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Notes on minimal  fa i th fu l  permutation representations o f finite groups

L. G. Kov,kcs AND CHERYL E. PRAEGER

1. For a finite group G, let p(G) denote the least positive integer n  such that G has a
faithful permutation representation of degree n. The paper [EP] investigated finite groups

for which [t(G/N) > [t(G) for some normal subgroup N .
We begin these notes by proving the following.

THEOREM 1. I f  G/N has no nontrivial abelian normal subgroup, then 1,1(G/N) <  ,u(G).

PROOF. Suppose that ,a(G/1V) >  p(G) and that G / N  has no nontrivial abelian nor-
mal subgroup. Choose such a pair G,  N  wi th  least possible p (G), and among these
choose one with least possible IG1. Take G as a subgroup of Sym(Q) wi th P I  =  tt(G).
Clearly N  I f  N  is not contained in the Frattini subgroup (I)(G), then there is
a maximal subgroup H  o f G not containing N ,  so G  =  H N .  B u t  then H ,  H  n N
is not a  counterexample to  the theorem, and H A H  n  N )  H N / N  =  C / N ,  so
p(G/N) =  ,u(H/(H n N)) <  ,u(H) <  bt(G), which is a contradiction. Hence N  <  (1)(G).
Thus N  is nilpotent and so, since C /N  has no nontrivial abelian normal subgroup, N  is
the soluble radical solrad(G) o f C. Applying Proposition 1.3 of [EP] to  K  Z ( N ) ,  we
see that C  has an abelian normal subgroup L  containing K  such that ,u(G/L) <  ,u(C).
Since L  is abelian, L  <  solrad(G) =  N  and solrad(G/L) =  N IL ,  so G /L ,  N I L  is a
counterexample with p (G/L) < tt(G), contradicting the minimality of [t(G).

2. Easdown and the second author conjectured in [EP] that i i (G/N) < [t(G) must always
hold i f C /N  is abelian. As was noted at the top of p. 208 in [EP], i t certainly holds when
C/N is cyclic (for i f C /N  = (Ng) then [t(G/N) < ,u((Ng)) 11((g)) < ,u(G)). We showed
in [KP] that i t holds whenever C /N  is elementary abelian.

The last section of this report will be devoted to investigating in detail the structure
of a hypothetical minimal counterexample to this conjecture. To  prepare for that, in the
present section we gather some general facts.
LEMMA 1. I f  A and B  are finite abelian groups, then A  has a subgroup isomorphic to
B i f  and only i f  A has a quotient isomorphic to B

PROOF. W e  sketch the proof for p-groups. Let A =f J  C ( p a
(
z
)
)  a n d  B  = fl  C
( p
b (
z
)
)

be such that a(1) >  a(2) >  • • • >  a(n) O  and b(1) >  b(2) >  • • • >  b(n) >  O. Then A

These incomplete notes date f rom 1989. Th e y  are issued here because, alt hough we have made no
progress along these lines since then, others seem to continue to find them useful.
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has a subgroup isomorphic to B  i f  and only i f a(i) > b(i) for all i  i f  and only i f A has a
quotient isomorphic to B

LEMMA 2. I f  A is a finite abelian p-group and B  is an elementary abelian subgroup
of A ,  then A  has a direct decomposition A  , f J
E
I C ,  w i t h  t h e  
C ,  c y c l i c  
s u c h  
t h a t

B n

PROOF. L e t  C
l  b e  
a  
c y c l i
c  
f a c t
o r  
o
f  
m a x
i m a
l  
o r
d e
r  
i
n  
A
.  
T
h
e
n  
A  
x  
A
l  
f
o
r  
a
n
y

subgroup A
l  o f  
A  
w h i
c h  
i
s  
m a
x i
m a
l  
i
n  
A  
w
i
t
h  
r
e
s
p
e
c
t  
t
o  
a
v
o
i
d
i
n
g  
C
l  
(
s
e
e  
[
F
]
,  
p
p
.  
7
4
-
7
5
,

consequence b) of Lemma 22.1). Choose a complement for B  n C
i  i n  B  a n d  c h o o s e  
A
l

to contain that. Th e  result follows by induction on the number of direct factors in an
unrefinable direct decomposition of A.

LEMMA 3. L e t  A  be a finite abelian p-group, B  an elementary abelian subgroup o f
A, and A  ,  n
z
, , c
i  a  
d i r e c
t  
d e c o
m p o s i
t i o n  
w i
t h  
( n o
n t r
i v i
a l )  
c
y
c
l i
c  
C
i  
s
u
c
h  
t
h
a
t

B F L A B  n CO. Further, let I
,
X U Y U Z  
w h e r e  
-

I f  ,u(A/B) <  ft(A)/p, then

x : .  E  I C fl
B E I  Ci >  n  B fl u ,  a n d

p' -  1) 1
,
1 4

i e
X

In particular, 1Z1> p (that is, B  contains at least p o f the direct factors b
i  o f  o r d e r  p ) ,and i f 1Z1 p  then X  = 0 .

PROOF. N o w  ,a(A) E
i e
,  A l ,  
a n d  p
( A / B )

 ( E i c Y  1Cil) 1P • Also, since= EiEx Icil +
t
i
(
A
/
B
)  
a
n
d 
p
(
A
)  
a
r
e 
b
o
t
h 
m
u
l
t
i
p
l
e
s  
o
f  
p
,  
w
e 
h
a
v
e 
R
(
A
/
B
)
+ 
p 
< 
f
t
(
A
)
/
p
,  
a
n
d 
i
t  
f
o
l
l
o
w
s

that z_.4Ex ( E ,_ ieXuZ  1Cil) /PI whence p
2  +  ( 1
3  — 1
) E i E x I C i l

EiEz Icil• In
particular, since B  is elementary abelian, 1ZIp =  E
i e z  >  p
2
,  B  
c o n t a i n s  
1 Z 1

direct factors Ci o f order p, and i f 1 Z I
,  p  t h e n  
1 . X 1  ,  
O .

Given C  S y m ( Q ) ,  we denote by Q/G the set of C-orbits in Q.

LEMMA 4. I f  G is a subgroup of Sym(Q) such that the sode soc G o f C is the direct
product of s minimal normal subgroups of C, then from the C-orbits in Q one can select
at most s so that C  is faithful on the union of these orbits. In  particular, i f  PI [ 1 ( G )
then P / G l <  s.
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PROOF. L e t  A
l
,  ,  
A ,  
b e  
t h e  
G -
o r b i
t s  
i
n  
Q
,  
a
n
d  
c o
n s
i d
e r  
t
h
e  
c
h
a
i
n  
o
f  
p
o i
n t
w i
s e  
s
t
a
-

bilizers

soc G > (soc G) (A)  >  (soc C ) (A
i
u z1 .
2
)  ? .  ( s o c  
G ) ( A , L J A , u —
u A n )  
=  {
1
}  
•

This cannot be strictly descending at more than s steps, so the orbits may be re-numbered
so as to ensure that (soc G)(,,u•••uA
r
) 1 1  w i t h  
s o m e  
r  <  
s .  
T h e n  
C  
i s  
f a i t h f
u l  
o n

j
r
,
1 
A
z 
•

LEMMA 5. L e t  P  be a finite p-subgroup of Sym(Q) with P I  , u ( P ) .  I f  p = 2, suppose
also that no other embedding of P in Sym(Q) results in a larger number of P-orbits.

(a) Each transitive constituent of P has cyclic centre.

(b) 1Q/P1 r k ( Z ( P ) ) .
(c) 11(P x C(p)) =  p(P) + p.

PROOF. ( a )  I f  possible, let A  be a P-orbit and Z ( P
A
)  >  A  x  B  
w i t h  1 A 1  
p .

Since the central subgroup A  x  B  must act semiregularly on A  , i t  follows that P A
acts faithfully on (A /A )  U (A/B) . Replacing the action of P
A  o n  A  b y  i t s  
a c t i o n  o n
(A/A)U (A/B)  yields a faithful representation of P
A  o f  d e g r e e  ( A / A )
U  ( A l  
B ) 1  
2 1 A l / p .

In view of P I ,  ti(P) this cannot happen unless p = 2, and then it violates our additional
assumption on the maximality of 1Q/Pl. This contradiction proves (a).

(b) Since P I  / / ( P ) ,  for each P-orbit A ,  the pointwise stabilizer P
(
ç
2
\
A )  o f  Q  \  A

is nontrivial, and hence also Z ( P ) (
Q
\
A
)  0 1 .  T h e  
s u b g r o u p  
o f  
Z ( P )  
g e n e r a
t e d  
b y  
t h
e

Z ( P ) (
c 1
\
A )  
i s  
t h
e  
d i
r e
c t  
p
r
o
d
u
c
t  
o
f  
t
h
e
s
e  
n
o
n
t
r
i
v
i
a
l  
g
r
o
u
p
s
,  
s
o  
r
k  
Z
(
P
)  
>  
1
Q
/
P
1  
T
h
e

converse inequality is a direct consequence of Lemma 4.
(c) Since ,ti(P x C
( p
) )  <  f t
( P )  
+  p
( G
( p ) )  
=  
p
( P
)  
+  
p
,  
a
n
d  
s i
n c
e  
t
h
e  
m i
n i
m a
l  
d
e
g
r
e
e

of each p-group is a multiple of p, the result is true unless tt(P x C(p)) =  p(P). In  that
case there is, by part (b), a  subgroup Q x  R o f Sym(Q) w i th  Q P ,  1.R1 =  p , and
1Q/(Q x R)1 r k  Z(Q x R) 1  + rk Z (Q) , but then

+ rk(Q) =  P A Q x R)1 < 1
9
/ Q 1  r k  Z
( Q ) ,

which is a contradiction.

3. We are now ready to begin our (inconclusive) examination of a minimal counterexample
to the conjecture stated at the beginning of the previous section. Suppose that there exist
counterexamples: finite groups C with abelian quotients C /N  such that i i (G/N) >  ,u(G).
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Among such counterexamples, consider those with bt(G) minimal, and among these, choose
one with IG1 minimal. Th e n  take this G  in  a representation o f degree ,u(G) w i th  as
many orbits as possible: say, this representation is G S y m ( Q ) .  Keep this choice fixed
throughout this section.

LEMMA 6 . T h e  group G  is a p-group for some prime p , and N  i s the commutator
subgroup G' o f  G. The number of orbits of G in  Q is the rank of the centre of G , and
the permutation group induced by G on any one orbit has cyclic centre.

PROOF. A s  remarked at the end of Section 1 o f [FP], the first statement follows from
the proofs of Lemma 1.1(a) and Proposition 1.6 in that paper. Suppose that N  > C' B y
Lemma 1, the proper quotient G IN  o f G/G' is isomorphic to some proper subgroup of
G/G' ; say, to H /G' Th e n  H , G' is a counterexample wit41 1_1(H) <  11(C) and 11/1 <  G
contrary to the minimal choice of G, N  Th i s  proves that we must have N  G '  T h e
third and fourth statement come directly from Lemma

LEMMA 7. ( a )  There is an elementary abelian normal subgroup L  o f G which contains
soc G .  Q
l
( Z ( G ) )  
a n
d  
s a t
i s fi
e s

tt((G/G')/(LG
1 / G
1
) )  
<  , u
( G /
G ' ) /
p .

(b) I n  a  decomposition o f C /C ' as direct product o f  cyclic groups which matches
the elementary abelian subgroup L G' /G' i n  the sense o f Lemma 2 , le t t  denote the
number o f  direct factors K
z
/ G
1  ( o f  
o r d e r  
p )  
w h i c h  
l i e  
i n  
L G
1
/ G '  
T h
e n  
t  
>  
p
,

LG' /G' >  ( K
1
/ G
1
)  x  
•  
•  
•  
x  
( K
t
/ G
1
) ,  
a
n
d  
K
i  
( I
)
( G
)  
f
o
r  
i  
=  
,
t  
(
s
o  
L
'  
4
3
(
G
)
)  
•

(c) ,u (G/G')  =  ft(G) + p and, for i  =  , t ,  there is a maximal subgroup H
i  o f  Gsuch that G = , u ( H )  1 1 ( C ) .  ,u (H ,/G

1
), a n d  H ' ,  C ' .PROOF. I t  follows from Q  =  tt(G) and Lemma 5(a) tha t soc G =  Q
l
( Z ( G ) )  a c t s
on each G-orbit in  Q as a  semiregular group o f order p ; i n  particular soc G is fixed-
point-free on Q, and 1Q/soc GI 1 Q1 /p .  B y  Proposition 1.3 o f [EP], the normal sub-
group L  :=  G(Q/soc G) is elementary abelian and contains soc G, while as C /L  is faith-
ful on Q/soc G, we have ,u(G/L) <  ,u(G)/p. T h e  minimality o f ft(G) implies that

(G/ LG') <  ,u(G/ L) <  ft(G)lp < [t(G/G')/p . The claim t  > p now follows from Lemma
3. A s  K
z
/ G '  
i s  
a  
d i
r e
c t  
f a
c t
o r  
o
f  
G
/
G
'
,  
w
e  
k
n
o
w  
t
h
a
t  
K
,  
(
I
)
(
G
)
,  
a
n
d  
s
o  
e
v
e
n  
t  
>  
1

would imply that L  (1 )(G).
For i  =  1 , ,  t
, l e t  
H ,  
b e  
a  
m a x i
m a l  
s u b
g r o
u p  
o
f  
G  
n
o
t  
c o
n t
a i
n i
n g  
K
.  
T
h
e
n

4
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GIG' = ( H i 1 G
1
) x ( K • I G ' ) ,  
s o

,u(HilG') + p
< [t(Hi I +  p ( b y  Lemma 1)
< ,u(Hi) + p (since H
i  i s  n o t  
a  
c o u n t e r e
x a m p l e )

11(G) + p
< ,u(GIG')

(since [t(G) < 1t(G/G
1
) a n d  
t h e  
n u m b e r
s  
o n  
t h
e  
t w
o  
s i d
e s  
o
f  
t h
i s  
i n e
q u a
l i t y  
a
r
e  
m u
l t i
p l
e s

of p). Therefore ,u(G I G') =  [t(G) + p, and p ( H
2
1 G ' )  , u ( H
i
l  H )  1 1 ( H
i
)  =  p
( G ) .  
I t

follows that H '
z =  G '  
E
l
LEMMA 8. ( a )  G  has no direct factor of order p; that is, socG <

(b) L e t H  = 11
1 n  n  
H ,  
w h e
r e  
t h
e  
H
z  
a
r
e  
a
s  
i
n  
L
e
m
m
a  
7
(
c
)
.  
T
h
e
n  
H  
i
s  
t r
a n
s i
t i
v e

on each G-orbit in Q.

(c) Th e  H, can be chosen so that H  n L < (1)(G).

PROOF. I f  G -  P  x C(p) then, by Lemma 5(c), 12(G) =  p(P) + p. However, then we
have also that GIG' ( P I  PI) x C(p), so that

bt(G 1G') =  1
1
( -
1 3
1 P ' ) + P

< [1(P) +  p (
s i n c e  
P  
i s  
n o t  
a  
c o u n
t e r e
x a m
p l e  
t
o  
t
h
e  
c o
n j
e c
t u
r e
)

= tt(G),

which is a contradiction. Hence G has no direct factor of order p, and this is equivalent
to soc G < cl)(G).

Since each H
i  a n d  
K i  
c o n t
a i n  
G '
,  
w
e  
c l
e a
r l
y  
h
a
v
e  
G  
=  
H K
1
. .
. K
t
,  
a
n
d  
s
i
n
c
e  
e
a
c
h  
K
i

lies in L , also G H L  Hence H  is transitive on Q/L . However, each L-orbit is a (soc C)-
orbit by the definition of L , and is contained in an H-orbit since soc G <  (I)(G) <  H .
Hence H  is transitive on each G-orbit in Q.

If we choose a direct decomposition GIG'  =  fi , „  C, matching L G
1
I G '  ,  t h e n  e a c hK

3
/
G
1  
i
s  
o
n
e  
o
f  
t
h
e  
d
i
r
e
c
t  
f
a
c
t
o
r
s  
C
,  
o
f  
o
r
d
e
r  
p
:  
s
a
y
,  
A
.
.
.
1
/
G
'  
.  
C
k
i  
W
e  
c
a
n  
t
h
e
n  
c
h
o
o
s
e
•
e
a
c
h  
H
3  
s
o  
t
h
a
t  
I
/
3
/
G
'  
=  
1
1
4
k
,  
C
,  
a
n
d  
t
h
e
n  
H  
G
'  
=  
H
z  
k
i
,
.
.
.
,
k
t
l  
C  
z  
S
i
n
c
e  
(
I
)
(
G
)  
i
s  
t
h
e

subgroup containing G' such that (1)(G)IG' =  M
E /  C ,  c l e a r l y  c l )
( G ) I G '  <  
H
i c  
C  
,

and so i t follows that H  n L <

We can make a slightly different exploration of the representation and obtain more
information about the action. L e t A
l
,  ,  A
i
.  b e  
t h e  G -
o r b i t s  
i n  
Q ,  
w h e r
e  
=  
p
a
'

5



with 1 <  a
l  <  
<  
a ,
.  
F
o r  
i  
,  
1
,  
,  
r  
,  
s
e
t  
L  
G
(
Q
\ A
,
)  
n  
G
(
A
,
/
s
o
c  
G
)  
•  
T
h
e
n  
w
e  
m
a
y

assume that (soc G) n L i ( s o c  G)(Q\ A
,) C  ( p )  ,  
a n d  L ,  
i s  
e l e m e n t a r y  
a b e l i a n
.

LEMMA 9. ( a )  L i
(b) G
A
'  
i s  
n
o
t  
a
b
e
l i
a
n  
a
n
d  
i
n  
p
a
r
t
i
c
u
l
a
r  
a
i  
>  
a
1  
>  
2
.

(c) ( G ' )
A
i(d) p(GILiG') p ( G / L
i
)  p ( GPROOF. Since G I L, is faithful on (Q \ A

z
)  U  ( A ,  / s o c  
G )  ,  [ t
( G  I  
<  p
( G )  
—  
p a  
( p  
—  
1 )

By the minimality of G, GIL , is not a counterexample, and so

1,1(GIL,G
1
) 
<  , u
( G  
I  
L ,
)  ,
u
( G
)
-  
p a
'
-
1
( p  
-
1
)  
p
(
G
I
G
'
)  
-  
p  
-  
p
a
'
-
1
(
p  
-
1
)  
<  
p
(
G
I
G
'
)
.

Hence L , G
1  ,  
p r o v i
n g  
( a
)  
a n
d  
( d
) .

Since L i Gt/G
1  i s  
e l e m e
n t a r y  
a b e
l i a
n ,  
b
y  
L
e
m
m
a  
2 _
t h
e r
e  
i
s  
a  
d
i
r
e
c
t  
d e
c o
m p
o s
i t
i o
n

G/G' =  H
i e
"  C i  
w i t
h  
e a
c h  
C
i  
c y
c l
i c
,  
s
u
c
h  
t
h
a
t  
L
i
G
' I
G
'  
=
F
I
J
E  
s
o
c
C
1  
f
o
r  
s
o
m
e  
j
ç
i
.

Suppose that G ' i  i s abelian. Then, since Z ( G )  is cyclic, G
A
'  i s  c y c l i c .  T h e n  G
A
'

is regular and hence 1L
i
l  p ,  
t h a t  
i s ,  
L ,  
<  
s o c  
G  
<  
( I )
( G )  
S
o  
w
e  
h a
v e  
L  
i
G
'  
I  
G
'  
s
o
c  
C

for some k, E I ,  and as L G '  C (I)(G), p
2  N o w

/1(G I L iG
1
)

) — p a '
- 1
( p  
—
1 )  
- -
,  
p
( G
I G
' )  
_  
p  
p
a
,  
(
3
,  
1
)

+  k i l l ]
)  1 -
1
( G  
I  
G
I
)  
—  
1
)
1  
P
•

From part (d) we find that ICk,1> p
a ,  +  p
2  l '
p  _

( 1 )  p
a i  ,  
t h a
t  
i s
,  
I C
k
1
1  
p a
i +
1
.  
L
e
t

Ck, =  (gG
I
) •  
T h e
n  
a s  
A
i  
p
a
,  
g P
a
'  
E  
G
(
A
,
)  
•  
F
u
r
t
h
e
r
,  
s
i
n
c
e  
G
/
G
(
A
,
)  
G
"
'  
i
s  
c
y
c
l
i
c
,

G (
A
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These lemmas only begin to build a picture: we cannot say whether they have got us
any closer to settling the conjecture.
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