
JOURNAL OF ALGEBRA 175, 385-407 (1995)

Tensor Factorizations of Group Algebras and Modules
Jon F. Carlson*

University of Georgia, Athens, Georgia 30602

and

L. G. KovAcs

Australian National University, Canberra, ACT 0200, Australia

Communicated by Walter Feit

Received May 13, 1994

Here a group algebra is always the group algebra o f  a fini te group over a
commutative field. We consider connections between three kinds of factorizations:
writing the group as a direct product of subgroups; writing the group algebra as a
tensor product of subalgebras; and writing the regular module (the group algebra
viewed as a module over itself) as a tensor product of modules. In the principal
result the field has prime characteristic, the group order is a power of this prime,
and the group is abelian. I f  in these circumstances the regular module is isomor-
phic to a tensor product of two modules, then the group has a direct decomposition
with one (direct factor) subgroup acting regularly on one of  the (tensor factor)
modules and the other subgroup acting regularly on the other module. Moreover,
the module varieties of the tensor factors must be linear subspaces of the vector
space which is the variety of the trivial module, and the two subspaces must form a
direct decomposition of that space. C  1995 Academic Press, Inc.
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while he was visiting the Australian National University. He would like to thank the School of
Mathematical Sciences at ANU and all of the many people who made his visits so productive
and enjoyable.
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Taking the tensor product of two algebras over a field is an operation
often used for creating new algebras from old. I t  is also well known that
the factorization o f  an algebra as a tensor product is seldom unique. A
most familiar example is the isomorphism C H  C  •:••• M  where R
and C are the systems of real and complex numbers, H is the ring of real

0021-8693/95 $12.00
Copyright  C 1995 by Academic Press, Inc.

A ll rights of  reproduct ion in any form reserved.



386 C A R L S O N  AND KOVACS

1.1. EXAMPLE. Consider a Galois extension EIF whose Galois group
contains a direct product of two cyclic groups, one of order 4 and one of
order 2: say, G - - - H x K  with  ' HI  — 4 and WI  = 2. Write  -
d  f o r  t h esubfield of E consisting of the elements fixed by each element of G. Each

quatemions, and M is the algebra o f  2-by-2 real matrices. The example
demonstrates that, in  addition to  there being no K m II—Schmidt type
theorem for tensor factorizations, there is also no cancellation theorem.
We can see further, in Example 1.1 below, that the situation is just as bad
even if  the algebras are assumed to be commutative.

In spite o f  the negative evidence, there seems to  be some hope fo r
uniqueness of tensor factorizations for some local algebras. In  this paper
we concentrate on group algebras. The main result of Section 2 shows that
if FG is the group algebra o f  an abelian p-group G  over a field F o f
characteristic p ,  then tensor factorizations o f  FG are associated with
direct factorizations of G. In particular the tensor factors are isomorphic
to group algebras of direct factors of G.

Beginning with Section 3, we turn our attention to tensor factorizations
of the regular FG-module, FG, as a tensor product of smaller FG-modules.
No uniqueness can possibly be expected here beyond a very few special
cases. For example if  G =  (x,  y> is elementary abelian of order p
2  a n d  Fhas characteristic p ,  then as FG-modules, FG  U  oV
a  w h e r e  UFG/(x — 1) and V
a  —  
F G / O y  
—  
1 )  
+  
a
( x  
—  
1 )
) ,  
r e g
a r d l
e s s  
o
f  
t
h
e  
c h
o i
c e

of a  e  F. On  the other hand, in  Section 3  we show that whenever
FG = U OF V and G is abelian, the modules U and V  admit multiplica-
tions which make them into F-algebras in such a way that the isomorphism
is simultaneously an algebra and a module isomorphism.

More can be said in terms o f the algebraic varieties associated to the
modules (in the sense discussed in [1, 5]). I f  FG is the tensor product of
two modules U and V, then there are severe restrictions on the varieties of
the modules U and V. For example, a (rather more general) result in [41
yields that if  G is an elementary abelian p-group and F is an algebraically
closed field of characteristic p  then the varieties of U and V  must have
degree 1. In Section 4, we extend this to arbitrary finite abelian p-groups.
Specifically we show that i f  FG-
-,
-
- U  o ,  V  
t h e n  
t h e  
v a r i e t i e
s  
o f  
U  
a n
d  
V

must be linear subspaces o f  the variety o f  the trivia l module. (The
technique of intersection multiplicities used in [41 is not available when the
group is not elementary abelian. Our methods here are totally elementary
and do not seem strong enough to extend the more general results of [4].)
In Section 5, we briefly discuss some of the questions fo r nonabelian
groups.

We end this introduction with the promised example of tensor factoriza-
tions of commutative algebras.
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subalgebras is dual to  the subgroup lattice o f  G,  with  d-dimensions
matching indices in G. One can immediately see from this that

E = i i ( i t  k ,

an internal tensor product. Next, let h be a generator of H, let L  denote
the (unique) direct complement of H in G different from K, and let e be
an element of KL outside G. Since 11, e) is a G-basis for KL and h 0  KL,
we must have eh e .  Since k  and L  generate E, there is a  natural
homomorphism x  y  x y  from their external tensor product k
onto E, with (e 0  1) — (1 0  e) in its kernel. The automorphism x y
xh y  of 17 L  followed by that natural homomorphism is then another
homomorphism of k  L  onto E, and this one has a different kernel
(because it  maps (e 0  1) — (1 0  e) to eh — e, not to 0). The sum of the
two kernels must be the whole tensor product (for the cokemels, being
fields, have no proper nonzero ideals), so counting G-dimensions shows
that the intersection of the two kernels is O. Thus

1 7
,
2 t
L
E
E
D
E
( H
K )
E
1 3
1
( H
o k
K )
—
= (
- -
fi e
r n
o t
-  
g
.

The tensor factor g  cannot be cancelled here, for the field L  is certainly not
isomorphic to the proper direct sum Fl H .  The same example may also
be written as

E E  k  e
r T ,  
(  E
l )  
-
6 )  
F
t  
o
k

None of the five tensor factors here has a proper tensor factorization: for
each proper subalgebra of k  or L is a subfield and is therefore contained
in HK, so neither k  nor L can be generated by proper subalgebras, while
each of the other three tensor factors has prime dimension. Thus there is a
commutative algebra which has two unrefinable tensor factorizations, one with
two factors and the other with three.

2. FACTORIZATIONS OF GROUP ALGEBRAS OF
p-GROUPS

In this paper, all algebras will be finite-dimensional associative algebras
over a (commutative) field F. We assume that each algebra has a multi-
plicative identity element and that these identity elements are respected by
all algebra homomorphisms. Subalgebras must have the same identity
element as the whole algebra. When the ground field F is understood, the
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tensor product symbol o  will mean B y  the external tensor product of
two algebras B  and C we mean the vector space B  O C made into an
algebra by defining (b o  cXb' c ' )  b b '  0  cc'. In this section we shall be
concerned mostly with internal tensor products. That is, i f  B  and C are
subalgebras of an algebra A  and if  the algebra homomorphism from the
external tensor product B  0  C to  A ,  which maps b  O c to  bc, is an
isomorphism, then we say that A  is the internal tensor product of B and
C. In this case we write A  -- B 0  C.

Several things about internal tensor products are worth noting. First, A
cannot be the internal tensor product of B and C unless each element of
B commutes with each element of C, the subalgebras B  and C together
generate the algebra A ,  and dim A = (dim B)(dim C). Conversely, if  the
subalgebras B  and C of A  satisfy these three conditions, then it  follows
that A  is their internal tensor product. It may happen that A = B O C =
B o C' f o r two different subalgebras C  and C' ,  and we saw in  the
Introduction that in  general th is does not imply that C  and C'  are
isomorphic. However, i f  B  is an augmented algebra, such as a  group
algebra, with an algebra homomorphism e: B --0 F, then A  = B O C = B
O C' does imply C  z-_
- C ' .  ( T o  
p r o v e  
t h i s ,  
c o n s i
d e r  
t h
e  
i d e
a l ,  
J  
s a
y ,

generated in A  by the kernel of e: it is easy to see that J = (ker e) O C =
(ker e) C '  and hence C = F O C  A / . 1  C '  = C'.)

The following is the main theorem of this section.
2.1. THEOREM. L e t  p be a prime, F a field o f characteristic p, and G a

finite abelian p-group. I f  B and C are subalgebras of FG such that FG = B
O C, then there exist subgroups H  and K  in G  such that G  = H X K,
B F H ,  C -•-• FK, and, as internal tensor products,

FG B  O H (  — O  C. ( 1 )

This theorem is a special case of a more general result.
2.2. THEOREM. L e t  p, F, and G be as in Theorem 2.1. To each tensor

factorization FG = 7  1
A ,  o f  F G ,  
t h e r e  
i s  
a  
d i r e c
t  
d e c o m p
o s i t i o
n  
G  
=

11;
1
= 
,
G
,  
s
u
c
h  
t
h
a
t  
A
,  
F
G
,  
a
n
d

for all
For the proof, we have to prepare some elementary linear algebra. Let F

be any field, and E any subfield of F. For each E-space U, write the F-space
U F  simply as U
F
.

FG = A
i 0
( e  
/
, ,
F
G ,
)  
(
1
,
-
)
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2.3. LEMMA. L e t  U be an E-space.

(a) I f  R and S are F-subspaces in U
F  w i t h  d i m  
R  —  
d i m  
S ,  
t h e n  
t h e r e  
i s

an E-subspace T in U such that T
F  i s  a  
c o m m o n  
c o m p l e m e
n t  
t o  
R  
a n d  
S  
i n

u '
(b) I f  ( I
F  
= x
e v ,  
t h
e
n  
U  
h
a
s  
a  
d
i
r
e
c
t  
d
e
c
o
m
p
o
s i
t i
o
n  
U
=  
V  
e  
W

such that U
F  =  
X  
e  
W r  
=  
v
f  
e  
Y
.

Proof ( a )  Consider U an E-subspace in U". I f  the common codimen-
sion of R and S in  U
F  i s  0 ,  
t h e n  
T  
=  
O  
w i l l  
d o
.  
T h i
s  
p r o
v i d e
s  
t
h
e  
i n i
t i a
l

step fo r a  proof by induction on that common codimension. Fo r the
inductive step, suppose the common codimension is positive. Then the
intersections R n u  and s n  u  are proper subspaces in U, and no vector
space can be the set-union of just two proper subspaces. Thus there is an
element, u  say, which is in U but neither in R  nor in S. The inductive
hypothesis applies with Fu e  R and Fu e  s in place of R and S, and so
there is a subspace, T
o  s a y ,  
i n  U  
s u c h  
t h a t  
T
o
F  
i s  
a  
c o m
m o n  
c o m
p l e
m e n
t  
t
o

Fu e  R and Fu e  S. It is easy to see that T = Eu e  T
o  w i l l  d o .(b) Apply (a) twice. First, with R  = S = V. The T  so obtained will be
our V. Second, with R  = V
I F a n d  S  
=  X ,  
a n d  
t h e  
T  
n o w  
o b t a i
n e d  
w i
l l

serve as W. •

In fact, we shall need a "filtered" version of this result.

2.4. LEMMA. L e t  O = U
o  • • •  U
j  • • •  
=  
U  
b e  
a  
c h a
i n  
o
f  
E
-

spaces.

(a) I f  R and S are F-subspaces in L I
F w i t h  d i m ( R  
n  u „ E )  
=  d i m
( S  
n

U
F
)  
w
h
e
n
e
v
e
r  
O 
<  
n
,  
t
h
e
n  
t
h
e
r
e  
i
s  
a
n  
E
-
s
u
b
s
p
a
c
e  
T  
i
n  
U  
s
u
c
h  
t
h
a
t  
e
a
c
h

(T n /OF is a common complement to R n  a n d  S n  U
j
IF i n  L .

(b) I f  U
F =  
X  
e  
Y  
s u
c h  
t
h
a
t  
e
a
c
h  
1 .
1
j
1
F  
i
s  
t
h
e  
s
u
m  
o
f  
i
t
s  
i
n
t
e
r
s
e
c
t
i
o
n
s  
w
i
t
h

X  and Y, then U has a direct decomposition U = VED W such that each U
j i sthe sum o f  its intersections with V  and W and L I
F =  X  e  W
F  =  V r  
e  Y ;

indeed, each U
j
F i s  
t h e  
s u m  
o f  
i t
s  
i n t e
r s e c
t i o n
s  
w
i
t
h  
X  
a
n
d  
W
F  
,  
a
n
d  
a
l
s
o  
t
h
e

sum of its intersections with V
IF a n d  Y .

Proof I n  adapting the proof of Lemma 2.3, the only substantive change
one has to make is in  the inductive step o f the proof of (a). Once the
common codimension of R and S in  U"  is positive, there is a unique m
such that U
m Z R  
U S  
b u
t  
U
r n  
_
i  
<
R
o
s .  
C
h
o
o
s
e  
u  
a
s  
a
n
y  
e
l
e
m
e
n
t  
o
f  
t
h
i
s

U
m 
w
h
i
c
h  
i
s  
n
e
i
t
h
e
r  
i
n  
R 
n
o
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n  
S
.  
T
h
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s
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and left to the reader. I
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We turn to groups next. Recall some notation. For a multiplicative finite
abelian p-group G and a nonnegative integer j, let

Q
J
G  
=  
(
g
i
g  
E  
G
,  
g  
=  
1
)  
a
n
d  
U
G  
=  
(
g
P
l
g  
E  
G
)
.

It will be convenient here to view G / UG  as a vector space -
6  o v e r  t h efield F
1
, 
o f  
p  
e l
e m
e n
t s
,  
a
n
d  
t
o  
a
d
o
p
t  
a  
"
b
a
r  
c
o
n
v
e
n
t
i
o
n
.
"  
F
o
r  
e
a
c
h  
e
l
e
m
e
n
t

g and subgroup H  in G, let g  and -
1 -1
- d e n o t e  t h e  
i m a g e  
u n d e r  
t h e  
n a t u r a
l

homomorphism G ---> a  Note that H  is not H/1111 unless H  G .
Suppose that G = H x K; then U G  =13H X UK  and so -
6  =  k .Similarly, fi

j  G  
x  
fi
J
K ,  
a
n
d  
i n
d
e
e
d  
fl
j
G  
=  
fl
.
H
E
D
I
l
K
.  
I
t  
f
o
l
l
o
w
s

that dim fl
i
K  i s  
t h e  
n u
m b
e r  
o
f  
d i
r e
c t  
f a
c t
o r
s  
o
f  
o
r
d
e
r  
a
t  
m
o
s
t  
p
i  
i
n  
a
n
y

decomposition of K as direct product of cyclic groups, and the order of K
can be recovered from the dimensions:

=

With reference to the direct decomposition G = 1 X G, this specializes to

1 0 =  n
p
i ( d i m  
O T
G
- -  
d
i
m  
I I
]  
1
6
)
.

Consider any basis for d  with the property that each fl
)
G  i s  s p a n n e d  b y

the basis elements it contains. For each basis element choose a preimage
in G, ensuring that if  a basis element lies in fl
. I
G  t h e n  i t s  
p r e i m a g e  
l i e s  
i n

f I
)
G
.  
T
h
e
s
e  
p
r
e
i
m
a
g
e
s  
t
o
g
e
t
h
e
r  
g
e
n
e
r
a
t
e  
G
,  
b
e
c
a
u
s
e  
U
G  
i
s  
t
h
e  
F
r
a
t
t
i
n
i

subgroup, and so G is a homomorphic image of the external direct product
of the cyclic subgroups generated by the individual preimages. On the
other hand, the order of that direct product is at most the order of G, so
this homomorphism must be an isomorphism and G must be the internal
direct product o f  those cyclic subgrou_ps. I n  short, one may put this
conclusion as follows: each basis o f  G  matching the filtration o f  G
provided by the c o m e s  from some direct decomposition of G with
cyclic direct factors. We shall need only a weak consequence of this.

2.5. LEMMA. Suppose that —  V ED W and each fl
i
G  i s  t h e  d i r e c t  
s u m

of its intersections with V  and W. Then G  has a  direct decomposition
G — H x K s u c h t h a t V = H a n d W= k .

Proof Choose bases for V  and W such that each fl
i
G  n  V  a n d  
e a c h

fl
i
G 
n  
w 
i
s  
s
p
a
n
n
e
d  
b
y  
t
h
e  
b
a
s
i
s  
e
l
e
m
e
n
t
s  
i
t  
c
o
n
t
a
i
n
s
.  
C
o
r
r
e
s
p
o
n
d
i
n
g  
t
o

the union of these bases, obtain a direct decomposition of G with cyclic
direct factors as above. Then H  and K  may be chosen as products o f
direct factors of that decomposition. I

(2)

(2 ')

Replace \Omega by \mho





Now let us imitate the construction in  the context o f  commutative
algebras over fields F of characteristic p. For such an algebra A ,  set
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n
i
A  
=  
f
a
i
t
'  
E  
r
a
d  
A
,  
a
P
'  
=  
0
1  
a
n
d  
U
A  
— 
(
r
a
d  
A
)
2
.

No misunderstanding should arise from extending our "bar convention":
for each subset X  of A, write ;1' for the image of X  under the natural
map A A  lt IA.  In particular,

rad A =  (rad A)/ZIA  a n d  fl
k  A  =  ( I I
k  A  
+  U A ) /
T I A ,

but, for a subalgebra B, rad B is usually not (rad B)/UB.
An easy induction on dim A (applying the inductive hypothesis to the

quotient of A modulo the last nonzero power of rad A) readily shows that
if JV spans A  then the subalgebra generated by X  is A  itself.

Suppose that codimrad A =  1: identifying F with the unique 1-dimen-
sional subalgebra of A, we may express this by writing A  =  FED rad A, a
vector space direct sum. Suppose also that A  =  B C .  Since the radical
of a  commutative algebra is  the set o f  its nilpotent elements, then
(rad A) n  B = rad B, B  = FED rad B, and similarly, C  = F r a d  C. I t
follows that

and therefore

rad A -  (rad B) ( r a d  B)(rad C) o  (rad C),

UA = UB  ( r a d  B)(rad C) ED UC.

Of course also ( fl
I
A )  n  
B  fl
i
B ,  
a n
d  
( a
s  
a  
• - -
- >  
a
"  
i
s  
a  
r i
n
g  
e n
d o
m o
r -

phism)

I /
J
/
1  
c  
f
T
1
J
B
e  
(
r
a
d  
B
)
(
r
a
d  
C
)  
O

whence

1 /
J
A  
+  
U
A  
=  
(
f
/
1
/
3  
+  
U
B
)  
e  
(
r
a
d  
B
)
(
r
a
d  
C
)  
(
n
)
C  
+  
T
I
C
)
.

Routine steps now lead to the first two sentences of the following.
2.6. LEMMA. I f  codim rad A 1  and A =  B C ,  then rad A =  rad B
rad C and I I
J
A =  fl
i
B  
fl C .  
E a
c h  
fl
I
A  
i
s  
t
h
e  
s
u
m  
o
f  
i
t
s  
i n
t e
r s
e c
t i
o n
s

with rad B and rad C. Moreover,

d i m  B  <  i B ) . (3)
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Proof I t  is  easy t o  see that J A  n  B = UB  and SO (rad  B )/UB
-
r
a
d 
B
.  
T
h
u
s 
i
f  
X 
i
s 
a 
s
u
b
s
e
t  
o
f  
r
a
d 
B 
s
u
c
h 
t
h
a
t  
5
i
;  
s
p
a
n
s 
r
a
d 
B 
t
h
e
n 
t
h
e

image of X  under B B / U B  spans (rad B)/UB;  since B  s a )  rad B
and UB  is omissible in B, the subalgebra generated by X  must then be B
itself. Choose a basis for rad B such that each n
-
d
--
3
- i s  g e n e r a t e d  
b y  t h e

basis elements it  contains. For each basis element choose a preimage in
rad B, ensuring that if  a basis element lies in fl
j
B  t h e n  i t s  
p r e i m a g e  
l i e s  
i n

fl
)
B
.  
B
e
c
a
u
s
e  
o
f  
t
h
e  
a
b
o
v
e  
a
r
g
u
m
e
n
t  
t
h
e
s
e  
p
r
e
i
m
a
g
e
s  
t
o
g
e
t
h
e
r  
g
e
n
e
r
a
t
e  
B

as an algebra. Hence B  is a homomorphic image of the external tensor
product of the subalgebras generated by the individual preimages. Since
the dimension of the subalgebra generated by any single element of f /
J
B
is obviously at most p ,  this proves the last sentence.

The hypothesis codim rad A =  1 is certainly satisfied when A  is the
group algebra FG o f  a finite abelian p-group G. As is well known, -
6 rad A, g g  — i  is an isomorphism when F F

p
,  a n d  i n  a n y  
c a s e  i t

leads to an F-isomorphism a :  -
6  r a d  
A .  
W e  
s h a l l  
n e e d  
t h a
t  
t h i
s

leads f rom the filtration o f  G  prwided by the p r e c i s e l y  to  the
filtration o f  rad A provided by the 1 1
. 1
. A .  T o  e a s e  
t y p o g r a p h y ,  
f o r  
a n y

-space U let us write UF  simply as U .
P P

2.7. LEMMA. Th e  isomorphism a  maps fl
I
G
I F  o n t o  1 1
)
A .  
M o r e o v e r ,  
i f

G = H x K  then fl t a  =  f I
j
( F H )  a n d  fl
i
f e a  =  
I I
J
( F K ) .  
I n  
p a r t i c
u l a r ,

Tea = rad HI  and K
r
a  =  r a d  
F K .

Proof S ince  gP) =  I  implies (g
, —  1 ) "  =  
0 ,  i t  
i s  
c l e a r  
t h a t  
a  
m a p
s

R e  into RA .  Hence

dim f I
J
G  
d i
m  
fl
J
A  
w
h
e
n
e
v
e
r  
O
.

Beware that the first dimension here is taken over F
p
,  a n d  t h e  s e c o n d  
o v e r

F. Comparing (2') and (3), we get that

E  j(d im —  dim II G )  15_ E  Adim I l
i A  —  d i m  I l
i

k>1

Of course 1 /
0
G —  fl
o
A  
—  
O  
w h i
l e  
d i m
i ) ,
G =  
d
i
m  
-
6  
—  
d
i
m  
r
a
d  
A
=

dim I/ /
A  
w h
e n
e v e
r  
j  
i
s  
l
a
r
g
e  
e
n
o
u
g
h
,  
a
n
d  
s
o  
i
t  
f
o
l
l
o
w
s  
t
h
a
t  
d
i
m  
f
I
J
G  
=

dim fl A  whenever j  O .  This proves the first claim.
Suppose that G H  X K; then fl
i
G  =  
fl . H e )  1
-
1 , K .  
A p p l y  
L e m m
a  
2 . 5

with B = FH and C — FK to conclude that fl
I
A  =  C 1
J
( F H )  E D  C l
i
( F K ) .  
I f

h E fl y  th e n  h  — 1 e  i l
i
( F 1 1 ) ,  s o  n
- - -
/
W a  
c  fl
)
( F H ) ,  
a n
d  
s i m i l
a r l y

f t
. /
l
e
a  
c  
f
l
j
(
F
K
)
.  
I
n  
v
i
e
w  
o
f  
t
h
e  
f
i
r
s
t  
c
l
a
i
m
,  
b
o
t
h  
i
n
c
l
u
s
i
o
n
s  
m
u
s
t  
b
e

equalities. When j  is large enough, H  = fl y  and rad FH = i l
l
( F H ) ,  a n d
the final statements also follow. I
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Proof of Theorem 2.1. F o r  an application of Lemma 2.4, set E = Fp and
U 6  with U, = I
G .  W r i t e  
E G  
=  
A  
a n
d  
i d e n
t i f y  
U
F  
w i
t h  
F a
-
d
—
A
-  
a l
o
n
g

the isomorphism a of Lemma 2.6. Then U
)
F b e c o m e s  
0 / 1 .  B y  
L e m m a  
2 . 5 ,

the hypotheses of Lemma 2.4 will be satisfied by X  = rad B, Y  = rad C,
and we get -
6  =  
V  
W  
w i t
h

rad A =  rad B e WF =  V
F  e  r a d  
C .Lemma 2.4 also yields that 6  -  V  e W satisfies the hypotheses of Lemma

2.5 and we get G = 1 / x K  with V = i-
-
1  a n d  W =  
K .

We complete the proof of the theorem by showing that the subgroups
H, K so obtained satisfy (1). Because of the symmetry of the situation, it
will in fact suffice to show that A  =  B 0  FK.

In view of the second half of Lemma 2.7, the last displayed equation is
the same as

rad A = rad B e  rad FK = rad FH e rad C.

As A  - E  e  rad A and ?I' A is  omissible, i t  follows that B  and FK
together generate A ,  so we shall be done i f  we show that d im A >
(dim BXdim FK), or equivalently that

(dim B)110.

It was precisely to this end that Lemma 2.4 stated even more than what we
have used so far. I t  also yields that each n
-
,  A
-  i s  t h e  
( d i r e c t )  
s u m  
o f  
i t s

intersections with rad B and rad FK. From Lemma 2.6 one readily sees
that the first o f  these intersections is n73
-
. S i m i l a r l y ,  f r o m  
L e m m a  
2 . 6 ,

applied with A  =   EH 0 FK in place of A -  B e  C, the second intersec-
tion is seen to be 0  J
( F K  ) .  B y  
L e m m a  
2 . 7 ,  
t h i
s  
h a
s  
t h
e  
s a
m e  
d i m
e n s
i o n  
a
s

n, K. It follows that

dim O
f A  
=  
d
i
m  
0  
B  
+  
d
i
m  
0  
K
.

This, (2), (2'), and (3) together imply that IQ ( d i m  B)1K1, as required. I
The argument has also proved the following.
2.8. COROLLARY. I f  the algebra A in Lemma 2.5 is a group algebra, then

the inequality (3) is an equality.
We need only note that if  A =  FG then G must be abelian, and if also

codim rad A =  I  then IQ must be a power of p.
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Proof of Theorem 2.2. L e t  FG = A , .  We shall proceed by induc-
tion on n. We have to prove that there is a direct factorization G 1 1 ' ,
1
= 1
G ,

such that (1 ') holds whenever 1 <  i <  n. The case n = 1  is a tautology, so
let n > 1. Apply Theorem 2.1 with B 0
1
"  ,  ' A ,  a n d  
C  =  A
n
,  t o  
o b t a i n  
a

direct decomposition G - 1 / > < K  with FG /11  F K  = C .  Set G„
— K. I f  n =  2, we set G
I  =  H ,  
a n d  
w e  
a r e  
d o n e
.  
S u p p
o s e  
t h
a t  
n  
>  
2
,  
a
n
d

let J  denote the ideal o f  FG generated by rad FIC. So FG has two
"semidirect" decompositions (that is, vector space direct decompositions
with one summand a subalgebra and the other an ideal): FG = B (13J  —
FH @ J. I t  follows that A ,  e J  —[
F
H  n  ( A ,  
+  
J ) ]  .
1 ,  
s o  
[ F H  
n  
( A ,  
+

.1)] n A , and FH — g
i
n  1
1
[ F H  n  
( A ,  
+  .
1 ) ] .  
A p p
l y  
t h
e  
i n d u
c t i v
e  
h y p
o t h
e s i
s

to obtain a matching direct decomposition H  = r w
i
l q .  W i t h  t h i s  
d e fi n i -

tion of the G„ the i = n case of (1
+
) i s  s i m p l y  
F G  —  
F H  
C ,  
s o  
w e  
n e e
d

only consider i < n. Fix such an i  and set

D F G  ••
j * 1
j < n

then we have that

FG = [FH n (A ,  +  J)]  0  D o  FG.  ( 4 )
Our remaining task is to show that (4) remains valid when the first tensor
factor is replaced by A .  Since FH n (A, + J) and A ,  have the same
dimension, this will follow if  we can show that A,  and D e  FG„ together
generate FG. By (4) and Lemma 2.5 we know that

and what we need will follow i f  rad A, and rad D @ rad FG
n t o g e t h e rgenerate rad FG.

For a proof of the latter claim, let us return to A, 631J  =[F11 n (A, +
.1)] e  J. Since J is a nilpotent ideal, this yields that

(rad A,) r a d E  e  J1— rad0FH n (A ,  + J)]  e  .1)

(rad[FH n (A  +  .1 )
]
) e  . 1 ,

whence

rad [FG = rad[FH n (A ,  + .1)] 630 rad D ED rad FG„,

rad A, + J = rad[FH n (A ,  + J)]  +

As 0 (FG) + rad FG is  an ideal, by the definition of i  this ideal is also
U(FG) + J. So r a d  FG„. Thus (5)  and the last displayed equation
together prove that rad A, and rad D r a d  FG„ generate rad  FG, as
required. I

(5)
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3. TENSOR FACTORIZATIONS OF THE REGULAR
MODULE

In this section, the main result concerns tensor factorizations o f  the
regular module for a group algebra FG, with F any field (of any character-
istic) and G any finite abelian group. The discussion is kept as general as
we can manage without getting involved in unnecessary work.

In the context of modules there are no internal tensor products, at least
not in any sense that would be analogous to internal tensor products of
algebras. Also the tensor factors need not appear as submodules (o r
quotient modules) o f  the tensor product. Thus, in  the first instance, a
tensor factorization o f  a module can only mean an isomorphism to  an
externally constructed tensor product. On the other hand, one does speak
of "outer" tensor products of modules: i f  X  and 1
1 a r e  m o d u l e s  
f o r  t h e
algebras B  and C, respectively, then the algebra B  0  C acts component-
wise on the vector space tensor product X  Y .  By way o f  distinction,
sometimes outer tensor products are written as 4 Y .  It will be convenient
to adopt that convention here, and to use similar notation for outer tensor
products of representations as well. In particular, if  A is an algebra and p
and a
- 
a r
e  
r e
p r
e s
e n
t a
t i
o n
s  
o
f  
A
,  
t
h
e  
r
e
p
r
e
s
e
n
t
a
t
i
o
n  
p
#  
o
-  
o
f  
A  
0  
A  
i
s

always defined. To  define a  representation p  0 o- o f  A ,  one needs a
"diagonal" map A  —5 A 0  A as well (provided by , g
,
- - > g O g  w h e n  A  
=

FG), and then p  o -  is the composite of that with pit a. A  less familiar
observation is that if  A  = B O C  is a tensor factorization of any algebra,
then by restriction p  and o- give rise to representations p
a  a n d  c r
c
,  a n d

cr
c 
i
s  
a  
r
e
p
r
e
s
e
n
t
a
t
i
o
n  
o
f  
A
.  
I
f  
i
t  
h
a
p
p
e
n
s  
(
a
s  
i
t  
d
o
e
s  
w
h
e
n  
A  
i
s  
a

group algebra) that p e  a
- i s  a l s o  
d e fi n e d ,  
t h e n  
p
a
l l  c
c  
a n
d  
p  
C
r  
p r o
v i d
e

actions o f A  on the same tensor product space, but in  general the two
actions on the one space are very different. Indeed, one cannot even
expect them to be equivalent representations. In  giving examples of two
such representations being not just equivalent but actually equal, the main
result of this section draws attention to something rather rare.

3.1. THEOREM. L e t  F  be a  field, G  a finite abelian group, and U,V
modules for FG, with p :  FG —) End
F U ,  o - :  F G  
E n d
F  V  
t h e  
r e p r e s e n
t a -

tions afforded by them. I f  p 0 o
- i s  e q u i v a l e n t  
t o  
t h e  
r e g u l a r  
r e p r e s e n
t a t i o n ,

then there i s  a  tensor factorization F G  — B o  C and representations
g: B  E n d
r  U ,  
y :  
C  
E n
d
E  
V  
e q
u i v
a l e
n t  
t
o  
t
h
e  
r
e
g
u
l
a
r  
r e
p r
e s
e n
t a
t i
o n  
o
f

B and C, respectively, such that FGp B  [3, IF Go
- —  C y ,  a n d  p  
o
-  =  
o t t  
y .

I f  moreover each of U and V has a nonzero quotient on which G acts trivially,
then p = s
c  
a n d  
e
B
b  
w h
e r
e  
e
B
:  
B  
F  
a
n
d  
c
c
:  
C  
—
5  
F  
d
e
n
o
t
e  
t
h
e

restrictions to B and C of the augmentation map e: FG —3
, F ,  w h i c h  t a k e severy element g of G to 1.
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Restricting the last two equations to B and C then yields the following.

3.2. COROLLARY. I f  p and a- are representations of the group algebra FG
of a finite abelian group such that the modules affording these representations
have nonzero G-trivial quotients, and if  p O u  is equivalent to the regular
representation, then FG has a tensor factorization FG = B O C such that
p 03) o- p
B
S  t o -
c
,  
t h
e  
r e s
t r i
c t i
o n s  
p
B  
a
n
d  
a
c  
a
r
e  
e
q
u
i
v
a
l
e
n
t  
t
o  
t
h
e  
r
e
g
u
l
a
r

representations of B and C, respectively, and Bp = FGp, Co- = FGcr, while
Bo- ,C p consist of scalars.

For the proof of the theorem, we need to consider monogenic modules:
that is, modules which can be generated by a single element. A  module is
monogenic if and only if it is a homomorphic image of the regular module.
A module is isomorphic to the regular module if  and only if  it is mono-
genic and its dimension equals that of the algebra in question. I t  follows
from Nakayama's Lemma that a  module is monogenic if  and only if  its
largest semisimple quotient is monogenic.

3.3. LEMMA. I f  U and V are modules for a commutative algebra A and
O V is monogenic, then both U and V are monogenic.

Proof T h e  largest semisimple quotient of any commutative algebra A
is a direct sum of fields, so the largest semisimple quotient of the regular
module for A is multiplicity-free (that is, a direct sum of pairwise noniso-
morphic simple modules). It follows that an A-module U is monogenic if
and only i f  the largest semisimple quotient o f  U  is multiplicity-free;
equivalently, if  and only if  no nonzero quotient of U can be written as a
direct sum of two isomorphic modules. Thus if U is not monogenic, then it
has a nonzero quotient, U/ U
o  s a y ,  
w h i c h  
i s  a  
d i r e c t  
s u m  
U / U
0  U
t  
a
)  
U
2

with U
l 
U
2
•
I
f  
n
o
w  
V  
i
s  
a
n
y  
o
t
h
e
r  
n
o
n
z
e
r
o  
A
-
m
o
d
u
l
e
,  
t
h
e
n

(U o V ) / (U
0  o  
V )  
( U / U
0
)  
o  
V
r
-
• -  
(
U
1  
O  
V
)  
E
D  
(
U
2  
O  
V
)

with U
l 
U
2  
V

shows that U O V cannot be monogenic.

Note that i f  U  is a 2-dimensional G-trivial FG-module and V  is an
absolutely simple FG-module with dim V > 1, then U  O V is monogenic
but U  is not: so the commutativity hypothesis cannot be omitted from
Lemma 3.3.
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Proof of Theorem 3.1. Since G is abelian, FGp c  E n d
FG  U  a n d  F G G r  
c

End FG 1/, and therefore

FG( p a )  ç  FGp 0 FGo-
g_ (E n d
FG  
U )  
( E n
c I
F G  
V
)

E n d
f G 0
F G
( V i t
l i

E n d
F G
( U  
o  
V
)
.

Suppose now that p a  is equivalent to the regular representation. Then
ker( p 0 a-) = O and E n d
F G
( U  o  V )  
• ' - •  
F G ,  
s o  
d i m  
E n d
F G
( U  
O  
V
)  
=

dim(FG( p 0 a
-
) ) .  
T h u s  
a l l  
t h e  
i n c l
u s i o
n s  
a b
o v
e  
m
u
s
t  
i
n  
f
a
c
t  
b
e  
e q
u a
l i
t i
e s
.

In particular, it  follows that FG( p =  FGp o FGT. With B  and C
chosen as the inverse images of FGp and FGo- under p 0  o-, we obviously
have FG — B o  C, and there exist representations g : B --* End F U and y:
C E n d  F V such that FGp = Bp, FGo- — Cy, and p  ® o- = [4y.

By Lemma 3.3, U  is a  monogenic FG-module, and so i t  is also a
monogenic FGp-module. I t  follows from IFGp B l 3  that the B-module
defined on U by [3 is also monogenic, whence dim U d i m  B. Similarly,
dim V d i m  C. With

(dim U)(d im V) =--IGI — (dim B)(d im C),

these inequalities imply that dim U = dim B and dim V = dim C. There-
fore the monogenic B-module defined on U by m u s t  be isomorphic to
the regular B-module; similarly, the C-module defined on V by y is also
regular.

Now suppose also that U  has a proper submodule, U
0  s a y ,  s u c h  t h a teach element of G acts trivially on U/ U

o
.  W e  m a y  
a s  w e l l  
c h o o s e  
U
o  
t o

have codimension 1. As FG-module, ( WU
(
)  O  V  m a y  
t h e n  b e  
i d e n t i fi e d

with V, and so each element of FG acts on (U / U
0
)  O  V  v i a  a
-
.  O n  t h e

other hand, U
0  i s  
a l s o  
a  
s u b m
o d u l
e  
i
n  
t
h
e  
B -
m o
d u
l e  
d
e f
i
n
e
d  
o
n  
U  
b
y  
p

(because 1313 F G p )  and, with if3
1 d e n o t i n g  
t h e  
c o r r e s p o n d
i n g  
r e p r e s e
n t a -

tion o f  B  on  U / U
0
,  t h e  
a c t i o n  
o f  
F G  
o n  
( U / U
0
)  
o  
V  
m
a
y  
a
l
s
o  
b
e

described as ß y .  Thus a - p h ,  whence i t  is immediate that Bo-
consists of scalars and • c = y.

Finally, assume that V, too, has a nonzero G-trivial quotient, and argue
similarly that then p
B  =  p .  
S i n c e  
G p  
a c t
s  
t r i v i
a l l y  
o
n  
U / U
0
,  
t
h
e  
a c
t i
o n  
o
f

B on U/ U
0  
o b t a
i n e d  
f r
o m  
p
B  
i
s  
t
h
a
t  
g
i
v
e
n  
b
y  
S
B
,  
w
h
i
l
e  
p
,  
w
a
s  
d
e
fi
n
e
d  
a
s

the action o f  B  on U / U
0  o b t a i n e d  
f r o m  
p .  
T h u
s  p
i  
e
B  
a n
d  
h e
n c
e

o- -- e
B
S t  
y .  
S i
m i
l a
r l y
,  
p  
—  
1
3
8
1  
e
c
,  
a
n
d  
t
h
e  
p
r
o
o
f  
o
f  
t
h
e  
t
h
e
o
r
e
m  
i
s  
c
o
m
p
l
e
t
e
.
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A different way of expressing much the same result is the following.
3.4. TilEOREM. L e t  FG be the group algebra of a finite abelian group and

let U, V be FG-modules such that each has a nonzero G-trivial quotient and
U 0 V  is isomorphic to the regular module. Then there are algebra structures
on U  and V  and a map from FG  to U  0 V  which is both an algebra
isomorphism and an FG-module isomotphism.

Towards the proof of this we shall need that, under the present hypothe-
ses, if  u and v generate U and V (as EG-modules), then u v  generates
U 0 V  (as FG-module). This would be obvious, without any hypotheses, if
we were dealing with an outer tensor product. We could claim it  here
because we know from Corollary 3.2 that U  0 V  may be viewed as an
outer tensor product U
R
S t  V
c
,  a n d  
t h a t  
a l l  
t h e  
a c t i
o n  
o f  
F
G  
o
n  
U  
a
n
d  
V

comes from the action of the relevant subalgebras B  and C, respectively,
so u and v generate U
R a n d  V
c  a s  
w e l l .  
T h e  
f o l l o
w i n g  
g e n
e r a
l  
l e
m m
a  
g i
v e
s

it more directly.
3.5. LEMMA. I f  U and V  are modules over the group algebra FG of a

finite abelian group, i f  U 0 V  is monogenic, and i f  u, v generate U,V,
respectively, then u 0  v generates U 0 V.

Proof Step 1. The claim holds if F is a splitting field for G and U, V are
semisimple. For then U = 1 4 ,  V = e ) v
i
,  a n d  U  =  
( U ,  
0  1 /
1
) ,

with the U, 0  V
i a l l  
o f  
d i m e n
s i o n  
1  
a n
d  
p a i
r w i
s e  
n o n
i s o
m o r
p h i
c  
b
e
c
a
u
s
e

U 0 V is monogenic. Since u generates U, we have u = Eu
z w i t h  O  u ,
E Li, fo r all i;  similarly, v E v
)
;  a n d  
c o n s e q u e n t l
y  u  
0  
v  
—  
E E
( u ,  
0  
v )
) •with all u

z 0 v

) nonzero. So u v  
g e n e r a t e s  
U  o  
V  
a s  
r e q u i r e
d .

Step 2. The claim holds over any F as long as U and V are semisimple.
To see this, let E be the algebraic closure of IF and write U
E  =  U  O
F  E ,  a s
usual, viewing U a subset of U
E
.  T h e  E G -
m o d u l e s  
U
E
,  V
E  
a r e  
s e m i s i
m p l e

and generated by u, v, respectively, and their tensor product U
E  O E  E  i smonogenic because it  is isomorphic to (U O
F V )
E
,  s o  b y  
S t e p  1  
w e  
k n o w

that u c, v  generates U
E  V
E
.  T h i s  
c o u l d  
n o t  
b e  
t h
e  
c a
s e  
i
f  
t h
e  
F G
-
s u b
-

module of U 0
F V  
g e n e r
a t e d  
b y  
u  
V  
w e
r e  
s m
a l
l e
r  
t
h
a
n  
U  
0  
V
,  
f
o
r  
t
h
e

natural isomorphism between U
E  V
E  a n d  
( U  
O F  
V  )
E  
m a t c h e
s  
u  
O E
v  
t o

U OF v.
Step 3. The claim holds in full generality. For this, note that semisimplic-

ity is only an issue if  the characteristic of F is a prime, p say, and then an
FG-module is semisimple if and only if all p-elements of G act trivially on
it: thus it is readily seen (using (u 0  v)(g — 1) — 14(g — 1) 0  vg + u 0  v(g
— 1), for example) that

(U V ) / r a d ( U  o V )---
-- ( U / r a d  
U )  
c .  
(  V /
r a d  
V ) .  
( 6
)
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By ou r hypotheses, u  + rad U and v  + rad V generate U/ ra d  U and
V/rad V, respectively. Using (6), we know also that (U/rad U) 0  (V/rad V)
is monogenic. So by Step 2 the latter module is generated by (u +  rad U)
o (v + rad V). In the isomorphism (6), (u + rad U) 0 (v + rad V) corre-
sponds t o  ( u  e  u) + rad(U 0 V), and th is element generates ( U  0
V)/rad(U 0 V). Then an appeal to Nakayama's Lemma completes the
argument. I

Note that when U  and V  are 2-dimensional simple modules for the
quatemion group of order 8 over the field o f  three elements, U 0 V  is
monogenic but no element o f  the form u  O v can generate it :  so the
commutativity hypothesis cannot be omitted from Lemma 3.5.

Proof of Theorem 3.4. L e t  us write F for the 1-dimensional G-trivial
EEG-module, as usual. By assumption, there exist surjective module homo-
morphisms K :  ( I  "--) F and  A :  V  —* IF, and  a  module isomorphism
tt: FG --* U 0 V. When we identify V  with IF 0  V, the composite of /./ and
K 0 1: U o V  --) F 0  V becomes a module homomorphism, K
' s a y ,  f r o mFG onto V; in a similar sense, i
t t ,  f o l l o w e d  
b y  1  
0  
A :  
U  
o  
V  
- - *  
U  
o  
I F  
g i v
e s

a surjective module homomorphism A': EFG ---). U. Since FG is commuta-
tive, the kernels o f  A ' and K
1  a r e  t w o -
s i d e d  
i d e a l s ,  
a n d  
s o  
a l g e b
r a

structures may be defined on U and V along A' and K
' ,  t h a t  i s ,  s o  
t h a t  A '
and K
' 
b e
c o
m e  
( s
u r
j e
c t
i v
e )  
a
l
g
e
b
r
a  
h
o
m
o
m
o
r
p
h
i
s
m
s  
a
s  
w
e
l
l
.  
N
o
t
e  
t
h
a
t  
t
h
e

identity elements of the algebras U and V are the images of the identity
element of IFG under surjective L F G
- m o d u l e  
h o m o m o r p h i s m s .  
H e n c e  
t h e y

generate U  and V  as FG-modules. I t  follows by Lemma 3.5 that the
identity element o f  the algebra U  o V generates U  o V as FG-module.
Consider the composite o f  the diagonal map FG  --) FG o  FG wit h
A' 0  K': FG  0  FG --+ U o V. This is an algebra homomorphism, so i t
maps the identity element of FG to the identity element of U o V. I t  is
also an L F G
- m o d u l e  
h o m o
m o r p h
i s m ,  
a
n
d  
o
n
e  
o
f  
t
h
e  
e l
e m
e n
t s  
o
f  
i
t
s  
i
m
a
g
e

generates its codomain as L F G
- m o d u l e ,  a n d  
i t  
m u s t  
b e  
s u r j e c t i v
e .  
B y

dimension comparison therefore, it  is a bijection. I
We close this section with a brief discussion of the question whether in

Corollary 3.2 one could relax the requirement that the modules, U and V,
which afford p  and o-, have nonzero G-trivial quotients. O f  course, i f
U 0 V  is regular, then it  has precisely one nonzero G-trivial quotient, so
the following result is applicable and provides some encouragement for a
while. In this, we again write F for the 1
- d i m e n s i o n a l  F G -
m o d u l e  
o n  
w h i c h

G acts trivially.

3.5. LEMMA. I f  G is abellan, i f  U,V are FG-modules, and if

dim Horn IG(U e V, F) =  1,
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then U and V have (unique, 1-dimensional) quotients U/ U
0  a n d  V / V
o  s u c h
that (U / U
0
)  ( V /
V
o
) , -
-
-

Proof F i rs t  suppose that U and V are simple. As H o m
F G
( L T  0  V ,  I F )  i s

isomorphic t o  H o m
F G
( U ,  V * )  
w h e r e  
V *  
s t a n
d s  
f o
r  
t h
e  
F G -
m o d
u l e

H o m
F
( V ,  
0 ,  
i
n  
t
h
i
s  
c
a
s
e  
w
e  
m
u
s
t  
h
a
v
e  
t
h
a
t  
U
'
,
-
-
-  
V
*  
a
n
d  
E
n
d
F
G  
U  
F
.

Since G is abelian, the linear transformations representing G on U all lie
in End FG U, and so now they are all scalars. Hence the simple U itself has
dimension 1, and U o V ,,-
-
-F  a s  
r e q u i r e d .

In general, H o m
F G
( U  0  
V ,  
F )  
H o m
F G
( ( t /  
O  
V ) /
r a d
( U  
O  
V
)
,  
F
)
,  
s
o  
(
6
)

gives that, i f  dim H o m
F G
( U  0  V ,  
F )  
1 ,  
t h e n  
U  
a n
d  
V  
h a
v e  
s e m i
s i m p
l e

quotients U/ U
0  a n d  
V /  
V
o  
s u c
h  
t h
a t  
d i
m  
H o m
F G
( ( U /
U
0
)  
o  
( V
/ V
o
) ,  
F
)  
L

Of course then they also have simple quotients with this property and our
claim has been reduced to the case we considered first. I

3.7. EXAMPLE. L e t  G be a cyclic group of order 4 generated by g, and
F a field which contains an element, i, of multiplicative order 4. Let U be
the 2-dimensional FG-module on which the eigenvalues of g are —1 and
i, and let V  be similarly defined with reference to i  and —i instead. A ll
four possible eigenvalues for g occur, each just once, on U  0 V, so this
tensor product is isomorphic to the regular module. I t  is clear from the
proof of the first part o f Theorem 3.1 that p  =  fit ly can only hold
with the one choice o f  B,C, 0, y given there. With  that choice in  the
present case, C  contains e
l  +  e
t  w h e r e  
e
l  
a n d  
e
t  
a r e  
t h
e  
p r i m i
t i v e

idempotents o f  FG such that e
l
g  —  e
l  a n d  
e , g  
=  j e
t
.  
T h e  
i d e m p o
t e n t

e
l 
+ 
e
,  
a
c
t
s  
o
n 
U 
n
e
i
t
h
e
r  
a
s  
O 
n
o
r  
a
s  
1 
(
f
o
r  
i
t  
a
n
n
i
h
i
l
a
t
e
s  
t
h
e 
e
i
g
e
n
v
e
c
t
o
r  
o
f

g with  eigenvalue — 1 but fixes that with eigenvalue i),  and therefore
(e
l 
+  
e
,
)
p  
c
a
n
n
o
t  
b
e  
a  
s
c
a
l
a
r
.  
T
h
u
s  
b
y  
a
l
l
o
w
i
n
g  
t
h
e  
h
y
p
o
t
h
e
s
i
s  
o
f  
C
o
r
o
l
l
a
r
y

3.2 concerning nonzero G-trivial quotients to fail, we find that one of the
conclusions fails as well: Cp does not consist of scalars.

4. THE  VARIETY OF A TENSOR FACTOR
OF THE REGULAR MODULE

We now combine some of the results of the previous sections to obtain
information about the varieties of the tensor factors of the regular module
for a finite abelian p-group over a field of characteristic p. In the case of
an elementary abelian p-group, the results of this section could be derived
from the theorem on degrees of varieties in  [4]. However, for a general
abelian p-group, the intersection multiplicities technique fo r analyzing
degrees does not seem to be available. Hence it is necessary to fall back on
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methods which are similar to those used in [3]. The results, accordingly,
are weaker than those obtained in [4]. Our first theorem follows directly
from the work of the previous sections.

4.1, THEOREM. L e t  p be a prime, F any field of characteristic p, and G
any finite abelian p-group. I f  U and V  are FG-modules such that G acts
regularly on U o V, then G has a direct decomposition such that one direct
factor acts regularly on U while the other acts regularly on V.

Proof B y  Lemma 3.3 and Corollary 3.2, both U and V are monogenic,
and the algebra FG has a tensor factorization FG = B C  such that
dim B =  dim U and dim C = dim V while both the action of B on V and
the action of C on U are by scalars only. By Theorem 2.1, G has a direct
decomposition G = H  x K  such that FG = B F K  = EH/ C .  Since FG
= FH C  and C acts on U by scalars, all the action of FG on U comes
from the action o f  H :  thus U
H  i s  a l s o  
m o n o g e n i c .  
O n  
t h e  
o t h e
r  
h a n
d ,

d imU
n  
—  
d i
m  
B  
=  
H
I
,  
s
o  
U
H  
m
u
s
t  
i
n  
f
a
c
t  
b
e  
r
e
g
u
l
a
r
.  
T
h
e  
r
e
g
u
l
a
r
i
t
y  
o
f  
V
K

is proved similarly. I
Note that we have no reason to expect that H  would act by scalars on V,

or that K  would act by scalars on U.
Next we need some facts about the actions of group algebras on free

modules.

4.2. LEMMA (For example, see (2.2) of [31). L e t  S ( s
l
,  ,  s
m
)  b e  a n

elementary abelian group of order pm. An FS-module W is free if  and only if

d i m (
W n  
( s ,  
—  
1 )
P -
1
)  
=  
(
d
i
m  
P
O
/
p
m
.

i =1

Let H  be a finite abelian p-group and S the sode o f H  (that is, the
unique largest elementary abelian p-subgroup of H). Write H  as a direct
product o f  nontrivial cyclic subgroups, H  = < h
i
>  x  • • •  x  ( h . ) ,  
a n d  l e t

S = (x
i  >  
x  
• •
•  
x  
( s
m
>  
b
e  
t
h
e  
c
o
r r
e
s
p
o
n
d
i
n
g  
d
i
r
e
c
t  
d
e
c
o
m
p
o
s
i
t
i
o
n  
o
f  
S
.

To be more specific, for i  = 1, ,  m, let s, g f  w i t h  k ( i )  chosen so
that s, 1  but s f  1 .  Let F be an arbitrary field of characteristic e. In
the group algebra FH, set x,• — h
i —  1  a n d  
y ,  s ,  
—  
1 ,  
n o t i n g  
t h a t  
x f  
=

y, and y,P = O. Recall that the elements 117
1 t
x , "
(
I
)  w i t h  O  
<  m ( i )  
<  p
k (
o +  1

for i  = ,  m fo rm a  basis f o r FS, and that rad  FH is  the ideal
generated by t x
/
,  ,  x
„ , ) .  
A l s o
,  
r a
d  
I F
S  
i
s  
t
h
e  
i d
e a
l  
o
f  
F
S  
g e
n e
r a
t e
d  
b
y

t y
l
,  
y
m
)
,  
a
n
d  
i
t  
i
s  
t
h
e  
v
e
c
t
o
r  
s
p
a
c
e  
d
i
r
e
c
t  
s
u
m  
o
f  
(
r
a
d  
1
E
5
)
2  
w
i
t
h  
t
h
e

m-dimensional subspace spanned by f y
i
,  ,  y
m
) .

4.3. LEMMA. F o r  a E FH, we have aP = O if  and only if  a can be written
as a ----- E
g  b
t  y ,  
w i t
h  
s u i
t a
b l e  
,  
b
„
,  
i
n  
F
H
.
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Proof T h e  " if '  claim follows from the fact that the y f  are all O and the
pth powering is a ring endomorphism of FH. For the proof of the "only if"
claim, suppose that aP = O. Write a in terms of the basis of FH mentioned
above, as

a = E f
p
, n x
i
m o )

A i

b• = f  . e
4
j
) -
P
1 4 1 )
1 1 e
( i )  
E  
F
H
.

(
7
)

with 4„E  F for tt = ( p,(1), ,  !Am)). Then O = a" = Eft, 11,"1 i
x f "
( 1 )
,  a n d

here the range o f  summation may as well be restricted to  the p, with
m(i) < p
k ( i )  
f o r  
i  
—  
1
,  
,  
m
.  
I
t  
f o
l l
o
w
s  
t
h
a
t  
4
,  
=  
O  
f
o
r  
a
l
l  
s
u
c
h  
t
t
,  
a
n
d  
s
o

in (7) the sum need only be taken over the p. to which there is a j  such
that A
( j
)  
p
" .  
T
h
e  
s
u
m
m
a
n
d  
c
o
r
r
e
s
p
o
n
d
i
n
g  
t
o  
s
u
c
h  
a  
p
i
,  
i
s  
b
,
y
,  
w
h
e
r
e

This completes the proof. I
4.4. LEMMA. L e t  V be a free Ell-module and a =  E, b, y, with b
i
, . . . , b , ,

E EH. I f  not all of the b, lie in rad FH, then V
o  + a )  i s  f r e e .Proof With o u t  loss o f  generality we may assume that b

l  r a d  E H .Note that

(a3 /2
-
•  
Y m
)
P -
1  
=  
b r
) 1
- 1
) 1
- 1  
•
•
•  
)
1
,
-
1  
(
8
)

(simply because y,P =  O for a ll i).  Combine the actions of (1 +  a) and
(s
2
,  
,  
s
„
,
)  
o
n  
V  
i
n
t
o  
a
n  
a
c
t
i
o
n  
o
f  
t
h
e
i
r  
e
x
t
e
r
n
a
l  
d
i
r
e
c
t  
p
r
o
d
u
c
t  
E  
=  
+

a) x  ( s
2
, . . . , s
m
) ,  
s
o  
V  
b e
c o
m
e s  
a
n  
F
E
-
m
o
d
u l
e
.

Of course, V
s i s  
f r e e ,  
s o  
w e  
m
a y  
a p
p l
y  
t
h
e  
"
o
n
l
y  
i
f
'  
p
a
r
t  
L
e
m
m
a  
4  
2  
w
i
t
h

W = V .  In view of (8), the " i f '  part of that lemma may then be applied
with E  and V  playing the roles of S and W. The conclusion is that V  as
FE-module is free. From this, it follows that V,kl-i-a) is also free. I

4.5. LEMMA. I f  V is a free Ell-module and a =  E, b,y, with ,  b
, ,  0rad F

H ,  
t h
e n  
1 /
( 1
+  
a
)  
i
s  
n
o
t  
f
r
e
e
.

Proof W e  may assume that V  F H  as an EH-module. By Lemma 4.3,
the group (1 +  a) has order p. Thus by Lemma 4.2, what we have to prove
is that dim VaP
-1 *  
( d i m  
V ) /
p ,  
t h a
t  
i s
,  
t h
a t  
d
i
m  
H
i
e
'  
* I
H I
/
p .  
D
e
n
o
t
e

the algebraic closure of F by E. As an E-space, E OF OF Ha P
-1
) i s  i s o m o r -
phic to E llaP
- 1
,  s o  
i t  
s u f fi c
e s  
t
o  
s h
o w  
t h
a t  
d i
m
E  
E
H
a
P
-  
1  
*  
I
I
I
I
/
p
.
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Let G  be the external direct product H  x (1 +  a) and combine the
natural actions of the two direct factors into an action of G on EH. Notice
that EH is not a free EG-module since dim EH < l a  The unique maximal
elementary abelian subgroup of G is the external direct product S x  (1 +
a). By Chouinard's Theorem (5.2.4 in [1
]
;  s e e  [ 2 ]  f o r  
a n  
e l e m e n t a r y  
p r o o f

of the relevant special case), the fact that E H is not free as EG-module
implies that E H cannot be free as E(S x  (1 +  ap-module. By Dade's
Lemma (5.8.4 in [11), it follows that there are scalars e
t
,  ,  e ,
n  + 1  E  E  
s u c h

that the unit 1 +  e
l
y
i  +  • • •  
+ e ,
n
y „ ,  
+  
e
m +  
l
a  
d o
e s  
n o
t  
a
c
t  
f r
e e
l y  
o
n  
E
H
.

But this unit acts as 1 +  +  e ,
n + l
b , ) y „  s o  b y  
t h e  
p r e v i o u s  
l e m m a

each e , + e ,
n
, , b ,  
m u s t  
l i e  
i n  
r a
d  
E
H
.  
A
s  
a
,  
E  
r
a
d  
F
H  
c  
r
a
d  
E
H
,  
t
h
i
s

means that the scalars e
n
,  m u s t  
v a n i s h .  
O f  
c o u r s
e  
t h e
n  e
n
,  
„  
o  
0
,

and we have that 1 + e
n
, „  l
a  d o e s  
n o t  
a c t  
f r e e l
y  
o n  
E H
.  
B
y  
L e
m m
a  
4 .
2 ,  
i
t

follows that d im E (E Hef
n
-
÷ P )  
*  I  
H  
I /  
p  
A s  
e
m  
+ 1  
i s  
a  
n o n
z e r
o  
s c a
l a r
,

this is equivalent to what we had to prove. I

For the rest of this section, assume that IF is algebraically closed, G is a
finite abelian p-group with sode R, and set J = rad FR. It is known that if
O o a E  J
2  
t h e n  
( 1  
+  
a
)  
c a
n n
o t  
a
c
t  
f
r
e
e
l
y  
o
n  
a
n
y  
n
o
n
z
e
r
o  
F
R
-
m
o
d
u
l
e  
(
s
e
e

(6.1) in [31). Moreover, if V is any FR-module and a, b E J with O o a b
mod J
2
,  
t h
e n  
1
7
0  
,
a
)  
i
s  
f
r
e
e  
i
f  
a
n
d  
o
n
l
y  
i
f  
1
/
0  
b
)  
i
s  
f
r
e
e  
(
s
e
e  
(
6
.
2
)  
i
n  
[
3
]
)
.

Thus it makes sense to define, for any FG-module U, the variety V
G
( U )  o f
U by

V
G
(
U
)  
=  
(
a  
+  
J
2  
E  
.
t
/
J
2  
R
i
o  
a
)  
i
s  
n
o
t  
f
r
e
e
)  
u  
(
0
)
.

An obvious example is that V
G
( F )  . / / . /  
2  
( w h e r e ,  
a s  
b e f o r e
,  
D r  
s t a n
d s  
f o
r

the 1-dimensional trivial FG-module). The experienced reader will notice
that what we have defined here as V
G
( U )  i s  u s u a l l y  
c a l l e d  
t h e  
r a n k  
v a r i e t
y

of U
R
.  
H
o
w
e
v
e r
,  
b
e
c
a
u
s
e  
G  
i
s  
a
b
e
l
i
a
n
,  
V
G
(
U
)  
(
a
n
d  
i
t
s  
e
m
b
e
d
d
i
n
g  
i
n  
J
/
.
/  
2
)

is isogenous to the usual cohomological variety (and its embedding in the
variety of the trivial module). In particular, V
G
( U )  i s  a  
h o m o g e n e o u s  
a f fi n e

subvariety of .1/./
2
. ( S e e  
[ 1 ]  
o r  
[ 5 1 . )

As usual, when we say that a finite abelian p-group has rank m we
mean that it is a direct product of m nontrivial cyclic groups.

4.6. THEOREM. L e t  p  be a  prime, F  an algebraically closed field o f
characteristic p, and G a finite abelian p-group. Denote the sock of G by R
and the radical of FR by J. I f  H is a direct factor of rank m in G and U is an
FG-module such that UH is isomorphic to the regular EH-module EH, then
V
G
(
U
)  
i
s  
a  
l
i
n
e
a
r  
s
u
b
s
p
a
c
e  
o
f  
c
o
d
i
m
e
n
s
i
o
n  
m  
i
n  
J  
/
1
2
.
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Proof Deno te  the rank of G by n. Extending the notation used in our
lemmas, write  H  — x  ••• x  ( h
m
)  a n d  G  
=  H  
X  ( 1 1 ,
n
,
1
>  x  
• • •  
x

( h
n
) .  
L
e
t  
R  
=  
(
s
1
)  
x  
•
•
•  
x  
(
s
z
i
>  
b
e  
t
h
e  
c
o
r
r
e
s
p
o
n
d
i
n
g  
d
i
r
e
c
t  
d
e
c
o
m
p
o
s
i
-

tion o f R, and y
k  s
k  —  
1  
f o r  
k  
1 ,  
,  
n
.  
W
e  
s h
a l
l  
u
s
e  
t
h
a
t  
i  
i
s  
t
h
e

vector space direct sum of J
2  w i t h  t h e  
n -
d i m e n s i o n
a l  
s u b s p
a c e  
s p a n
n e d  
b
y

{.)'1, • • • Yn
}
•

Because H acts regularly on U, there exist u
o  i n  U  s u c h  
t h a t  U  
=  u
0
F H .

Given such a u
o
,  o n e  
c a n  
c h o o
s e ,  
f o
r  
j  
=  
m  
+  
1
,  
n
,  
a
n  
c
i
f  
i
n  
E
H  
s
u
c
h

that u
o
y
l  
=  
u
o
a
j
.  
T
h
e
n  
u
y
j  
u
a
i  
f
o
r  
a
l
l  
u  
E  
U
,  
b
e
c
a
u
s
e  
u  
e  
u
o
[
F
H  
a
n
d

the group is abelian. It follows in particular that a f  = O and so, by Lemma
4.3, a j E ; n _
i
b
i z
y ,  
f o r  
s u i t
a b l e  
b
l
,  
i
n  
F
H
.  
F u
r t
h e
r ,  
o
n
e  
c
a
n  
w
r
i
t
e  
b
i
,  
=  
+

c
)
,  
w
i
t
h 
f
j
,  
E 
F 
a
n
d 
c
i
,  
E 
r
a
d 
E
l
f
.

If  a e i  then a L 1 f k Y k  mod J
2  f o r  a  
u n i q u e  ( f
l
,  ,  
f „ )  
i n  
F n .  
W e

know that (1 + a) acts on U freely if  and only if  (1 +  v )  does. On
the other hand, 1 +  Ekfkyk acts on U as 1 + E,7

1
_ 1  b , y ,  a c t s  
o n  
E H ,  
w h e r e

13
, 
=  
f
,  
+  
E

n

j = m +  I

n

j =  m

E EH.

By Lemmas 4.4 and 4.5, the action of (1 +  1  b
t
y , >  o n  E H  i s  
n o t  f r e e  
i f

and only if  all the b
z l i e  i n  
r a d  
F H .  
S i n c
e  
t h
e  c
i
,  
a r
e  
i
n  
r
a
d  
E
H  
w h
i l
e  
t
h
e

f  +  E ;
:=  
m  , f
i
f
i t  
a
r
e  
s c
a l
a r
s ,  
t
h
e  
c
o
n
d
i
t
i
o
n  
a
m
o
u
n
t
s  
t
o

fi+ E  o

This proves that U, I +a> is not free if  and only if  ( f
l
,  f
n
)  i s  a  
n o n z e r o

solution o f the set of m simultaneous linear equations given in (9). The
solution set o f (9) is, o f  course, a linear subspace o f  IF", and the set of
equations is obviously independent, so the codimension of the solution sets
is m. •

In the next theorem, we again use the convention that the 1-dimensional
trivial FG-module is written simply as F. For a subgroup H  o f  G, the
restriction EH o f  that module to H  is, o f course, just the 1-dimensional
trivial EH-module. The FG-module induced from F
1 1  w i l l  b e  w r i t t e n  
a s
E
H 
G
.  
W
e  
a
l
s
o  
e
x
p
l
o
i
t  
t
h
e  
f
a
c
t  
t
h
a
t  
V
G
(
F
)  
i
s  
a
n
o
t
h
e
r  
n
a
m
e  
f
o
r  
w
h
a
t  
i
n  
t
h
e

previous theorem we called ,I / .1
2
.

4.7. THEOREM. L e t  p  be a  prime, E  an  algebraically closed field o f
characteristic p, and G a finite abelian p-group. Suppose that U and V  are
FG-modules such that G acts regularly on U 0 V. Then V
G
( U )  a n d  V
G
( V )

for i = 1, ,  m . (9)
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are linear subspaces of V
G
( F ) ,  w i t h  V
G
( F )  
=  V
G
( U )  V
G
( V ) .  
F u r t
h e r ,  
t h
e r
e

exist subgroups H and K of G such that G = H x K, the varieties of FH I  G
and FK I  G are also linear subspaces of V
G
( F ) ,  a n dV

G
(
U
)  
v
G
(
F
,  
T  
G
)  
V
G
(
F
)  
=  
V
G
(
F
K  
T  
G
)  
o  
V
G
(  
V
)
.

Proof B y  Theorem 4.1, there exist subgroups H  and K  such that
G = H x K, H  acts regularly on U,  and K  acts regularly on V. By
Mackey's Subgroup Theorem, H  acts regularly on IFK I  G and K  acts
regularly on T  G
. B y  a  
f a m i l i a
r  
r u l e
,

u  ( F
R  
T  
G
)  
,  
(
u
H  
F
H
)
T  
G  
u
H  
I  
G  
=  
F
H  
G
„
,
,  
F
G
,

and similarly (F
ic  T  G )  
o  
V •
-
•
-  
F G
,  
a l
l  
t h
e s
e  
b e
i n
g  
i s o
m o r
p h i
s m s  
o
f  
F
G
-

modules. The variety of the tensor product of two modules is the intersec-
tion of the varieties of the modules [31 (or see [11 or [51). Moreover, the
variety of any free module such as FG is O. Consequently we have that

V
G
(
U
)  
n  
v
G
(
F
H  
'
r  
G
)  
— 
o  
-  
V
G  
(  
F  
K  
T  
G
)  
n  
V
G
(
V
)

as well as V
G
( U )  n  
V
G
( V )  
=  
O
.  
A l
l  
t h
a t  
r e
m a
i n
s  
i
s  
t
o  
a
p
p
l
y  
t
h
e  
p
r
e
v
i
o
u
s

theorem several times, use that the rank of G is the sum of the ranks of H
and K, and count codimensions in V
G
( F ) .

Of course, one also has (FH I  G) (
F K  I  =

FG and

VG Irr T  G
) 
V G  
(  
F
K  
G  
)  
-  
V
G  
(  
)  
•

5. ON THE CASE OF NONABELIAN GROUPS

We gave a  number o f  examples to  indicate that various hypotheses
cannot be omitted. None o f  those examples involved group algebras o f
finite p-groups over fields o f  characteristic p ,  and th is raises many
questions. To  mention just the simplest: does the group algebra o f  a
directly indecomposable p-group over a  field o f  characteristic p  ever
admit a nontrivial tensor factorization (as algebra)? Theorem 2.1 says "no”
if the group is abelian. At  this stage, we can add only that the answer is
"no" i f  the group is nonabelian o f  order 8 (and p  = 2): the case of the
smallest relevant nonabelian groups. To show this, we use the following.

5.1. LEMMA. Th e  centre o f  a tensor product o f  algebras is the tensor
product of the centres of the tensor factors.
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A nonabelian group of order 8 has five conjugacy classes of elements, so
the centre o f  its group algebra has dimension 5. I n  a  proper tensor
factorization of the group algebra, one tensor factor would have dimension
2. A l l  2-dimensional algebras are commutative, so by the lemma the
5-dimensional centre would have a 2-dimensional tensor factor: this is
clearly impossible.

Lemma 5.1 must be well known but we have no reference for it and so
give a proof. Let X  and 1
1 b e  t h e  
r e g u l a r  
m o d u l e
s  
f o r  
t w
o  F -
a l g e b
r a s ,  
B

and C say. Considering B  as a subalgebra o f  End F X, we see that the
centre of B is B  n  End
B X .  W i t h  
t h i s  
p o i n t  
o f  
v i e w
,  
o u
r  
c l a
i m  
i
s  
t h
a t

(B  0  C) n  E n d „ „ ,
c
( x # Y )  =  
( B  
n  
E n d
s  
X )  
O  
( C  
n  
E n
d
e  
Y
)
.

First, note that B  0  C = [B ( E n d  F Y)] n  [(End
o
: X )  o  C ] .  
S e c o n d ,  a s

the subalgebras B  and C generate B 0  C,

E n d
B ®
e
( X #
Y )  
=  
E
n
d
B
( 4
Y )  
n  
E
n
d
c
(
x
0
)
.

It is obvious that E n d
8
( 4 1 / )  
c o n t a i n s  
E n d
B  
X  
0  
E n d
F  
Y
.  
O
n  
t h
e  
o t
h e
r

hand, B-module X # 1
1  i s  t h e  
d i r e c t  
s u m  
o f  
d i
m  
1
1  
c o p
i e s  
o
f  
X  
a
n
d

therefore E n d
B
( X t t Y )  
i s  
i s o m o
r p h i c  
t
o  
t h
e  
a l
g e
b r
a  
o
f  
a
l
l  
(
d
i
m  
Y
)
-
b
y
-

(dim Y) matrices over End
B X .  
C o u n t i n g  
d i m e n s i
o n s  
n o w  
y i e l
d s  
t h
a t

E n d
B
( X #
Y )  
=  
(
E
n
d
,  
X
)  
o  
(
E
n
d  
r  
Y
)
.

Similarly,

E n c l
e
( x #
Y )  
=  
( E
n d
F  
X
)  
O  
(
E
n
d
e  
Y
)
.

Consequently

(B 0 C) n E n d „
®
, ( x # Y )

= [ B  0  (EncI
F Y ) ]  
n  
[ ( E n
d  
F  
X
)  
0  
C
]

n [(End, x)  o (Enci
F Y ) ]  n  
[ ( E n d ,  
x )  
0  
( E n d
e  
Y )
]

= [ B  0  (End
F Y ) ]  
n  
[ ( E n
d
B  
X
)  
0  
( E
n d
F  
Y
)
]

n [(End, x )  O c
]  n  
[ ( E n d
E  
X )  
o  
( E n
d
e  
Y )
]

-  1(B n  (End
F X ) )  
o  
( E n d
F  
Y )
]

n [(End, x)  o (C n (End
e Y ) ) 1= (B  n  End

B X )  
e  
( C  
n  
E n
d
e  
Y
) .

This completes the proof of the lemma. I
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If G is a dihedral group of order 8 then G has a cyclic subgroup H  of
order 4 and a nonnormal subgroup K  o f  order 2, such that G  = HK, a
semidirect product. The coset spaces F(G /H) and F(G/K ) are G-mod-
ules and FG — F(G / H) F ( G / K ) .  Of course, there is no such decompo-
sition of FG as a tensor product of algebras. However, this is one of many
decompositions of FG as a tensor product of modules. Still, some analogue
of Theorem 4.6 should hold in the case of a nonabelian p-group, although
it is not clear what the formulation of such a result should be.
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