
A PROBLEM OF WIELANDT ON
FINITE PERMUTATION GROUPS

P. FORSTER AND L. G. KOVACS

1. Introduction

Problem 6.6 in the Kourovka Notebook [9], posed by H. Wielandt, reads as
follows.

' Let P, Q be permutation representations of a finite group G with the same
character. Suppose P(G) is a primitive permutation group. Is Q{G) necessarily
primitive? Equivalently: Let A, B be subgroups of a finite group G such that for each
class C of conjugate elements of G their intersection with C has the same cardinality:
\A n C\ = \B n C\. Suppose A is a maximal subgroup of G. Is B necessarily maximal?
The answer is known to be affirmative if G is soluble.'

Note that two permutation representations with the same character have the same
kernel, and that one may as well consider the question as one concerning the factor
group over that common kernel; we may therefore restrict attention to faithful
representations. Our aim is to reduce the restricted question to the case of almost
simple G (we call a group almost simple if its socle is non-abelian and simple). The
solution of the problem may then be approached by examining permutation
representations of the almost simple groups. While much progress has been made
lately towards understanding maximal subgroups, and therefore primitive permu-
tation representations, of almost simple groups, here one would need to know also
many non-maximal subgroups; thus we are far from having reduced the issue to
scanning existing tabulations. Still it seems plausible that the almost simple case can
eventually be settled and that for that case the answer will be affirmative—at worst,
with an explicit list of exceptions. Our reduction is reversible in the sense that it will
convert such a result into a general theorem by showing how to generate the full list
of exceptions from that of the almost simple ones. (If there are no exceptions to list,
restriction to the faithful case will have been immaterial; but if there are any
exceptions at all, the non-faithful ones are clearly beyond accounting, as the
hypothesis places no restriction whatsoever on the common kernel.)

2. Statement of results

To make these statements explicit, we need to develop some terminology. If G,A,
B are as in the second half of Wielandt's problem, but B is not maximal, we shall say
that G,A,B is an exception. If A and B are corefree in G (that is, if neither of them
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contains any non-trivial normal subgroup of G), the exception will be called faithful.
If G is almost simple, the exception will be called almost simple. (All almost simple
exceptions, if any, are faithful: else the quotient modulo the common normal core of
A and B would be a soluble exception because of the Schreier 'conjecture', while as
Wielandt had already noted soluble exceptions do not exist.)

If G,A,B is an exception and x,yeG then G,Ax,By is also an exception, and it
would not make sense for us to consider two such exceptions different. We shall say
that G,A,B is isomorphic to another exception G1,A1,Bl if there is an isomorphism
G = G1 which matches the conjugacy class of A (in G) to the conjugacy class of Ax (in
GJ, and the conjugacy class of B to that of Bv

THEOREM 1. Let G, A, B be any faithful exception. Let K be any maximal normal
subgroup of the socle M of G, and put N = NG(K) and Z = CN(M/K).

Then M is a non-abelian minimal normal subgroup of G, and

N/Z, (A n N) Z/Z, (B n N) Z/Z

is an almost simple exception. Moreover, the socle of N/Z is MZ/Z.

Note that as M is a non-abelian minimal normal subgroup, the maximal normal
subgroups of M form a single conjugacy class of subgroups in G; hence the almost
simple exceptions so obtained from different choices of K are all isomorphic. Also,
Theorem 1 implies that if there are no almost simple exceptions then there are no
exceptions at all.

By a wreath product C/WrSn we mean the usual semidirect product W of the
symmetric group Sn and the «-fold direct power Un of the (abstract) group U. The
projection of W onto Sn corresponding to this semidirect decomposition will be
denoted by n. Consider n a permutation representation of W and take a point
stabilizer Wo. This has an obvious direct factorization

K = S«-i Un = Ux (£„_, U"-1) = Ux (C/Wr 5 . . J ;

let n0 denote the corresponding projection of Wo onto the first direct factor U. A
subgroup V of W will be called large if Vn is transitive (as subgroup of Sn) and
(Vn W0)nQ= U. Note that once Vn is transitive the validity of (VD W0)n = U is
independent of the point o whose stabilizers in Sn and in W were taken as Sn_x and
Wo, respectively. Consequently, conjugates of large subgroups are large.

THEOREM 2. Let G,A,B be an almost simple exception, M the socle of G, and V
a large subgroup of any (G/M) WrS n with n > 1. Further, let G* denote the complete
inverse image of V under the obvious homomorphism ofG Wr Sn onto (G/M) Wr Sn, and
set

A* = G*0(Sn An), B* = G*(] (Sn Bn).

Then G*,A*,B* is a faithful exception.
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THEOREM 3. Let G*,A*,Bf be defined in the manner indicated in Theorem 2
from another almost simple exception G1,A1,B1 and from a large subgroup V1 of
(GJM^ W r S n , where Mx stands for the socle ofGv

Then the exceptions G*, A*, B* and G*, A*, B* are isomorphic if and only ifn = nx

and there is an isomorphism G = GX between G,A,B and Gl,Al,B1 such that the
corresponding isomorphism (G/M)WrSn = (GJMJWrSn matches the conjugacy
class of V to that of Vv

The point is, of course, that every faithful exception which is not almost simple
is so constructed from an almost simple exception. Given a faithful but not almost
simple exception G,A,B, Theorem 1 shows how to choose the relevant almost simple
exception N/Z,(A(]N)Z/Z,(Bn N)Z/Z. The socle of N/Z being MZ/Z, the
quotient of N/Z modulo its socle may be thought of as N/MZ, so the relevant Kwill
be a large subgroup of some (N/MZ)WrSn, namely that with n = \G:N\. Recall that
the embedding theorem gives an embedding of G in NWvSn which is unique up to
composition with inner automorphisms of this wreath product (see [12]), so its image
is unique up to conjugacy. It is straightforward to check (or see [12]) that the image
is a large subgroup. Compose this embedding with the obvious homomorphism of
NWr Sn onto (N/MZ) Wr Sn, and choose the image of the composite as V. Clearly, V
is a large subgroup and is well defined up to conjugacy.

THEOREM 4. IfG, A, B and M, N, Z are as in Theorem 1 and G is not almost simple,
then (N/Z)*, [(A n N)Z/Z]*, [(B 0 N)Z/Z]*, defined as in Theorem 2 with respect to
the V chosen above, is isomorphic to G,A,B.

The combined effect of these theorems may be put as follows.

COROLLARY. Given a list 3? containing precisely one representative G,A,B of each
isomorphism class of almost simple exceptions, a list J£* containing precisely one
representative of each isomorphism class of faithful but not almost simple exceptions
could be made up as follows.

For each G,A,B on S£, calculate first the group A of those automorphisms of G
which stabilize setwise both the conjugacy class of A and the conjugacy class of B. For
each integer n> \, let A act on Sn trivially and on Gn diagonally, and form the
semidirect product A(GWr5n) accordingly. Sort the large subgroups of (/WrS1,,
containing M into A(GWr Sn)-conjugacy classes, take one representative G* from each
such class, set A* = G* 0 SnAn, B* = G* 0 SnBn, and let the G*,A*,B* so obtained
make up S£*.

Of course, if S£ is non-empty then $£* is infinite; thus even if S£ is finite and so
can be written out in full, £?* can not. To illustrate that the corollary need not be
pointless in such a case, consider the possibility that J&? turns out to consist of a single
G,A,B, with G simple and OutC? = 1; then the corollary would give that the G* on
if* are precisely the G W r T with T ranging through one representative of each
permutational isomorphism class of transitive groups.

The proofs of the theorems will take up the rest of the paper. Each proof is set out
as a separate section: §§3, 4, 5, 6 prove Theorems 1, 4, 2, 3, respectively.
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3. Proof of Theorem 1

The proof of Theorem 1 will take several steps. Throughout, G,A,B denotes a
faithful exception, Mis the socle of G and Kis a maximal normal subgroup of M, with
N = NG(K) and Z = CN(M/K). Of course, A is a corefree maximal subgroup of G,
while B is corefree but not maximal.

We shall not make much direct use of Wielandt's condition that \A ft C\ = \B ft C\
for each conjugacy class C of elements in G. Mostly, we shall use instead that the
character \A]G of G induced from the trivial character 1̂ , of A coincides with the
character 1B |C similarly defined with B in place of A. (To see that the two conditions
are equivalent, first note that summing each side of \A n C\ = \B 0 C\ over all C yields
that \A\ = \B\, as does the agreement of the degrees of the two characters. Next,
take a transversal T for A in G and count the cardinality of the set {(c, i)eCxT\
t~lcteA} in two ways to obtain that the value of \A}G at an element c of C is just
\G:A\\AOC\\C\-\)

One immediate consequence of \A\G = 1B|G is that a subgroup Hof G complements
A in G (in the sense that G = AH and AftH = 1) if and only if it complements B. (This
holds because, by Mackey's subgroup theorem, H complements A if and only if the
restriction 1,,TGIH is the regular character of H.) We shall apply this fact several times.

The first application yields that

(3.1) M is non-abelian.

For, if M were abelian it would have to complement every corefree maximal
subgroup and every complement of M would be maximal, so M would complement
A but could not complement B.

Note that (3.1) confirms Wielandt's comment that there are no soluble exceptions.
The second application leads to the conclusion that

(3.2) M is a minimal normal subgroup of G.

As is well known (see [2, §2]), a finite group which has a corefree maximal
subgroup can have at most two minimal normal subgroups, and if it does have two,
then the corefree maximal subgroups are precisely their common complements. Thus
if G had two minimal normal subgroups both would complement A but at least one
would not complement B.

Conditions (3.1) and (3.2) prove Theorem 1 whenever K—\; so from now on it
will be assumed that K > 1.

There are also the following immediate consequences of (3.1) and (3.2).

(3.3) M is a direct product of non-abelian simple groups, K is the product of all but one
of the simple direct factors of M, with CM(K) being the other simple direct factor. The
simple direct factors of M are precisely the G-conjugates of CM(K), and the maximal
normal subgroups of M are the G-conjugates of K. Moreover, NG(CM(K)) = N and
CG(CM(K)) = Z.

Our next aim is to show that

(3.4) G = AM, Af\M>\,G = BM, B 0 M > 1 and \A 0 M\ = \B n M\.
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The maximality of A guarantees that AM = G. It is an immediate consequence of
Wielandt's condition that

\A\ = \B\ and |>4 n Af | = l̂ ffn Af|.

Thus G = BM (as \G\BM\ = \B[\ M\/\A (]M\ = 1), and the only alternative to (3.4)
is that M complements both A and B. Suppose that this alternative holds; we shall
derive a contradiction. The first point to establish is that if a e A, b e B, and aM = bM,
then ax = b for some JC in M. As \A n C\ = \B n C\ holds for the conjugacy class C of
a in G, there is g in G such that a° e B. As G = MB, we have g = xy with some x in
M and y in B, and then

ax = a[a, x] = y i a ^ y ' 1 e a M f]B - bM (]B.

Here bM 0 B = {b} follows from B C\M = 1, and hence ax = b. The second point is
that (AC\Z)M = (BnZ)M: indeed, if as A n Z, then there is b in 5 such that
aM = bM; as this b is of the form ax with x in M, we have that b = ax e Z1 = Z, and
hence aebM ^(B(]Z)M. Since the argument is symmetric in A and 5, the second
point is established. The critical point is to note that A and B are ' top groups' in two
twisted wreath decompositions of G, both decompositiosn having 'first coordinate
subgroup' CM(K). Recall (from [15]) that a twisted wreath decomposition of a group
G consists of two subgroups: the 'first coordinate subgroup', which is such that its
normal closure (called the 'base group') is the direct product of its distinct conjugates,
and the 'top group', which is a complement to the base group.

As we have seen, now these conditions hold (with M being the base group in both
decompositions). It follows that G is isomorphic to two ('external') twisted wreath
products of CM(K) by G/M, the two isomorphisms matching A and B to the
respective top groups. In both constructions, the 'twisting subgroup' is N/M. In one,
the ' twisting action' of N/M is obtained by composing the obvious isomorphism of
N/M onto A n N with the conjugation action of the latter on CM(K); so the kernel
of the twisting action is (A n Z) M/M. In the other, the twisting action is defined
using B in place of A. The second point (AftZ)M = (B (]Z)M established above
ensures that the two twisting actions of N/M have a common kernel. There is a
criterion for deciding whether in a twisted wreath product of a non-abelian simple
group (such as CM(K)) by any finite group (such as G/M) the base group is the socle
and the top group is a maximal subgroup. In both cases considered here, the base
group is the socle, so the criterion tests only the maximality of the top group;
therefore it must hold in the case of A and fail in the case of B. However, the criterion
can be stated in a form (see [6, 7]) which involves only the twisting subgroup and the
kernel of the twisting action, not the twisting action itself; so it cannot distinguish
between A and B. This contradiction establishes (3.4).

Since A is a corefree maximal subgroup of G, one may view G as a primitive
permutation group (in its obvious action on the set G:A of its cosets modulo A). In
this action, A is a point stabilizer, and (3.4) shows that the socle M is not regular.
Thus [14, (4.1)] becomes applicable, with A playing the role of what was there called
H. As in [14, (4.1)], let P denote the intersection of those maximal normal subgroups
Kv..., Kk of M for which A n Kt = A n K\ let Px,..., /> be the distinct conjugates of
P in G, and set R} = f]{Py\j" #y}. As M is minimal normal, [14, (4.1)] gives the
following.
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(3.5) Ifk > 1 then AK =G.Ifl>\ then {Rv...,/?,} is a (single, complete) conjugacy
class of subgroups in G such that M = Rx x ... x Rt and A n M = \\ (A n R}).

We may as well agree to number the Kt and the Pj so that
K = Kx and P = P1 = R2x ...xRt.

In addition, set
<2 = NC(P) and S = coreQ((A 0 Q) P).

(Beware: in [14] this normal core was called Z.) As was noted at the end of the proof
of [14, (4.1)], if / > 1 then the sublattice generated in the subgroup lattice of G by A,
K, M, N, P, Q, S is as pictured on Figure 1, the case in which k = 1 being shown on
the left and k > 1 on the right.

FIG. 1

The non-trivial part of this claim is that S nM = P; we shall also use the point that
if k > 1 then (A ft Q) P/S intersects KS/S trivially. The last quotation we shall need
from [14] in this section is [14, (3.2)], which we restate here as follows.

(3.6) S = CQ(M/P).

This shows that when k = 1 (so P = K), we have S = Z (with Z as defined in §2,
and trivially also as defined in [14]).

To make the second half of (3.5) applicable, we show that

(3.7) A (]K> 1 and hence I > 1.

If / = 1, then P = 1 and A n K{ = A n K for all maximal normal subgroups K{ of
M, whence A 0 K = 1. In this case k, being the number of all maximal normal
subgroups of M, is not 1, for K > 1 by assumption. We shall prove (3.7) by showing
that A(]K= 1 leads to a contradiction. (Beware: as / = 1, we cannot appeal to Figure
1!) By (3.5) in this case #complements A, so it must also complement B. The fact that
K complements A means that K is regular as permutation group on G: A and so G is
'of simple diagonal type'. In turn, this implies that Nis a maximal subgroup of G (see
[3, Remark 2 on p. 6] or [13, Corollary to Theorem 1]). Since B is not maximal in
G, there is a subgroup D with B < D < G. Set L = ND(D n K) M. Since DM = G
(for K complements B and DM ^ BK), we have that N=(D0N)M; thus
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ND(D (]K)^D0N yields that L^N. Further, D > B and BK = G together imply
that D(]K> 1. If L = G, then all G-conjugates of K are of the form Kx with
xeND(D OK). In this case

and we have reached a contradiction as required. If L = N, then ND(D ()K) = DON
and |£:ND(Z) n £) | = |G:#I> so D n M contains |G: N| distinct Z)-conjugates (Z) n Kf
of D(]K. As

(/> n M)/(D n tf)d s (/> n M)/(/> OK)^(DOM) K/K = M/K,

each quotient (D (1 M)/{D n A")d is a non-abelian simple group of order \M/K\. Hence
\D()M\Z \M/KfN\ On the other hand, \M/Kf:N^ = \M\ by (3.3), so in this case
Z) ̂  M, contradicting B < D < G = BM. Since N is maximal, there are no other
options for L, and the proof of (3.7) is complete.

Our next aim is to prove that

(3.8) 5 n M

To this end we return to the character equality \A]° = 1BTG. By 'the lemma that
is not BurnsideV (see [16]), the number of the orbits of a permutation representation
can be read off the character of that representation. Recall from (3.4) that
G = AM = BM. Since R} is normal in the transitive M, all orbits of R} on G.A have
the same length. The same holds for the orbits of R} on G: B, though at this stage we
cannot yet say that the orbits on G:A are equal in length to those on G:B. That
equality follows only because the restriction of the character condition to Rj implies
that the number of orbits on G.A is the same as the number of orbits on G:B and
also that \G\A\ = \G:B\. In particular, this proves that

\Rj:(A0Ri)\ = \Rj:(B(]Rj)\;
equivalently,

\A (\ R,\ = \B C\ R,\.

By (3.4), \B0 M\ = \A f] M\. Since / > 1 by (3.7), we know from (3.5) that
\A f)M\ = Y[\A 0Rj\- The conclusions of the last three sentences combined yield
that \B n M\ = n \B D R,\ = \Y\ (B n R,)\, whence B n M = \\ (B n R^

(3.9) (A fl Q) P is maximal in Q, but (B()M)P is not.

In preparation for the proof of this, let B < D < G; we show that then DP # G.
Suppose that DP = G; then (D0M)P = M. As D (] Rx is normalized by D 0 M
(because i ? ^ M) and centralized by P (because R1 is), it follows that / J f l ^ ^ M ;
so the non-trivial group D n Ri is the product of some of the simple direct factors of
M. As DM ̂  DP = G, it follows that D permutes the simple direct factors of M
transitively, and therefore M ^ D and G = DM = D. This contradiction proves that
DP^G.

Set E = P| DPr By [8, Lemma 2.2] this E is a subgroup (even if perhaps none of
the products DP} is), and E n M = n (E n i?,). Obviously, B < D ̂  E < G. Now (3.9)
follows from the results of Gross and Kovacs [8], though [11] provides a more
convenient reference for seeing this. Namely, by (3.7) and (3.5), the hypothesis called
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(*) in [8,11] is satisfied by the present G, M, P, Q (in place of what were there called
G, M, K, N); by (3.8) and what we have just proved, the subgroups A, B, E are, in
the terminology of [11], high with respect to P; so [11, (3.01)] directly gives that
(A D Q) P/P is maximal in Q/P, but (B 0 Q) P/P is not.

The last step towards the proof of Theorem 1 is to show that

(3.10) l T = l T

Since AM = BM=GandQ^M show that AQ = BQ = G, and as \JG = lBtG,
Mackey's subgroup theorem yields that

i t« — 1 t«
lA()Q\ ~ lB0Q\ •

Consider an arbitrary irreducible character % of Q. If the normal subgroup P of Q is
not contained in ker/ , then / cannot be involved in either side of (3.10); so we may
restrict attention to the case of P ^ ker/ . Let A' be a (2-module which affords / . By
the Frobenius reciprocity theorem, the multiplicity of/ in \(A nQ)PTe i s t n e dimension
of Cx((Af]Q)P). As P acts trivially on X, in fact CX((A n Q)P) = CX(A 0 Q).
Consequently, the multiplicities of/ in l(/,n<2)PTc and in l^nQtQ a r e t n e same. This
holds also with B in place of A, so the last displayed equation implies (3.10).

Now (3.9) and (3.10) show that Q,(A0Q)P,(B(]Q)P is an exception.
Consequently, coreQ((2? n Q) P) is the same as the normal core S of {A n Q) P, and
Q/S, (A n Q) P/S, (B n Q) P/S is a faithful exception. In view of (3.7), we may appeal
to Figure 1. In particular, MS/S = M/P, so MS/S is a non-trivial normal subgroup
of Q/S and a direct product of non-abelian simple groups. This implies that MS/S
is contained in the socle of Q/S. We know from (3.2) that in a faithful exception the
socle is minimal normal, so MS/S must be precisely the socle of Q/S. The right-hand
picture in Figure 1 shows that if k > 1 then KS/S is a maximal normal subgroup of
MS/S and, as we have noted commenting on Figure 1, the intersection of {A D Q) P/S
with KS/S is trivial. By (3.7), this cannot happen in a faithful exception, so k = 1. Of
course, then P = K,Q = N, and 5 = Z(by (3.6)). We noted as a consequence of (3.10)
that (B 0 Q)P ^ S, so now (BnN)K^Zand hence (see Figure 1) Q/S,(A f] Q)P/S,
(B n Q) P/S may also be written as N/Z, (A n N) Z/Z, (B n N) Z/Z. Since M is a non-
abelian minimal normal subgroup, the definition of Z directly implies that N/Z is
almost simple, with socle MZ/Z. This completes the proof of Theorem 1.

4. Proof of Theorem 4

It will be convenient to continue this argument without a break, proceeding to the
proof of Theorem 4. In view of (3.4) and (3.5) we are in a position to apply [14,
Theorem (3.4)]. Since k = 1, P = K, Q = N, S = Z, and / = \G: Q\ = n, the conclusion
may be put as follows.

Choose a transversal for N in G, and use the embedding theorem to obtain a
corresponding embedding <fi of G in NWrSn. Let

V: N Wr Sn > (N/Z) Wr Sn

and

X: (N/Z) Wr Sn > (N/MZ) Wr Sn
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be the homomorphisms corresponding to the natural projections N->N/Z and
N/Z -> N/MZ, respectively. Set V = G<j>y/x-

Then V is large as subgroup of (N/MZ) Wr Sn, and its complete inverse image under
X is G(j>y/. Moreover, (fry/ is one-to-one, and A<f>y/ is conjugate in G(f>\f/ to
G(f>y/(\Sn[(A(\N)Z/Z}n.

This means that <fiy/ maps G isomorphically onto (N/Z)* and it maps the
conjugacy class of A to that of [(̂ 4 n N)Z/Z]*. Theorem 4 will therefore follow if we
can prove that $y/ maps the conjugacy class of B to that of [(B 0 N) Z/Z]*;
equivalently, that B<fiy/ is conjugate in G<j>y/ to G<j>y/ f] Sn[(B 0 N)Z/Z]n.

To this end we first establish that for some element x of K we have

(Bx)(/> = G(/>0Sn[(B0N)K]n.

Apply [8, Theorem 4.2], with L = (B()N)K and H1 = B. The fifth sentence of the
proof of that theorem indicates that, for the H defined there, Hcf) = G<f>()SnLn;
because of (3.8), the last sentence of [8, Theorem 4.2] gives that HI = H. (There our
JC was called k.)

We have already noted, at the end of the proof of Theorem 1, that

(B0N)K=(B0N)Z;

hence Sn[(B C\N)K]n contains the kernel Z n of y/. It is a general rule that if X
and Y are subsets of the domain of a mapping y/ and Y contains ker y/, then
(X 0 Y) y/= Xy/0 Yy/. This allows us to deduce from (Bx)<j> = G(/>0 Sn[(B n N)K]n

that
(Bx) 4>y, = G</>y/ n Sn[(B n N) Z/Z]n,

as required. This completes the proof of Theorem 4.

5. Proof of Theorem 2

In preparation for the proof of Theorem 2, we have to consider the connection
between product action and tensor induction. On the latter, our principal reference
is [5, §12A], though we shall use a slightly different notation; in particular, we shall
continue to write our maps on the right and their composites accordingly.

Let p be a transitive permutation representation of a group U on a set Q, and T a
point stabilizer in U relative to p. Set W= £/WrSn = SnUn; then Sn Tn is a point
stabilizer relative to the corresponding product action of W on the cartesian power
Q". As before, let Sn_x be a point stabilizer in Sn, set Wo = S^ Un, and let n0 be
the projection to the first direct factor in the obvious direct decomposition
Wo = Ux(Sn_1 f/""1). The composite map nop is then a transitive permutation repre-
sentation of Wo on Q. Let CQ be the complex vector space with basis Q regarded
as a W^-module via nop, and let CQn be the vector space with basis On regarded as a W-
module via the product action of ^ on fi". As a vector space, a tensor induced
module (CQ)|®H' is just the tensor power ®nCQ, and as such it has an obvious
vector-space isomorphism to CQn. It is a routine exercise to verify that that
isomorphism intertwines the two actions of W, so (CQ)t®w' = CQn as W-modules.
(As it stands, the last sentence is not quite right and not really fair to the reader. First,
the action of W on (CQ)f®w' has not been specified—it does depend on the choice of
a transversal of Wo in W. The claim that the obvious vector-space isomorphism
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(CQ)t®w' = CQn intertwines the two actions cannot be expected to hold unless the
transversal is well chosen. To name a good choice, let the Sn used to build W act on
{1,...,«}, and let the Sn_x used in defining Wo be the stabilizer of n, say. For / = 1 ,...,n,
let Tt be the element of Sn which swaps i with n and leaves all the other symbols
fixed; thus xv...,rn_1 are transpositions and xm = 1. As elements of W, the r{ form
a transversal for Wo, so we may let W, W0,xx,...,xn play the role of G, H, glt...ign

in [5, pp. 332-333]. Second, the reader should be warned that the routine exercise
needs some care because of the dual role of Sn as top group in W and as top group
in ^ 0 Wr5 n . )

Of course the character of/? is \T\V, so the character of Wo afforded by CO is the
composite nj^l^11); on the other hand, the character of Wafforded by CQ" is the
character of the product action; so we have that

(5.1) K ( i T H ! 0 V V = i S n T » r

We are now ready to proceed with the proof of Theorem 2. Recall that the
notation used in Theorem 2 conflicts with that used in Theorems 1 and 4; accordingly,
the conventions of our §§3, 4 no longer apply. From now on, G, A, B will denote an
almost simple exception and M the socle of G, with n > 1 and V a large subgroup of
(G/M) Wr Sn. It will be convenient to set W = G Wr Sn and to think of (G/M) Wr Sn

as W/Mn; then the definition of G* amounts to Mn < G* < W and G*/Mn = V.
Recall also that A* = G* 0 SnAn and B* = G* 0 SnBn.

We have seen that almost simple exceptions must be faithful; so A £ M, and
therefore AM = G. Moreover, A 0 M > 1 by [1, 6.3]. Thus if one thinks of G as a
primitive permutation group on the set of its cosets modulo A, then [14, Theorem 1]
becomes applicable; it yields that A* is a corefree maximal subgroup of G*.

As in the proof of (3.4) above, one sees that AM = G implies that BM = G. By
assumption, there is a subgroup D such that B < D < G. For such a D, we must now
have that B()M<D0M<M. Set D* = G* 0 SnDn; as G* ^ Mn, we get that
B* (1 Mn = (B n M)n and D* 0 Mn = (D (] M)n. It follows that B* < D* < G*, so B*
is not maximal in G*.

It remains to prove that lA.1G* = 1B*TG*- T o this e n d note first that G* $s Mn and
BM = G yield that (SnBn)G* 2 SnBnMn = SnGn = W, so by Mackey's subgroup
theorem

i t^i — i tG*
VSnBn I 4-G* ~ lB* I

Apply (5.1) with U = G and p the obvious permutation representation of G on the set
of its cosets modulo B; one may then conclude that

Similarly,

The left-hand sides of the last two equations are equal (because l^tG = 1B|G

by assumption), hence so are the right-hand sides. This completes the proof of
Theorem 2.
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The first steps towards the proof of Theorem 3 consist of some further analysis of
G*,A*,B*. We proceed with this, extending the notation of the previous section as
follows. Let 5n_x be a point stabilizer in Sn,

B_XG A ' 1

the corresponding direct decompositions, and n0: Wo -> G the projection of WQ onto
its first direct factor. Write K* for the last direct factor Afn"1, put

Z* = G*() ker rc0 = G* n 5n_x G""1,
and let £: N* -> G be the relevant restriction of TT0; SO

(6.1) kerC = Z * .

Since G* ^ Afn, the second half of the assumption that Kis large in (G/M) W r S n
is that n0 maps N * o«/o G. It follows that 7ro maps onto A the intersection of N*
with the complete inverse image A x S ^ G""1 of A under 7r0. In view of

(A* n N*) K* = [(G* n sn An) n (G* n sn_x Gn)] Mn~x

= [G* n (Sn A n n 5, , . ! Gn)] Af"-1 = [G* n s n . i ^ n

= G* n 5B_i ^"Afn"1 (since G* ^ Af "-1)
= G* n (/4 x 5B_! G""1) (since ^Af = G)

we have that

(6.2) N*( = G

and [(A* n iV*)AT*]C =
written as

(6.3) [(A*(]N*)Z*]C =

Similarly,

(6.4) [(B*

- As Z*C = 1 and Z* ^ ^*, the latter equation may also be

for, the only property of A used above was that 4̂Af = G, and we have seen in the
proof of Theorem 2 that i?Af = G also holds.

Now suppose that G1,AliB1 is another almost simple exception, write Mx for the
socle of Gl5 let Vx be a large subgroup of {GJMx) Wr S v and form G*, A*, B*, K*,
N*, Z*, d with reference to these data. Further, suppose that there is an isomorphism
y:G* -*G* such that A*y is conjugate to A* and B*y is conjugate to 5f (in Gf). By
restriction, y yields an isomorphism of the socle of G* onto the socle of G*, so the two
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socles must have the same number of simple direct factors: n = nv At the cost of
replacing y by a composite with an inner automorphism of G* if necessary, we can
arrange that K*y = K*. Then N* = NG.(K*), Z* = CG.(Mn/K*), etc. ensure that
N*y = N* and Z*y = Z*, so y induces an isomorphism, say 3, of N*/Z* onto
N*/Z*. Let £:N*/Z* -> G and £ : Wf/Z* -* Gl denote the isomorphisms induced
by C and (1? respectively: the inverse of <f followed by 3 and then by (x is then an
isomorphism, y* say, of G onto Gx. By [11, Theorem 3.01], the assumption that A*y
is conjugate to A* in G* implies that (A*y n N*)K* is conjugate to (A* n N*)K* in
#*; consequently (y4*y n iVf)Zf is conjugate to (Af 0N*)Z* in N*. Of course,
(i4*y n #*)Z* = [(A* 0 iV*)Z*]y, so we may conclude that [(A* n JV*)Z_7Z*]<5 is
conjugate in N*/Z* to (,4*n W*)Z*/Zf. As [(^* (]N*)Z*/Z*]C = A and
[04? (1 Arf)Zf/Z*]C1 = i4lf we have that Ay* is conjugate to Ax in Gx. Similarly, By*
is conjugate to i?15 for none of the arguments involves the maximality of A.

This proves that y* is an isomorphism of the almost simple extensions G,A,B and
Gv Av Bv We now identify G with G1 along y*; then A, Ax become conjugate maximal
subgroups and B,BX conjugate non-maximal subgroups in the one group G.
Moreover, G* and G* become subgroups of the same wreath product GWrSn, both
containing Mn, with G*Mn = Fand G*/Mn = Vv We shall complete the proof of the
'only if part of Theorem 3 by showing that G* and G* are conjugate in GWr»Sn.

To this end, we shall use the uniqueness theorem of [10] or its paraphrase from
[12], comparing the inclusion y/ of G* in GWrSn with the composite yy/1 of y and the
inclusion y/1 of G* in GWrSn. First, use the projection n: G Wr Sn -> Sn (corre-
sponding to the defining semidirect decomposition of this wreath product as Sn Gn).
From N*y = N* we see that N* is the stabilizer in G of the point o (whose stabilizer
in Sn we took as S^) with respect to both permutation representations y/n, yy/l n.
Since V and Vx are large, both permutation representations are transitive. It follows
that there is an element T in Sn_x such that ^rc(innT) = ^(innx)n = y\j/xn, where the
first innr denotes the inner automorphism of Sn, and the second that of GWrSn,
induced by T.

Consider an arbitrary element x of N*. Since Teker7r0,
x^(innT)7i0 = xy/n0 = xC, = (xZ*)(;

on the other hand,
xyytxn0 = xyd = (xCZ*)^ = (xZ*)S(v

By the definition of y* we have (xZ*) (y* = (xZ*) d^; as we have identified G and Gx
along y*, this means that xy(inn T) 7r0 = xyy/1n0. The uniqueness theorem now gives
that there is an element/in G""1 such that x^(inn r)(inn/) = xyy/1. Consequently, G*
is the conjugate of G by the element r/of GWr5n.

This completes the proof of the 'only if part of Theorem 3. The ' if part is
obvious.

REMARK. Theorem 3 does not mean that if one almost simple exception G,A,B
is used with two non-conjugate large subgroups V, Vx of a G Wr Sn then the exceptions
G*,A*,B* and G*,A*,B* cannot be isomorphic. It is conceivable that G could have
an automorphism stabilizing setwise both the conjugacy class of A and the conjugacy
class of B, and being such that the corresponding automorphism of G Wr Sn maps V
to Vv (As we know no exceptions at all, of course we cannot possibly give a
counterexample to that spurious consequence of Theorem 3; it could even be true,
perhaps vacuously, but not simply as a consequence of our arguments.)
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