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SEMIGROUP ALGEBRAS OF THE FULL MATRIX SEMIGROUP 
OVER A FINITE FIELD 

L. G. KOVACS 

(Communicated by Ronald Solomon) 

ABSTRACT. Let M denote the multiplicative semigroup of all n-by-n matrices 
over a finite field F and K a commutative ring with an identity element in 
which the characteristic of F is a unit. It is proved here that the semigroup 
algebra K[M] is the direct sum of n + 1 algebras, namely, of one full matrix 
algebra over each of the group algebras K[GL(r, F)] with r = 0, 1, ..., n . 
The degree of the relevant matrix algebra over K[GL(r, F)] is the number of 
r-dimensional subspaces in an n-dimensional vector space over F. 

For K a field of characteristic different from that of F, this result was 
announced by Faddeev in 1976. He only published an incomplete sketch of his 
proof, which relied on details from the representation theory of finite general 
linear groups. The present proof is self-contained. 

1. THE RESULT 

Theorem (Faddeev's Proposition). Let M denote the multiplicative semigroup 
of all n-by-n matrices over a finite field F and K a commutative ring with an 
identity element in which the characteristic of F is a unit. Then the semigroup 
algebra K[M] is the direct sum of n + 1 algebras, namely, of one full matrix 
algebra over each of the group algebras K[GL(r, F)] with r = 0, 1, ..., n. 
The degree of the relevant matrix algebra over K[GL(r, F)] is the number of 
r-dimensional subspaces in an n-dimensional vector space over F . 

With K a field of characteristic different from that of F, this was Propo- 
sition 5 in Faddeev's paper [3]. While that proposition was introduced with 
the words "From all that has been said there follows", the sentence before that 
said that "The full proof' [of the previous proposition] "is complicated, and we 
omit it", and that proof has remained unpublished. The "route to the proof" 
described in [3] relied on details from the representation theory of finite general 
linear groups. The aim of this paper is to present a complete and self-contained 
proof of the result, in the generality stated above. 

Faddeev's Proposition directly implies that K[M] is semisimple whenever 
K is a field whose characteristic does not divide the order of GL(n, F): this 
had been conjectured by Munn already in 1973 (and verified for n < 4 in 
1976; unpublished). Conversely, once K[M] is known to be semisimple, the 
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explicit information given in Faddeev's Proposition is not hard to deduce (??2 
and 3 of this paper suffice). In a very recent paper [5], Oknifiski and Putcha 
conjecture much more generally (in the paragraph following Corollary 2.10) the 
semisimplicity of the monoid algebra of any finite monoid of Lie type over any 
field whose characteristic does not divide the order of the group of units of that 
monoid and prove it for the characteristic 0 case (Corollary 2. 10). On the other 
hand, K[M] is never semisimple when K is a field whose characteristic is a 
divisor of the order of GL(n, F) , yet Faddeev's Proposition reveals its structure 
unless the characteristics of K and F are actually equal. In particular, one 
can see that K[M] is a symmetric algebra (in the sense of Curtis and Reiner 
[2]) whenever K is a field whose characteristic is not equal to that of F. 

The picture is completely different when K is a field and the two charac- 
teristics coincide. According to (7.2) of Glover [4], when n = 2 and F is 
a (finite) prime field, F[M] has infinitely many isomorphism types of inde- 
composable modules, even though the relevant group algebras have only finitely 
many. Indeed, his (7.1d) shows that then there exist indecomposable projec- 
tive F[M]-modules that have more than one minimal submodule and therefore 
cannot be injective; so, far from being symmetric, those F[M] are not even 
quasi-Frobenius algebras. With too little evidence "for a conjecture, let us raise 
at least a question: Is the monoid algebra of a finite monoid of Lie type, over a 
field whose characteristic is different from that of the monoid, always a symmetric 
(or at least quasi-Frobenius) algebra? 

2. THE SEMIGROUP 

After noting that transposition of matrices is a rank-preserving antiautomor- 
phism of M, coordinatefree language will be better suited to our arguments: 
so let V be an n-dimensional vector space over F and think of M as the 
semigroup of all linear maps V -* V, with the maps written on the right and 
composed accordingly (so A,u means first A, then ,u). 

For r = 0, 1, ..., n, let Mr denote the set of all maps of rank r in M 
and cr an arbitrary idempotent in Mr. Note that there is no choice about 
c0 (which must be the zero map on V, the only element of MO) or about 
En (which can only be the identity map on V). The intersection Mr n erMr 
consists precisely of the elements of M with kernel ker Cr . For the moment, call 
two of these equivalent if their images are equal: there is then one equivalence 
class for each r-dimensional subspace U of V, consisting of all elements of 
M with kernel ker Cr and image U. The equivalence class so corresponding to 
im Cr is easily seen to be Mr n CrMr Cr, a subgroup of M, isomorphic to and 
henceforth referred to as GL(r, F) . By left multiplication, this group permutes 
each equivalence class regularly. Further, M c MrCrMr. The straightforward 
verification of these simple facts concerning the semigroup M is left to the 
reader. 

3. SOME RING THEORY 

All algebras considered here will be associative, but they will not be assumed 
to have identity elements. 

Let KMr be the free K-module with basis Mr turned into a K-algebra by 
defining multiplication so that the KMr-product of two elements of Mr is their 
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M-product if that lies in Mr and 0 otherwise. Note that any rank-preserving 
antiautomorphism of M yields an antiautomorphism on the algebra KMr so 
defined. Set Sr = Ur= Ms: each Sr is an ideal in M, so each K[Sr] is 
an ideal in K[M]; also, K[S?] = KMO K while K[Sr]/K[Sr-l] KMr 
whenever 0 < r < n. 

Subsequent sections of the paper will show that under the hypotheses of 
the theorem each KMr does have an identity element. Here we show how the 
theorem can be derived from that. (When the semisimplicity of K[M] is given, 
each ideal of K[M], and hence also each KMr, has an identity element, so 
the argument ends with this section.) 

First, recall the simple fact that if an ideal in a ring with an identity element 
has an identity element of its own, then that ideal is a direct summand (that is, 
has an ideal as direct complement). Using this, an easy induction on r yields 
that K[Sr] -fflr=OKMs for r = 0, 1,..., n. (For r = 0 we have already 
seen this; when 0 < r ? n, the inductive hypothesis yields that K[Sr-i] has 
an identity element and, therefore, it has a direct complement in K[M], and 
then the intersection of K[Sr] with that direct complement is isomorphic to 
K[Sr]/K[Sr-l] and hence to KMr.) In particular, K[M] is isomorphic to the 
direct sum of the KMr. 

Second, recall that if R is any ring with an identity element and if e is 
an idempotent in R such that ReR = R, then R is isomorphic to the ring 
of eRe-endomorphisms of the left eRe-module eR (provided one writes these 
endomorphisms on the right of eR and composes them accordingly; see, for 
example, Propositions 4.11 and 21.2 and Exercise 21.6 in [1]). It follows from 
the observations in ?2 above that these conditions are satisfied by R = KMr 
and e = cr, that with this choice we have eRe = K[GL(r, F)], and that as 
a left eRe-module eR is a direct sum of isomorphic copies of the regular 
eRe-module. Consequently, R is isomorphic to a full matrix algebra over the 
eRe-endomorphism ring of the regular eRe-module, that is, over eRe itself. 
The degree of this matrix algebra is the number of regular summands in the 
direct decomposition of eR, namely, the number of r-dimensional subspaces 
of V. This proves that the direct summand KMr of K[M] is a full matrix 
algebra of the required degree over K[GL(r, F)]. 

It remains then to prove that KMr has an identity element. This will fol- 
low for all relevant K if it holds when K is the subring of the rational field 
generated by the integers and the reciprocal of the characteristic of F; in the 
sequel, K may as well denote this ring. 

4. SOME LINEAR ALGEBRA 

The expression of the identity element of KMr as a linear combination 
of elements of Mr will involve only certain kinds of elements of Mr. In 
this section we establish some properties of the relevant elements. These are 
independent of the ring K; indeed, most of the argument does not even need 
the assumption that F is finite. 

For any element ,u of M, the subspaces im ,u, im ,u2, ... form a descending 
chain that must, of course, become stationary. It will be convenient to write 
im,u?? for the repeating member of that chain (without envisaging any map 
called ,u?0) and to call ,u semi-idempotent if on imp,u? it acts as 1 . We shall 
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see in the next section that the identity element of KM' involves only semi- 
idempotent maps. 

Of course, the GL(V)-conjugates of semi-idempotent maps are all semi- 
idempotent maps. For each ,u in M, define the rank sequence o(u) of ,u 
as rk,u, rku2 , ... and note that the rank sequences of the GL(V)-conjugates 
of ,u all agree with a(Cu). This gives one half of the following. 

Lemma 1. If ,u is a semi-idempotent map, then the semi-idempotent maps with 
rank sequence a(u) are precisely the GL( V)-conjugates of ,u. 

Proof. To see the second half, consider the Jordan normal form of ,u. Use that 
rk ,i - rk ,ui+ is the number of nilpotent Jordan blocks of degree greater than i 
and that the nonnilpotent Jordan blocks of a semi-idempotent map are identity 
matrices. El 

We shall also have to work with certain restrictions of semi-idempotent maps. 
To set these into context, consider first arbitrary partial maps: linear maps from 
subspaces of V into V. We take the view that any two partial maps have a 
composite, the domain of 7p consisting of all those elements of dom 7r whose 
image under 7r lies in dom p. It is easy to see that this composition is an 
associative operation, so there is no ambiguity in speaking of powers 7i of any 
partial map 7r (and the powers of any one partial map commute with each 
other). Similarly, there is no problem in defining im 7CO and a(Zr) [define rk 7T 

as dim(im 7i)], and it is easy to see that im 7Tc'O C dom 2t. We call 7T semi- 
idempotent if it acts on im 7?? as 1 . One of the facts we need to establish is 
the relevant analogue of Lemma 1. 

Lemma 2. If 7T is a one-to-one semi-idempotent partial map, then the one-to- 
one semi-idempotent partial maps with rank sequence v(Z) are precisely the 
GL( V)-conjugates of 7r. 

As in the deduction of Lemma 1, the only nontrivial part of the proof is 
to show that if two one-to-one semi-idempotent partial maps have the same 
rank sequence then they are GL( V)-conjugate. We leave that to the end of this 
section. 

From the general context of partial maps, we shall need one more observation. 
If 7r is a one-to-one partial map, it has an 'inverse' that we write as it; so 
dom it = im , while 7ut and t7r are identity maps with dom(7tt) = dom 7 
and dom(Tr7) = im r. (Beware: 7T and 7i do not commute unless dom 7 = 
im r.) Of course if 7T is one-to-one then so is ^i, and the 'inverse' of 7t is 7T 
itself. It is easy to verify that, for i = 1, 2. 

(1) z i7r it is the restriction of ir' to dom7r'+, 

(2) im r+' 'fr = im 7r n im7r fr. 

In one direction, the connection between semi-idempotent maps and the par- 
tial maps of Lemma 2 is provided by a simple observation. 

Lemma 3. If ,u is a semi-idempotent map and if 7T is the restriction of ,u to a 
subspace of V that avoids ker,u, then 7T is a one-to-one semi-idempotent partial 
map whose rank sequence is majorized by that of ,u, 

dim(im 7i) < dim(im ,'u) for i 1, 2,. 
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Proof. If 7r is a restriction of ,u, then im 7i C im,ui for i = 1, 2,..., oc. El 

In the other direction, we have to work harder. 

Lemma 4. If 7r is a one-to-one semi-idempotent partial map, then it is the re- 
striction of at least one semi-idempotent map ,u with rank sequence equal to 
that of ir; moreover, when F is finite, the number of such ,u is a power of the 
characteristic of F. 

These four lemmas together will imply what we need for the next section. 

Lemma 5. Let 7r be a one-to-one semi-idempotent partial map and z a non- 
increasing sequence of nonnegative integers. When F is finite, the number of 
semi-idempotent maps u that on dom 7r agree with 7r and that have rank se- 
quence T, depends only on v(Z) and T. This number is 0 unless v(Z) is 
majorized by T, and it is a power of the characteristic of F whenever v(Zr) = T. 

Proof. Let T be the set of the ,u in question, and let T' be defined similarly 
with reference to another one-to-one semi-idempotent partial map 7' but the 
same sequence z. If v(Z) = a(7r'), then there is a y in GL(V) such that 
y- 1ry = 7', and for any such y we also have that y-ITy= T' . 

It remains to prove Lemmas 2 and 4. We start with the latter. 

Proof of Lemma 4. Dimension count shows that if ,u is one of the desired maps 
then ker ,u complements dom 7r and therefore determines ,u (as the only linear 
map that annihilates ker,u and acts on dom 7r as 7). We prove also that in 
this case 

iM i = im i+ 1i D (keru n imi7') for i = 1, 2,. 

To this end, note first that the two summands on the right-hand side lie in 
dom7 and ker,u, respectively, so they are disjoint; by (2), their sum lies 
in im7i. Next, v(Z) = a(u) and imJi c im,ul together give that in fact 
imni = im,t'. As dim(im7i+lfi) = dim(imi' +1) and dim(ker,u n imjti) = 

dim(impi) - dim(imtui+'), it follows that the dimension of this sum is equal 
to that of im 1i , and the displayed equation is established. 

Conversely, let U be any complement to dom 7r such that 

(3) im 7i = im 7i+ 'it D (U n im i7) for i = 1, 2, .... 

Of course, 7r is a restriction of the unique linear map ,uu that annihilates U 
and acts on dom 7r as 7n. By induction on i, it follows from V = U D dom 7T 
and (3) that impi4 = imni for i = 1, 2,..., oc; so the rank sequences of 
/iu and 7r agree and, as im? ?'I C dom 7r and 7T is semi-idempotent, ,uu is 
semi-idempotent. 

These observations have reduced the lemma to the claim that dom 7r does 
have complements U satisfying (3) and that when F is finite the number of 
such complements is a power of the characteristic of F. 

Let k be chosen so that im ik = im n?? . If U is one of the desired com- 
plements of dom 7r, it gives rise to a descending chain of subspaces Ui defined 
by 

(4) U, = U n im 7i 
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which obviously have the following properties: 

(5) Uk = Uk+1 = *.* = O; 

(6) Ui/U+1I is a complement to (Ui+1 +im 7i+lt)/Ui+l in im 7i/Ui+1 
whenever i= 1, 2, ...; 

(7) U/ U1 is a complement to (U1 E dom 7i)/ U1 in V/ U1. 

Conversely, let U, U1, U2, ... be a descending chain of subspaces of V 
satisfying these three conditions: we prove next that then U is a complement 
of the desired kind and (4) holds. To this end, use downward induction on i 
to show that Ui n im 7rint = 0 for i = k + 1, k, ..., 1 . The inductive step is 
that, when k > i > 0, 

Ui nim 7rt = Uin(Ui+I +im 7rt) nim 7ioz because im 7rn't Ui+I +im nr'ft 
= ui+ I n im 7zi7n by (6) 

= Ui+I n im 7ti n im z7oi because Ui+I < im 7 

= Ui+1 nim7'i+1? by (2) 
= 0 by the inductive hypothesis. 

Using (7) and one other similar step, namely, 

U n dom 7z = U n (U1 + dom 7n) n dom 7z = U1 n im 7rr7 = 0, 

we see that U is indeed a complement to dom 7f in V. Since (6) directly gives 
that imiri = Ui+im7ri+f1r, and since Ufn(Ui+im7'i+lft) = Ui+(Ufnim7ri+r) 
by Dedekind's Law, (3) and (4) now follow. 

We have proved that if one takes (5) as a definition, chooses UkI1, .* , U1 
in that order subject only to (6), and finally chooses U subject to (7), then the 
U so obtained is a complement to dom iz that satisfies (3) and that each such 
complement is canonically obtained this way. When F is finite, the number of 
complements of a subspace in an F-space is always a power of the number of 
elements of F, so the total number of choices in this canonical construction is 
a power of the characteristic of F. This completes the proof of Lemma 4. El 

In preparation for the proof of Lemma 2, we extend this argument as follows. 
Given 7, let k, U, U1, U2, . .. be chosen as above; and recall that, by (3) and 
(4), 

imi i=UiEDim7ri+ t for i=1,2. 

With i = 1 , this gives 

dom 7= im rit = (U1 E im 27rt= U1 t E im nff. 

Similarly, im 72t2 U2ft2 ED im 7r3 i3, and therefore dom nz = U1 t E U2it2 E 
im 7i3t3. After k - 1 such steps, one concludes that 

k-m i 
dom 7t = i ft U7i ) (im 7o?) 
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Of course it acts on im7? as 1, so the last summand is just im ? and 
7r acts on it as 1. The first summand is mapped by 7r into U, and each 
of the middle summands is mapped into its predecessor, (Uiit')i = Uilti-1 C 

Ui-14ti-1 whenever 1 < i < k. 
Next, choose a basis Bk for the last summand im ?, a basis Bk_l for 

the second last summand Uk I rk- 1, and continue inductively: if 1 < i < k 
and we have already chosen a basis Bi for Uitit, note that Bi7 is a linearly 
independent subset of Ui ITri-1 and extend it to a basis Bi1 of this subspace. 
Finally, once B1 is chosen, extend B1, 7 to a basis Bo of U and set B = 
Uk= Bi . By the foregoing, the B so defined is a basis cf V such that the 
semi-idempotent ,u maps (B \ ker,uu) one-to-one into B. It is easy to see 
in general that if a basis has this property for some semi-idempotent, then that 
basis can be so ordered that the corresponding matrix of that semi-idempotent is 
in Jordan normal form. The conclusion that we shall use in the proof of Lemma 
2 is that each relevant 7c is the restriction of a semi-idempotent ,u whose rank 
sequence equals that of 7c, and to which there is an ordered basis B such that 
the corresponding matrix of ,u is in Jordan normal form and B \ ker,u spans 
dom 7 . We shall also use tacitly that two matrices in Jordan normal form that 
correspond to one map can differ only in the order of their indecomposable 
blocks, so if one matrix corresponds to the map with respect to one ordered 
basis, the other matrix will also correspond to it with respect to a different 
order on the same basis. 

Proof of Lemma 2. Let 7r and 7' be partial maps of the relevant kind, with 
equal rank sequences: what we need to show is that there is a y in GL(V) 
such that (dom7)y = dom7' and (vy)i7' = (vi7)y for each v in domn. 
Choose ,u to match 7r as above and ,u' to match 7' similarly; since these semi- 
idempotents have equal rank sequences, they have a common Jordan normal 
form. We know from our preparations that this common form will appear with 
respect to suitably ordered bases B and B', say, which are such that B \ ker,u 
spans dom 7r and B' \ ker,u' spans dom 7'. Explicitly, there is a matrix (frs) 
such that, with B ={b, ..., b} and B' ={b, .. .,b }, we have 

brZ, frsbs and b'=ZE frsb. 

Define y by brY = b' for r = 1, ..., n; then clearly y'ul = ,uy. It follows that 
(ker,u)y = ker,u', so (B \ ker,u)y = B' \ ker,u' and hence (dom 7)y = dom 71'. 
Of course now also (vy)' = vyu' = vuy= (vi7)y for each v in domn , and 
the proof of Lemma 2 is complete. El 

5. IDENTITY ELEMENTS 

We are now ready to seek the identity element, e say, of KMr, as a K-linear 
combination of the semi-idempotents ,u in Mr. Conjugation by elements of 
GL(V) provides algebra automorphisms of KMr that must, of course, fix e; 
hence conjugate maps must have the same coefficient in this expression. It fol- 
lows that the coefficient of ,u in e will depend on ,u only via the rank sequence 
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a (u). What we seek is, therefore, one element k, in K to each relevant se- 
quence , such that e = E. k,(,),u is the identity element of KMr . The e 
so defined is a right identity if and only if, whenever a and /1 are elements 
of Mr, the sum of the k,(,j) over the ,u with apt = is 1 if a = /1 and 0 
otherwise. This condition amounts to a system of simultaneous linear equations 
with the kT as the unknowns. In any algebra that has an anti-automorphism, a 
right identity element is neecessarily two-sided (and unique), so all we have to 
prove is that this system has at least one solution in K. 

While formally this system consists of one equation for each pair a, fi, some 
of these equations may be vacuous and others may occur repeatedly. When 
{,u I aji = /3} is empty, in the corresponding equation all coefficients (on both 
sides) vanish. When this set is nonempty, we must have ker a = ker /1, and so 
there is a one-to-one partial map 7r with dom7i = im a such that a7r = /1; 
moreover, this 7r is the restriction of at least one semi-idempotent and therefore 
(by Lemma 3) it is semi-idempotent. The coefficient of kT in the corresponding 
equation is then the number of those semi-idempotent ,u that on dom 7 agree 
with 7r and that have rank sequence T. By Lemma 5, this number depends 
on a and /1 only via a(7Z), so the equations corresponding to pairs a, /1 
with a common a(7Z) are all the same; call it the equation corresponding to 
a(7) . Further by Lemma 5, the coefficient of kT in this equation is 0 unless z 
majorizes v(Z), and it is a power of the characteristic of F when z = v(Z). 
Consequently, when the equations and the unknowns are listed according to 
lexicographic order on the set of the relevant sequences, the system is triangular 
and all the diagonal coefficients are powers of the characteristic of F. Since 
the latter are units in K, the system does have a solution in K, and therefore 
KMr has an identity element (of this particular form). 

This completes the proof of Faddeev's Proposition. 
For a consequence mentioned in the introduction, we need to know also that 

if K is a field and G is a finite group then each full matrix algebra over K[G] 
is a symmetric algebra. It is an easy exercise to check that mapping each matrix 
first to its trace and then to the coefficient of the identity element of G in that 
trace, provides the linear function v required in Remark 1, ?66 of [2]. 
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