
4 1  a n dthen a,  ab E A ,  b E A  would follow, contrary to the choice of  b).  I n  a
generalized quaternion group or in a C2m X a  a n  element of order greater
than 4 can only be conjugate to itself or to its inverse, so Lemma i  implies
that a
b  
=  
a
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It follows f rom Lemma 1 that  i f  G is  a nonabelian good group of  expo-
nent 4 and if  g, h E G,  then ( 9
2
)  i s  c e n t r a l  
a n d  
( g , h ) / ( g
2
)  
i s  
a b e l i
a n  
o r  
-

dihedral. Under somewhat weaker hypotheses, Lemma 1.4 of [1] asserts that
G is a direct product of  an elementary abelian group and a group H  such
that either H  satisfies one of the conditions (i)—(iv) of  our Theorem, or H
is an extraspecial 2-group, or H  is  the central product of  an extraspecial
2-group with a cyclic group of order 4. A l l  central products of this kind and
all extraspecial 2-groups except the quaternion group contain noncentral in-
volutions, while the quaternion group satisfies condition (i).  This  completes
the proof of the 'only if ' part  of our Theorem.

The proof  of the ' if '  part  is much easier. Th e  definit ion of  good group
directly yields that the direct product of an elementary abelian 2-group and
a good 2-group is always good: thus it  suffices to check that  i f  p = 2 and
one of the conditions (i)—(iv) holds then H  is good.

Consider case (i) first. We  have already remarked that  in this case all
involutions of  H  lie in A,  so they are all central. I f  g E A,  then g + g
- 1commutes with every element of H and is therefore central in K H.  I f  both
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g and h  are elements of H  outside A,  one can play the role of b and the
other can be writ ten as ab wi t h  a E A,  and (b + b
- 1
)
2  =  O  i m p l i e s  
t h a t

(b + - 1
)
( ( a b )  
+  
( a b
)
-
' )  
=  
O  
=  
(
(
a
b
)  
+  
(
a
b
)
-
1
)
(
b  
+  
b
-
1
)  
T
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i
s  
c
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e  
H

is good.
In the other three cases H  has exponent 4 and we know (f rom O'Brien's

Lemma 4.1 in  [1], or by direct calculation) that  all involutions in H  are
central. We can also see that the Frat t ini subgroup h
2  h  E  H )  o f  
H  h a s
order 4.  Thus if  g, h E H,  then (g, h) has order at most 16. The groups of
order div iding 16 are well known (see for example Section 118 in [2]); there
are only two 2-generator nonabelian groups of  exponent 4 among them in
which al l  involutions are central, and both of  those satisfy condit ion (i).
Thus by the previous paragraph (g,  h) is good, and so g + g
- 1  c o m m u t e swith h + h .  We conclude that H  is good in each of these cases.

This completes the proof  of the Theorem.
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