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There is a familiar construction with two finite, transitive permutation groups as input
and a finite, transitive permutation group, called their wreath product, as output. The
corresponding 'imprimitive wreath decomposition1 concept is the first subject of this pa-
per. A formal definition is adopted and an overview obtained for all such decompositions
of any given finite, transitive group. The result may be heuristically expressed as follows,
exploiting the associative nature of the construction. Each finite transitive permuta-
tion group may be written, essentially uniquely, as the wreath product of a sequence of
wreath-indecomposable groups, and the two-factor wreath decompositions of the group
are precisely those which one obtains by bracketing this many-factor decomposition.
If both input groups are nontrivial, the output above is always imprimilive. A similar
construction gives a primitive output, called the wreath product in product action, pro-
vided the first input group is primitive and not regular. The second subject of the paper
is the 'product action wreath decomposition' concept dual to this. An analogue of the
result stated above is established for primitive groups with nonabelian socle.
Given a primitive subgroup G with non-regular socle in some symmetric group S, how
many subgroups W of S which contain G and have the same socle, are wreath products
in product action? The third part of the paper outlines an algorithm which reduces this
count to questions about permutation groups whose degrees are very much smaller than
that of G.

1. INTRODUCTION

groups considered in this paper will be finite.
unting the number of mathematical objects of a certain kind is often undertaken

as a test problem ("if you can't count them, you don't really know them"): not so much
because we want the answer, but because the attempt focuses attention on gaps in our
understanding, and the eventual proof may embody insights beyond those which are
capable of concise expression in displayed theorems.

The 0'Nan-Scott Theorem (see Liebeck, Praegcr, Saxl [4] for the most recent and
detailed treatment) and related developments have given formal expression to several
features of finite primitive permutation groups. In a recent paper [3] the author ex-
plored, in terms of 'blow-up' decompositions, primitive subgroups G of wreath products
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W in product action such that the socles of G and of W are the same and tliis com-
mon socle is not regular. A forthcoming paper [5] of Praeger investigates the general,
qualitative 'inclusion problem': what kind of primitive groups can contain any given
primitive group? (Blow-up decompositions reduce this to questions concerning almost
simple groups, which are then sorted out on the basis of the classification of finite sim-
ple groups.) The subject of the present paper is a particular, quantitative inclusion
problem, a kind of converse to the issues explored in [3]: given a primitive subgroup
G with non-regular socle in some symmetric group 5 , how many subgroups W of 5
which contain G and have the same socle, are wreath products in product action? The
answer is given as an informal algorithm which reduces this count to questions about
permutation groups whose degrees are very much smaller than that of G.

As always, one has to be careful not to count any one object twice: so one needs
to be able to recognise when W appears as a wreath product in product action in two
different ways. To cope with this, one needs a formal product action wreath decompo-

sition concept, and an overview of all such decompositions of a primitive group with
non-regular socle. It turns out to be sufficient to assume that the socle is nonabelian.
This socle is then a direct product of isomorphic nonabelian simple groups wliich are
permuted by (the conjugation action of) W. If this action is intransitive, then the socle
is non-regular. For primitive W which have at least one product action wreath decom-
position and whose socle is non-regular, it follows from the results of [3] that W has a
unique finest blow-up decomposition, and the (not necessarily simple) direct factors in
the corresponding direct decomposition of the socle are transitively permuted by W.

The product action wreath decompositions of W are closely related to what one might
call the imprimitive wreath decompositions of the transitive group obtained in one or
the other of these ways. Consequently, there is also a need for a formal conce^, of
decompositions of the latter kind, and for an overview of all such decompositions of
an arbitrary transitive group. While I have not been able to find explicit references, I
expect that some of this must have been at least intuitively known already to Jordan
and to many others since him.

To gel a flavour of the conceptual development, consider informally the kind of
duality which is at play here. Primitivity is defined in terms of certain partitions of
the permuted set, partitions which are called systems of imprimitivity. A partition is a
coproduct decomposition in the category of sets; the dual concept is product decompo-
sition in that category. The components of a coproduct decomposition are the relevant
inclusion maps; the components of a product decomposition are also maps, call them
'coordinate projections'. In the first context, it is often convenient to focus on a subset
(a block of imprimitivity) rather than on its inclusion map. In the second context, it is
likewise convenient to speak of an equivalence relation instead of a coordinate projec-
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tion: call two points (that is, elements of the permuted set) equivalent if they have a
common image under the coordinate projection in question. [Loosely speaking, the pro-
jection can be recovered from the equivalence relation as the obvious map to the set of
equivalence classes, namely the map which takes each point to the equivalence class con-
taining that point; strictly speaking, the projection factors uniquely through this map.]
A subset is a block of imprimitivity for G if its G-translates form a nontrivial coprod-
uct decomposition, and then the 'normaliser' of this decomposition is an imprimitive
wreath product (of two symmetric groups) which contains G. Dually, an equivalence
relation will be called a block of product-imprimitivity for G if its G-translates form
a nontrivial product decomposition, and then the 'normaliser' of this decomposition is
a wreath product in product action (of two symmetric groups) which contains G. A
transitive G is called primitive if there is no block of imprimitivity for G; a primitive
G may be called product-primitive if there is no block of producl-iniprimitivity for G.
Needless to say, blocks of product-imprimitivity for any primitive G play a critical role
in the investigation of wreath products in product action which contain that G.

In writing about these matters, one cannot make do without separate notation for
imprimitive wreath products and for wreath products in product action. The latter
are (called exponentiation groups and) written in exponential form in the book [2] of
James and Kerber, but that does get inconvenient when iterations are involved. It
seems preferable to have a notation which does not force the use of superscripts and
which reminds one of the underlying (co)product construction: to break the horizontal
line of the (co)product sign and use the stylised fragments as in [wrj and [wr] .

The canonical identification of (X xY) x Z with X x (Y x Z) leads to the
associative law of imprimitive wreath products which is so familiar that it needs no
reference:

(1.1) (A [wrj B) [wrj C = A [wrj {B [wrj C).

The canonical identification of {XY) with X^YxZ^ leads equally directly to

(1.2) {A [wr] B) ("wrl C = A [wr] {B [wrj C),

so this will also be taken for granted even though no reference seems to exist. While
these laws will only be used here in the discussion (as distinct from the proofs), they
will have a fundamental influence on the direction of the work.

The organisation of the paper will reverse the order of the motivating discussion
above. Imprimitive wreath decompositions will be dealt with first; the statement and
discussion of the results in Section 2, the proofs in Section 3. The treatment of product
action wreath decompositions will be similarly divided between Section 4 and Section
5, and the counting problem left for the last Section 6.
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2. IMPRIMITIVE WREATH DECOMPOSITIONS: DEFINITIONS AND RESULTS

The first problem is to establish a convenient language.
Informally speaking, a wreath decomposition of an abstract group G consists of

a semidirect decomposition of G and of a suitable direct decomposition of the normal
semidirect factor. This semidirect factor is the base group, the other is the top group,
and the given direct factors of the base group are the coordinate subgroups.

For C ^ Syin F and D ^ Sym A, the group commonly called the (permu-
tational or non-standard) wreath product of C and D is a certain subgroup of the
symmetric group Sym (F x A) on the cartesian product F x A; this is the group
which is here, to avoid ambiguity, called the imprimitive wreath product and written as
C [wrj D. Accordingly, one might say at first that an imprimitive wreath decompositon
of a transitive group G on a set Q should consist of an abstract wreath decomposition
of G and of a matching (cartesian) product decomposition of il. As the chosen notation
suggests, (at least) the present context will be better served by considering F x A as
the disjoint union JJ { F x {5} | 6 G A }, a coproduct in the category of sets. When C
and D are transitive, the F x {6} are precisely the orbits of the base group; as orbits
of a normal subgroup in a transitive group, they form a system of imprimitivity. An
element of the top group which stabilises a block setwise also stabilises it pointwise, so
the action of the top group provides a coherent set of bijections between the blocks of
this system, just what one needs for the reconstruction of the product decomposition
F x A from the coproduct decomposition given by the system. The base group consists
precisely of the elements which stabilise each block setwise. Calling the set of points
actually moved (that is, not fixed) by at least one permutation in a group the support of
that group, one can also name the blocks as the supports of the coordinate subgroups.
Conversely, each coordinate subgroup is the pointwise stabiliser of the complement of
a block. Note that in this way the base group and its coordinate subgroups may be
recognised from the system of imprimitivity even without reference to the top group.
(The proofs of these simple observations will be left to the reader.) After a slight shift
in notation, the definition so motivated may be stated as follows.

DEFINITION 2.1: An imprimitive wreath decomposition of a transitive group G on
a finite set il consists of a system of imprimitivity A and a subgroup D such that

(2.1a) DnCG(A) = l, DCG(A) = G,

(2.1b) CG(A) = n { C G ( n \ F ) | F € A }

and

(2.1c) ( V F e A ) Nu(F) = CD(F).

Here Co(A) stands for the kernel of the 'restriction' map j. A : G —> Sym A,
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while N(F) and C(F) denote the setwise stabiliser and the point wise stabiliser of F ,
respectively. Thus also C o ( A ) = f| { N G ( r ) | F € A } , and C ( r ) is the kernel of the
restriction J. F : N ( r ) -y Sym F. Note that the product on the right hand side of (2.1b)
is automatically a direct product (regardless of whether any of the stated conditions
hold). It is natural to call D the top group, C Q ( A ) the base group, and the C G ( O \ F)
the coordinate subgroups of the decomposition. At times it will be convenient to refer
to impriniilive wreath decompositions simply as [wrj-decompositions.

The preceding discussion has shown that each [wrj-product one constructs 'comes
with' a decomposition of this kind. The definition would not be of much use if the
converse failed to hold.

THEOREM 2.2. Given an imprimitive wreath decomposition A , D of a transitive

group G on a finite set fi, to each F in A there is a bijection fi —» F x A which

conjugates G to the imprimitive wreath product (CG(fl \ F) j F) [wrj (G j A) , matching

the given decomposition of G to the decomposition which this wreath product comes

with (and consequently matching top group to top group, base group to base group,

and coordinate subgroups to coordinate subgroups).

Note that while the bijection must depend on D (else one could not ensure that
D is the subgroup matched to the top group), the wreath product itself does not; of
course, GJ.A = DJ. A. The proofs of all displayed statements are left to Section 3.

It is immediate that if A , D is an imprimitive wreath decomposition of G then
so is A , D9 whenever g 6 G. Note that (2.1c) remains valid if D is replaced by any
subgroup of any conjugate of D. This comment has a very useful converse.

LEMMA 2.3. Let G be a transitive group on a finite set il and A , D an imprim-

itive wreath decomposition of G. A subgroup R of G is conjugate to a subgroup of D

if and only if

(2.3a) (vreA)Ni l(r) = C|l(r).

The key to working with imprimitive wreath decompositions is that one can restrict
attention to a single block of hnprimitivity.

LEMMA 2.4. If A, D is an imprimitive wreath decomposition of a transitive
subgroup G of Sym fi, then

(2.4a) NG(F) |F = C G ( n \ F ) i r

for each F in A. Conversely, let F be a block of imprimitivity for G such that (2.4a)

holds, and let A denote the system of imprimitivity consisting of the G-translates of
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F : then there exist D such that A, D is an imprimitive wreath decomposition of G,

and these D form one conjugacy class of subgroups in G.

The proof of this lemma will actually show how to construct, using F and an

arbitrary transversal of No(F) in G, a semidirect complement D to C G ( A ) satisfying

(2.1c).

Given two permutation groups, each with an imprimitive wreath decomposition,
one naturally will consider the two decompositions isomorphic if they are appropriately
intertwined by some bijection between the sets the groups act on. Accordingly, call
two imprimitive wreath decompositions of G isomorphic if there is a permutation in
Nsym 0 {G) which translates the system of imprimitivity A of the first decomposition
to that of the other and conjugates the top group D of the first to that of the other.
If such a permutation can be found in G itself, call the two decompositions conjugate.
In these terms, the last statement of Lemma 2.4 means that two decompositions of G
are conjugate if and only if they have the same system of imprimitivity. Consequently,
an overview of all conjugacy types of imprimitive wreath decompositions of G may
be envisaged in terms of choosing an arbitrary a; in ft and considering all blocks of
imprimitivily which contain w and satisfy (2.4a). The answer lies in the following.

LEMMA 2.5. If G is a transitive permutation group on a finite set ft, then any
two blocks of imprimitivity F which satisfy (2.4a) and contain a given point u; are
comparable (in the sense that one of them is a subset of the other).

Another way of putting this is to say that the blocks of imprimitivity which satisfy
(2.4a) and contain w form a (possibly empty) chain (with respect to order by set
inclusion). In view of Lemma 2.4, the length of this chain is the number of conjugacy
classes of [wrj-decompositions of G. As ft is assumed finite, two comparable but
distinct subsets cannot be translates under any permutation in Sym ft: so it follows
in particular that any two isomorphic imprimitive wreath decompositions of G are

conjugate. Another consequence of Lemma 2.5 is that any two imprimitive wreath

decompositions of a transitive group have comparable base groups.

THEOREM 2.6. Let G be a transitive group on a finite set ft, let m be the number

of conjugacy classes of imprimitive wreath decompositions of G, and suppose that

m > 0. Tiien there is a sequence of subgroups Go,--- , G m such that, whenever

1 < fc ^ m, tiiere is an imprimitive wreath decomposition in which (Go,--- ,Gk-i)

is a coordinate subgroup and (G*, . . . ,Gm) is the top group. Moreover, if C is a

coordinate subgroup and D is the top group in an imprimitive wreath decomposition of

G, then there is a (unique) k and an element g in G such that C = (Go,.-- ,Gfc_i)9

and D — (Git,.. . > G m ) 9 . Another sequence llo,--- ,Hn of subgroups of G has

this property if and only if n = 771 and tiiere exists an element g in G such that
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[As usual, (Go,.. • , Gk-i) stands for the subgroup generated by Go, • • • , Gk-i,
and so on.]

COROLLARY 2.7. Let G be a transitive group on a finite set Q; suppose that G

is not [wrj-indecomposable, and consider the [wrj-decompositions A, D of G with

[wrj-indecomposaWe N G ( F ) j F (for F € A): there do exist such decompositions,

and they form a single conjugacy class.

Let G, m , Go , . . . , Gro be as in Theorem 2.6. For i = 0 , . . . , m , let O; be
a non-singleton orbit of Gj . One could go on to show that each G,- I tti is [wrj-
indecomposable and that there is a bijection il —> fl0 x • • • X fim which conjugates
G to

(By (1.1), this m-factor [wrj -product needs no brackets.) It should be possible to
formalise a 'many-factor' [wrj-decomposition concept so that Theorem 2.6 could be re-
phrased as follows: each finite transitive group winch is not [wrj -indecomposable has
a unique conjugacy ciass of (many-factor) [wrj -decompositions with all factors [wrj-
indecomposable, and the two-factor [wrj -decompositions of the group are precisely
those which arise by suitable 'bracketings' of these.

Theorem 2.6 is just one of many cases where it is expedient to single out one of the
coordinate subgroups. Such contexts could be better served by defining a two-factor
decomposition to consist of two subgroups: a coordinate subgroup and the top group. In
the appropriate many-factor extension of such a convention, the sequence Go,.. . , Gm

itself would be called a decomposition of G. The associative law (1.1) is, of course,
paralleled by a similarly basic rule concerning decompositions; that rule could then be
given a particularly simple form. However, the present discussion has already gone too
far for the immediate applications envisaged here.

3. iMPRIMll'IVE WREATH DECOMPOSITIONS: PROOFS

The proofs of the displayed statements of Section 2 are next on the agenda; the
reader may wish to skip to Section 4 where the general discussion continues.

The choice cannot be put off any longer: let all permutations be written on the
right, and their composites accordingly. To save a lot of writing, put B = CG{A),

C = Co(fi \ F), and N = NG(F). In this notation, (2.1a) says that

(3.1a) Df\B = 1 and DB = G,

(2.1b) yields that

(3.1b) B
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while (2.1c) amounts to

(3.1c) (V36G) DHN* = CD{Tg).

PROOF OF THEOREM 2.2: This will only be sketched. The wreath product in
question may now be written as (CJ.F) [wrj (ZJJ.A) but it will be better to have
a still shorter name: call it W. Note first that the order \G\ of G can be calculated
in terms of \C\, \D\, and the cardinality |A| of A. The relevant restrictions being
one-to-one on C and on D, one finds that |G| = |VV|.

Since G is transitive, so is (7J. A , that is, DJ.A : thus the maps

D -* A, d •-> Td and r x D -> ft, (7, d) »-»-yd

are surjective. Of course

Td' =Td •*=$> Nd' = Nd,

and it is easy to see that

-y'd' =jd <=> 7' = 7 & Nd1 = Nd;

hence (y,Vd) •—» >yd defines a bijeclion F x A —> $7. The inverse /? : fl —+ F x A is

the (only) map for which

f3 : w i-> (wtf"1, Frf) whenever d<z D and w G F(i.

Thus for an arbitrary element (7,Fei) of F x A and for each d! in D one has

which shows that j3~xDf3 is contained in the top group of W. Consider next an

element c of C. If Yd^T then -yd € ft \ F and so

= (f,Td),

while if Td = F then 7'c € Ft* and so

This shows that /3~1C/3 is contained in a coordinate subgroup of W. (The coordinate
subgroups of W are usually indexed by A : in that sense, the relevant coordinate
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subgroup is that labelled by the element T of A.) Consequently f3~lGt3 < W\ as

|G| = |W|, oiie must in fact have /3~1G0 = W.

The rest of the proof of Theorem 2.2 is left to the reader. D

PROOF OF LEMMA 2.3: The 'if claim will be established by an application of the
first sentence of part (3) of Theorem 5.5 in Gross and Kovacs [1]. In this application,
the present

RB, B, A, CB(r), DnRB, and R

take on the roles there played by

G, M, I, Ku H, and R,

respectively; there will be no need to specify J. It is easy to see that now the role of
Ni belongs to NHB(F) , aiid that the hypothesis (***) is satisfied. The assumption
G = EM amounts to RB = (D D RB)B and so is simply a case of Dedekind's Law; the
assumption concerning HV\M holds trivially because now HC\M = 1. To complete the
application, it will be more than sufficient to verify that RClNi is actually a subgroup
of {II D Ni)Ki for all i in / , that is, (V T G A)Nn(r) < NDnRB{r)CB{T).

To see this, note that N ^ B, and argue that

cD(r)cB(r) c cG(r)

= (£> D N)B by (3.1a) and Dedekiud's Law

= CD{Y)B by (3.1c)

= CD(T)CB(T)C by (3.1b),

therefore by Dedekiud's Law CG(r) = C£>(r)CB(r)(CG(r)nC). The last intersection
is trivial (because its components have disjoint supports), so the conclusion is that
CG(r) = CD(r)CB(r). Consider an arbitrary element r of N n ( r ) ; by (2.3a) this lies
in CG(r), and hence by the last conclusion r = db for some d and b in CD(F) and
C B ( 1 ) ) respectively. Now d = rb'1 shows that in fact d e N D n H B ( r ) , and this
completes the proof of the 'if claim in Lemma 2.3.

As noted in Section 2, the 'only if claim is obvious. D

PROOF OF LEMMA 2.4: Let G be a transitive subgroup of Sym Q, and A, D
an irnprimitive wreath decomposition of G • In the second paragraph of the proof of
Lemma 2.3, it was already seen that N — C£)(F)CB(r)C, whence (2.4a) follows.



264 L.G. Kovacs [10]

For the rest of the proof, suppose that F is a block of imprimitivity satisfying (2.4a),
and let A be defined as the system of imprimitivity consisting of the G-translates of
F. Choose a (right) transversal, T say, for N in G; then il is the disjoint union
TJ { Ft | t e T }, while T -> A, t >-* Ft is a bijection. For each g m G, let g denote
the element of Sym T such that

(3.2a) (Tt)g = F(tg).

Define a subset D in G by

(3.2b) Z ? = { < 7 G G | ( V T e

It is easy to see that the D so defined is in fact a subgroup, and that both (2.1c)
and the first part of (2.1a) hold. The missing point is the second half of (2.1a),
namely G = DB. Let g be an arbitrary element of G. By (3.2a) we have that
Yt = nt-^l^g-1 so t-^t^g-1 £ NG(Fi); of course, (2.4a) implies that also
NG(F<) 1 (r<) = C G ( ^ \ Ft) I (Ft), so one can choose an element bt in CG(fi \ Ft)
which acts on Ft exactly as t~1(tg)g~1 does. Let 6 be the product of these bt (as the
factors come from distinct direct factors of B, their order of listing is immaterial). On
a -ft, the bt> with t' ^ t act trivially [because -yt £ 9. \ Ft' and bt> £ CG(iJ \ Ft')],
so 6 acts as bt, that is, as t~1{t~g)g~1 • Therefore one can argue that

(lt)(bg) = ((70% = {(jlKr'mg-^g = -y(tg) = 7(%).

This holds for all 7 aiid for all t, hence first bg £ D, then g £ DB, and finally
DB = G follows.

This has shown that the set of the iinprimitive wreath decompositions involving the
given A is nonempty. The claim that they form a single conjugacy class then follows
from Lemma 2.3. Q

PROOF OF LEMMA 2.5: For an argument by contradiction, let w 6 ft, and let F,
F* be incomparable blocks of imprimitivity containing u and such that (2.4a) holds for
F and also with F* in place of F. Let A and A* denote the systems of imprimitivily
consisting of the G-translates of F and of F*, respectively, and let B, B* be defined
accordingly. By Lemma 2.4, there exist D and D* such that A, D satisfy (2.1) and
so do A*, D* in place of A, D. Of course F fl F* is either a singleton or a block
of impriiiLitivity. In the latter case one can switch attention to the restriction of G to
the set of the G-translates of F D F*: since by assumption F consists of more than
one such translate, it yields a block of imprimitivity in this set of blocks; indeed, one
for which the analogue of (2.4a) holds; and the same can be said for F*. Therefore it
is sufficient to derive a contradiction under the additional assumption that F D F* is
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a singleton. Now B fl B* fixes the singleton F D F* and is therefore trivial (because a

nontrivial normal subgroup of a transitive group can have no fixed points): in particular,

B centralises B*. On the other hand, the base group of a wreath product contains its

own centraliser: so B < B", whence B ^ B C\ B* = 1 and G = D. This is

impossible because the transitive G must be able to map one point of F to another

while (3.1c) shows that D cannot do that. D

PROOF OF THEOREM 2.6: Choose a point w; then the blocks of imprimitivity for

G which satisfy (2.4a) and contain w form a chain of length m: say, 1\ C • • • C F m .

For i = 1 , . . . , m, define Aj , £ ; , Gi, iVj, and choose a D;, accordingly. Set Go = C\

and Gm = Dm. If m = 1 then the claims all follow from Lemma 2.4; hence assume

that m > 2.

Let 1 ^ i ^ i n - 1. Obviously, d < Gj+i and Bt ^ 2?,+1. Further, Nt ^ Ni+i

because if g € Ni then Fj — Tig C T{+ig shows that Ti+ig is not disjoint from and

hence must be the same as F,+i. Let g be any element of G; then

NDI-+1 (ri9) = Di+1 nN? < Di+1 nNf+1 - cDi+1(ri+l9) < cDi+l(ri9).

By Lemma 2.3 one may therefore conclude that Z?i+i is conjugate to a subgroup of

Di. It follows that, replacing each Di by a conjugate if necessary, one can arrange that

Di ^ Di±i for all i; let this be done. Finally, set Gi = Ci+\C\Di for i = 1 , . . . ,m — 1.

It will be useful to have short names for (Go, • • • , Gj_i) and for (Gi , . . . , G m ) :

call them C* and Df, respectively. The next aim is to show, by induction on i, that

G,* = Gj whenever 1 < i ^ m. The initial step is a tautology. The inductive step

amounts to showing that if i < m then (Gj, Gi) — Ci+i. Observe that G;+ijFi+i is

transitive, and that F; is a block of imprimitivity also for this group, satisfying the rele-

vant variant of (2.4a): so by Lemma 2.4 there exist imprimitive wreath decompositions

of Ci+i i Fj+i in which the system of imprimitivity consists of the Gi+i-translales

of Fj and the top group can be taken in the form R J. F,+i with R ^ Ci+i. The

corresponding base group is simply B{ [ Fj+i, and of course Gj | F;+i is one of the

coordinate subgroups. Now one can use Lemma 2.3 to deduce that R is conjugate to

some subgroup of Di: say, Rbd ^ Di with b € Bi and d € Dj . Of course then also

Rb ^ Di so Rb ^ Gi, and (Rb) ITi-fi, being a conjugate of a top group, is a top

group in some other imprimitive wreath decomposition of Gi+ i |F j + i with CilYm

as a coordinate subgroup: thus {Ci,Rb) = G,+i and a fortiori (Ci,Gi) = Ci+i

follows. This completes the inductive step.

It follows that (CuD?) = (C*,D*) = {C^D^) = (Cm,Dm) = G. As D* < A
by definition, aud as a coordinate subgroup and a proper subgroup of the lop group

never generate the whole wreath product, one concludes that D^ = Di. This proves

the first claim of the theorem.



260 L.G. Kovacs [12]

The proof of the second claim is straightforward: if A, D is an [wrj-decomposition
of G with B the base group and C a coordinate subgroup, then there is a (unique) k

such that A = A* and so B = Bk] moreover, in this case D — Db
k for some b in

B while C = C\ for a d in D, and then C = Cf and D = Dd
k
b, too.

The 'if part of the last claim is obvious, so it remains to prove the 'only if part.
This will also be done by induction on m. The initial step concerns the case m = 1
and claims nothing more than what was established in the previous paragraph. For the
inductive step, let m > 1, choose first a 6 in Bm such that Hm = Gb

m, then a d

in Gb
m such that ( i / u , . . . ,//„_!> = C£, note that now Gd

m = Gb£ and Cd
m = Cjf,

and apply the inductive hypothesis to

<7" 1 rmd, rmd, m - 1 , cSd | rmd, . . . , Gtd_! i rmrf, H0 irmd,...,Hm_a rmd

in place of

G, ft, m, Go,---,Gm, Ho,...,Hm.

The conclusion is that # 0 = G j d c , . . . ,Hm^ = G^Z j for some element c in C%. It
is a general property of wreath products that the normaliser of the top group in the base
group (is the corresponding diagonal and therefore) projects fully onto each coordinate
subgroup: thus such a c can be chosen in Ngm (GjJ) instead of in C%?. With that
choice, g = bdc has the required properties.

This completes the proof of Theorem 2.6. D

PROOF OF COROLLARY 2.7: If Ci i r^ had a [wrj-decomposition, Ao, Do say,
then the blocks of Au would also satisfy (2.4a) and one of them would contain u>, so
it should have been counted among the F,-. Thus C\ | Fi is [wrj-indecomposable;
in view of (2.4a), the conjugates of Ai, £>x are therefore decompositions of the kind
considered in the corollary. In the third paragraph of the proof of Theorem 2.6 it was
noted that each Cj+i { I\+i is [wrj-decomposable: hence by (2.4a) only the conjugates
of A i , D\ can be decompositions of the kind considered there, and the corollary is
proved. U

4. PRODUCT ACTION WREATH DECOMPOSITIONS: DEFINITIONS AND RESULTS

Just as the principal use of [wrj-products is in dealing with transitive groups, so
the main applications of [wr]-products are in the context of primitive groups: we shall
restrict attention to that case. For a transitive subgroup G of Sym H, a system of
iiupriiiiitivity is a non-singleton G-orbil of non-singleton subsets which gives a coprod-
uct decomposition of 17. The dual concept for a primitive G will be called a system
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of product-imprimitivity: a non-singleton G-orbit of equivalence relations on $7 which
gives a product decomposition of fl. Here one tliinks of an equivalence relation <r as a
(certain kind of) subset of the cartesian square SI2, and forms its C-translates accord-
ingly: so that, with [W]<T denoting the <r-class containing the point w, the (^J-c lass
[w](er<7) containing u is ([w<7~1]o")<7• Given a set E of equivalence relations, for each a

in E consider the map u> i-» [w]<r of fi onto the set il/cr of the cr-classes, then combine
these maps into a single map from Q to the product of the il/a: if tills combined map
is a bijection, write fi = \\ { Cl/<r \ a £ S } and say that S gives a product decompo-

sition of fl. (Note that if G is primitive and E is a non-singleton G-orbit, then only
the surjectivity of the combined map is in question, because f | { f f | f f £ E } is a non-
universal G-invariant equivalence relation and therefore must be trivial.) Another way
of recognising (or of exploiting) the fact that E gives a product decomposition of fi is
the following: for each a in E , choose a <7--class, and then form the intersection of these
equivalence classes; for all choices, the intersection so obtained must be a singleton. An
equivalence relation on fi will be called a block of product imprimitivity for G if its
G-translates form a system of product imprimitivity.

Some further points of notation will be needed. The setwise stabiliser of the subset
a of il2 will be written as NG(<T) (if this is transitive on fi, it is the largest subgroup of
G for which the ^--classes form a system of imprimitivity). The obvious homomorphism
No(<r) —> Sym(n/<r ) , whose kernel is the intersection CG(U/(T) of the setwise
stabilisers of the <7--classes, will be denoted by [(fl/a). If S is setwise stabilised by
G, one writes C G (E) for n { N G ( ( T ) I a G E } .

When 1 < C < Sym F and 1 < D ^ Sym A , the wreath product in product

action C [wr] D is a certain subgroup of the symmetric group Sym F A on the set
F A of all maps A —> F . Just as it was convenient above to think of F x A as a set
with a distinguished coproduct decomposition, so it will be important here to think of
F A as having a distinguished product decomposition. Namely, for each 6 in A , call
two elements of FA equivalent if they agree at 8 (as functions A —> F ) , and write os

for the equivalence relation so defined. The set E = { < r f | ^ G A } of these equivalence
relations is the product decomposition in question.

Put W = C [wr] D and fi = F A . As is well-known and very easy to see, W is
primitive if and only if C is primitive but not regular and D is transitive. Under these
conditions, the distinguished product decomposition E of F A is a system of product
imprimitivity for W. The base group B of W may be recognised as C G ( E ) . Let Kg
denote the product of all but one of the coordinate subgroups of W, missing out the
coordinate subgroup labelled by 6; the relation &s could now be defined equivalently
by declaring that the orbits of Kg be the o^-classes: il/fff = il/Ks. Conversely, the
'coordinate kernel' Kg can be identified as Cfifn/o-j), so the coordinate subgroups
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of W can also be recognised from E, namely as the intersections of all but one of the
coordinate kernels. The proofs of these simple observations will be left to the reader.
The general deflation so motivated may be stated as follows.

DEFINITION 4 .1 : A product action wreath decomposition of a primitive group G

on a finite set il consists of a system of product imprirnitivity E and a subgroup D

such that, for B - CG(E),

(4.1a) DHB=1, DB = G,

(4.1b) B = n{B/CB{n/a)\*e2},

and

(4.1c) (Vo-eE) ND{or) = CD{n/cr).

The natural projections B —» jB/Cg(fi/(7-) combine into a single homomorphism
from B to the relevant (external) direct product; (4.1b) is just the preferred way here
for saying that this homomorphism is bijective. The preceding discussion has shown
that each [wr]-product one constructs comes with a decomposition of this kind. It
will be convenient to call D the top group, B the bate group, and the CB(H/C) the
coordinate kernels of the decomposition. Set

Since E is a (7-orbit, an element of G which fixes all p has no choice but to fix a as
well: that is, flNG(/>) ^ No(<r). Thus in fact

fl { No(p) | p G S, p ± a } - B;

and so Ca is also the intersection of all but one of the coordinate kernels. It follows
that the (internal) direct decomposition of B corresponding to (4.1b) may be written
as

and one also has that

(4.1bb) (V <r € S) B = Co x CB{n/a).

Accordingly, the Ca will be called the coordinate subgroups of the decomposition.

The first few results of Section 2 have the following analogues (proofs are deferred

to Section 5).
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THEOREM 4.2. Given a product action wreath decomposition S , D of a primitive

group G on a Unite set fl, to each <r in E and to each right transversal T of ND(<T)

in D such that 1 6 T, there is a bijection T : il —> (fi/<r) which conjugates G

to (NG(O") i (fi/cr)) [wrl (G 1 E ) , matching the given decomposition of G to the

decomposition with wliich this wreath product comes (and consequently matching top

group to top group, base group to base group, coordinate kernels to coordinate kernels,

and coordinate subgroups to coordinate subgroups).

Note that the wreath product in question depends only on E and <r; in particular,
it is independent of D (and of T) . Of course, G j S = D [ E.

LEMMA 4.3. Let G be a primitive group on a finite set fi and E, D a product

action wreath decomposition of G. A subgroup R of G is conjugate to a subgroup of

D if and only if

(4.3a) (VcrSE) Nfi(<7) = CR(n/<r).

LEMMA 4.4. If E, D is a product action wreath decomposition of a transitive

subgroup G of Sym fi, then NG(IT') |(fJ/o-) = Ca|.(J2/<r) for each <r in E.

Converse]/, 7et a be a block of product imprimitivity for G such that

(4.4a) No(«r)i(n/(r)=(n{Co(n/^)|seG?> <rg ±

and let E denote the system of product imprhmtivity consisting of the G-translates of

a: then there exist D such that E, D is a product action wreath decomposition of

G, and these D form one conjugacy class of subgroups in G.

The reader will have no problem defining isomorpliism and conjugacy of prod-
uct action wreath decompositions; clearly, conjugate decompositions have equal base
groups. In general, there seems to be no parallel for the idea that an overview of all con-
jugacy types of impriuiitive wreath decompositions may be sought in terms of blocks of
impriniilivity satisfying (2.4a) and containing a given point w. Accordingly, there is no
general analogue for Lemma 2.5, and the analogues of at least some of its consequences
have easy counterexamples.

EXAMPLE 4.5: The primitive wreath product in product action 53 [wr] 52 (of
the two symmetric groups indicated) has only one isomorphism class of product ac-
tion wreath decompositions, but this breaks up into two coiijugacy classes, and non-
conjugate decompositions have incomparable base groups.

There is a parallel for that idea, and a valid analogue for Theorem 2.5, under

the restriction that only primitive groups with nonabelian socle be considered. These
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depend on information from [3] concerning blow-up decompositions of primitive groups
of this restricted kind, and are technical enough to be best left for the next section;
suffice it to say that in them the role of (2.4a) is taken on by (4.4a). The consequent
analogues of Theorem 2.6 and Corollary 2.7 can be stated here without going into those
technicalities.

THEOREM 4.6. Let G be a primitive group on a finite set fi sucii that the socle
of G is nonabelian, let m be the number of conjugacy classes of product action wreath
decompositions of G, and suppose that m > 0. Then there is a sequence of subgroups
Go, - • - , Gm such that, whenever 1 < k < m, there is a product action wreath decom-
position in which (Go,--- ,Gk-i) is a coordinate subgroup and (Gk,--- ,Gm) is
the top group. Moreover, if C is a coordinate subgroup and D is the top group in a
product action wreath decomposition of G, then there is a (unique) k and an element
g in G such that C = {Go, • • • ,Gk-i)s and D = (Gk,- • • , Gm)g . Another sequence
Ho,- • • ,Hn of subgroups of G has this property if and only if n = m and there
exists an element g in G such that Ho = GjJ,... ,Hm = Gj^.

COROLLARY 4.7. Let G be a primitive group on a finite set Q; suppose that G

is not [wr] -indecomposable, and consider the [wr] -decompositions S , D of G with

[wr] -indecomposable NG(C)-L($V<T) (for <T € E j : there do exist such decompositions,

and they form a single conjugacy class.

Let G, m, Go , . . . , Gm be as in Theorem 4.G, and let fio be any orbit of Go . Fur-
ther, for t = l , . . . ,m, let ili be the set of the G,-conjugates of (Go, . . . ,G<_i), and
write Gi I fi» for the group of permutations induced on fi^ by the conjugation action
of Gi. One could go on to show that Go jfio ls [wr]-indecomposable while the other

Gil^i are [wrj-indecomposable, and that there is a bijection fi—> L . . ( n " l j . . . J

which conjugates G to

(•••((GolJio) M (Giifl!)) rwrl . . . ) fwrl (G m | f t m ) .

Specifying such a 'left-normed' bracketing, it should be possible to formalise a 'many-
factor' [wr]-decomposition concept so that Theorem 4.6 could be re-phrased as follows:
each finite primitive group which is not [wr] -indecomposable has a unique conjugacy
class of (many-factor) [wr] -decompositions with the first factor [wr] -indecomposable
and the other factors [wrj-inc/ecomposaWe, and the two-factor [wr] -decompositions of
the gmup are precisely those which arise by suitable bracketings of these. In view of
(1.2), here a suitable bracketing means

fio) [wr] ••• [wr] ( G * _ U n * _ , ) ) [wr] ( ( G U I * * ) |wrj ••• |wrj (GmlUm))
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for some k, with the omitted bracketing of the fc-factor [wr]-product understood as

left-uormed.

The alternative decomposition concept, which in the two-factor case would amount

to naming a coordinate subgroup and the top group, has much to recommend it also in

this context but again will not be pursued here.

5. PRODUCT ACTION WREATH DECOMPOSITIONS: PROOFS

This section is devoted to the proofs of the displayed statements of Section 4. The
proofs of the first three results follow very closely the pattern set in Section 2; then come
a few comments on Example 4.5. Detailed preparation for the proof of Theorem 4.6
follows next, culminating in a restricted analogue of Lemma 2.5 which even the reader
intent on skipping to Section 6 may wish to see. Beyond that, the proofs of Theorem
4.6 and of Corollary 4.7 are so predictable that they are left to the reader.

The first need is for extra technicalities concerning wreath products in product
action. Let C < Sym T, D «£ Sym A, and put $ = YA so C |"wr] D ^ Sym $ .
For each d in D, the corresponding element in the top group of C [wr] D is the
permutation d* of $ such that

(5.1a) (V<£A)(V^E$) 6(<pd*) = (Sd'1)^.

Similarly, for each c in C, the corresponding element in the coordinate subgroup la-

belled by 6 in C [wr] D is the permutation c* of $ such that

, . { (6'<p)c if 6' = 6,
(5.1b) (V J ' £ A ) ( V f £ * ) * > c * ={\, ., „ , c

^ o ip if b jt b.

Naturally, in the context of [wr]-decompositions repeated use will be made of the
definition of the action of G on E :

(5.1c) \u,]{*g) = {[wg-^g.

The very easy PROOF OF THE FIRST PART OF LEMMA 4.4 may as well be got out
of the way first. Since B ^ NG(<r) < G = DB, Dedekiud's Law and (4.1c), (4.1bb)
yield that

NG(<r) = CD{n/<r)B < CB(n/a)CB{n/<r)Co,

whence NG(<r)|(ft/<7-) = Cal{Sl/<r) follows directly. D

PROOF OF THEOREM 4.2: Throughout this argument, a will be a fixed element
of S . In view of the first part of Lemma 4.4, the wreath product in question may
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be thought of as (CV | {SI/a)) fwr] (D j S ) ; call this simply W. Choose any right

transversal T for ND(a), that is, for CD(Sl/a), in D, such that U T . Note that

t i—> at defines a bijection T —» S , so each element of S may be written uniquely in

the form at with t G T.

Define a map r : il —> (0/<r) , w •—> WT by setting

(O"<)(U;T) = [wt"1]^ for each element at of E,

and a map T' : (ft/er) —» fi, y? i—»• ipr' by

(The latter makes sense because we are dealing with a product decomposition of Q and

(at)ip is a <r-class so ((at)<p)t is, by (5.1c), a (<r<)-class: thus the intersection on the

right hand side is always a singleton.) Now

(at)(<pr'T) = [ ( (^T ' )*" 1 ]^- by the definition of r

= (at)<p since (ipr1)^1 € (ci)<fi S fl/a by the definition of r '

for all at in E; hence T'T = 1. Conversely, the definition of r ' says that WTT' is the

unique element of P| ((<r<)(u;r))<, while w<-1 S (((r<)(oir)) by the definition of r , so

u) G (((T<)(a)r))( for all t: thus also TT1 = 1. This proves that T is a bijection and

r - 1 = r ' .

Next, define a map G —» Sym T, 5 t—> 5 by

(5.2a) (V<GT) (O-<)</= <T(<5);

note that this homomorpliism and | S are intertwined by the bijection T —+ E, t >-+ at.

It will be useful to know that

(5.2b) (Vw

Indeed,

[ui{td)~l]a = ( [ w ^ d r ^ a - W ^ S ) " 1 because ^(/.d)"1 G ND{<r) = C£,(ft/o-)

= ([w](atd)) (it?)'1 by (5.1c) applied with g = td

= ([u>](a(id)))(t2)-1 by (5.2a)

]a by (5.1c) applied with g = Id.
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The first claim to establish is that T'DT is the top group of W\ more specifically,

that r'd~1T = (d~1 |E )* in the sense of (5.1a) whenever d G D. According to that

rule, this claim amounts to

(Vw6 ft) (V t € T) (V d e

which holds because

= {<Ttd)(u>r),

*"1]^- by the definition of T

= [w(td)~1]a- by (5.2b)

= (o"(<d))(wr) by the definition of r

= {atd){wr) by (5.2a).

The proof will be completed by showing that T'CT is a coordinate subgroup of
W, namely the coordinate subgroup labelled by a. Specifically, it will be shown that
T'CT = (cj(n/«r))a in the sense of (5.1b), whenever c 6 Ca. By that rule, this claim
amounts to

(Vi€T)(Va,€n)(<rf)((«T)(T'cr) =

To see that this holds, calculate

{at)({u,r){r'cT))={trt){u>cr)

i f <rt = <r,

= ((o-<)(wr))fc<~1

by the definition of r

by (5.1c) with g = ic~l

since c'1 e B = CG(S)

by (5.1c) with g = t

by the definition of T.

Of course, (at){ur) 6 ft/o-. If then c € CG(ft/o-<) whence id""1 €

U
while if at = <T then < = 1, so the above calculations confirm the claim.

This completes the proof of Theorem 4.2.

PROOF OF LEMMA 4.3: The 'only if claim is obvious. The 'if claim will be
established by an application of the first sentence of part (3) of Theorem 5.5 in Gross
and Kovacs [1]. In this application, the present

RB, B, E, CB(fi/<r), DHRB, and R

take on the roles there played by
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G, M, I, Ku H, and R,

respectively; there will be no need to specify / . It is easy to see that now the role of
Ni belongs to NRB(<T). The pattern of the proof of Lemma 2.3 may be followed to
the end without difficulty. D

PROOF OF THE SECOND HALF OF LEMMA 4.4: Let a be a block of product im-
primitivity satisfying (4.4a), define E as the system of product imprimitivity consisting
of the G-translales of a, and define B with reference to this E. Choose a right
transversal, T say, for NG(CT-) in G'; then each element of S may be written uniquely
in the form at with t £ T. Define G —> Sym T, g >—> "g by (5.2a), and put

(5.2bb) D= {de G | (Vw€fl) (V(eT) ([u]a)td={[u]<r){tS)}.

It is easy to see that the subset D so defined is a subgroup satisfying (4.1c) and the
first part of (4.1a): the point to establish is that each element g of G lies in BD. By
(5.2a) one has that t~l{tg~)g~1 £ No(ffi), so by (4.4a) with at in place of a one can
conclude that there is an element 6t which acts on il/at as t~1(tg)g~1 does and
acts trivially on all il/at' with t' ^ t. Of course such a bt must lie in B. By (4.1b),
there is then a 6 in 17 which, for each (, acts on 0,/at as t~1(Cg)g~1. Now

(\u]a)tbg = ([wt](at))bg by (5.1c) with wt and t in place of w and g

= ([wiftatyt-1 (tgte'1 g because [ut](<rt) e Sl/at

— (wa)(tg) by the last application of (5.1c)

= ([w]<r)(tbg) because 6 = 1

shows that bg € D, whence g G DB.

This has proved that the set of the product action wreath decompositions involving
the given E is nonempty. The claim that they form a single conjugacy class then follows
from Lemma 4.3. D

COMMENTS ON EXAMPLE 4.5: Let G = S3 [wr] 52 ^ 5 9 , and let M denote
the socle of G. Now M is a regular normal subgroup in G, so the set G acts on may
be identified with M and then G becomes a subgroup of the holomorph of M. The
stabiliser Gi of the point 1 (that is, of the identity element of M) is then the
intersection of G with the automorphism group GL(2,3) of M. Of course this Gi

is a dihedral group of order 8. The base group B (which G has by construction) meets
Ci in a non-cyclic subgroup B\ of order 4. The normaliser of G\ in (71/(2,3) is a
Sylow subgroup of order 16 in which B\ is conjugate to the other non-cyclic maximal
subgroup of Gi. If h is an element of GZ(2,3) which normalises G\ but not B\,
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then h normalises G but not D: so conjugation by h will change the given [wr]-
decomposition of G to one with a different base group. This new decomposition is, by
construction, isomorphic to the original, but of course cannot be conjugate to it by any
element of G. The verification of the remaining claims made about tliis group is left
to the reader. U

The rest of tliis section will be concerned with product action wreath decomposi-
tions of primitive groups with nouabeliaji socle.

To exploit the additional assumption one has to focus on the socle; this calls for
a slight extension and variation of the notation used so far. The socle of an arbitrary
group X will be denoted soc X; for brevity, the convention will be that soc G = M.

Consider G = C [wr] D with 1 < C < Sym T and 1 < D < Sym A, and
suppose that G is primitive: then M = (soc C) (see for example (2.1) in [3]). For
each 6 in A, let Kg now denote the kernel { / : A —» soc C | 6f = 1 } of the
relevant coordinate projection in this direct decompositon of M (rather than of the
corresponding decomposition of the base group, as before). Since soc C is transitive
on F (because C is primitive), two elements of TA are in the same if $-orbit if and
only if (as functions on A) they agree at 6: thus il/crg = £l/Kg remains true in spite
of this change. Of course, now Kg = CM(£l/<rg). It will be useful to see one point
stabiliser in M: take any j in F , and consider the constant function <p : A —• T
which maps all elements of A to this one 7; then one has Cj\f(y) = [CSOc C ( T ) ] A •

Conversely, let £ , D be a product action wreath decomposition of a primitive
subgroup G of Sym $7. It is easy to see that then M has a direct decomposition

(5.3) M = 0 { M/CM(n/<r) | <r e E }

with the following properties. First, the direct factors form a (single, complete) con-
jugacy class of subgroups in G. Second, a point stabiliser in M is the product of its
intersections with the direct factors. Third, E can be reconstructed from this direct
decomposition (a <7-class being an orbit under the product of all but one of the direct
factors). In the case when M is not regular, direct decompositions (of M) having the
first two of these properties were called blow-up decompositions (of G) in [3], and it
was proved there (see the Remark after Theorem 2 + ) that each such group—if it has
a blow-up decomposition at all—has a unique finest blow-up decomposition. In that
case, write M — P x R with R one of the factors, and P the product of all the
other factors, in the finest blow-up decomposition of G. The P so defined cannot be
transitive (011 12). [To see this directly, note that Cflf(w) = Cp(w) x CR(W) by the
second property above, so if P were transitive then \M : CM(<*>)| = \P : Cp(w)| would
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yield that Cyi(w) = R; as in any case M is the product of the Co(w)-conjugates of
R, one would get C(j(a>) ^ M, a contradiction.] In the case when M is regular but
nonabelian, the unique direct decomposition of M with simple direct factors also has
the first two properties above, so one can just write M = Rx P with R simple, and
note that P, now a proper subgroup in a regular group, cannot be transitive in this
case either.

Let 7r denote the equivalence relation on ft whose classes are the orbits of the P
so chosen. Since P is not transitive, 7r is not the universal relation. Note that P and 7r
were defined without reference to the particular product action wreath decomposition
E, D; nevertheless, all but one of the factors of the direct decompositon (5.3) of M
must lie in P, that is, there is a unique cr in E such that a C w. This is one of the
conclusions which has to be carried forward.

Let A\ denote the set of G-conjugates of R. Each direct factor in the decompositon
of M corresponding to E is a product of some members of A\, so this decomposition of
M yields (and is recoverable from) a system of imprimitivity for the conjugation action
of G on A\. Call this system E*. Note that here the term 'system of irnpriniitivity'
is being used loosely, in that one cannot exclude the possibility that all blocks of E*
are singletons.

For each subset S of A\, let 5 be the product of the members of S, and SX
the equivalence relation on 12 whose equivalence classes are the 5-orbits. The SX
form a sublattice A in the lattice of all equivalence relations on ft, and A is a lattice
isomorphism onto A from the Boolean lattice of all subsets of Ai. For cr — SX, let
let cr' denote the unique complement (A\ \ S)X of cr in A. As f) {p £ E | p ^ cr }
is a complement of a in A, it must be this <r'. Further,

shows that
Co(n/<r') - H { Co(n/p) | p € E, p t a } ,

hence the relevant case of (4.4a) may be written as

(5.4) No(cr)|(n/<r) - CG(ft/<r')|(n/<r).

Consider two blocks 0, a of product-impriniitivily for G, such that 7r 3 6 D a
and (5.4) holds (for this <r: do not assume that it holds also for 9 in place of cr}. Let 0
and S be the G-orbits of 0 and cr. Then 0* and E* are sets of subsets of Ai. Let T
and S be the members of 0* and S* , respectively, which contain the element R of Ai:
then TX = 6' and SX = a', so T C 5 . It is easy to see that { T» | g G G, T9 C 5 }
is a block of imprimitivity, call it <S*, for the action of G on 0*. Use (5.4) to prove
that (2.4a) holds for 0*, S* in place of ft, V: this exercise is left for the reader.
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It is easy to see that if <T\ , <r2 are blocks of product-imprimitivity for G satisfying
(5.4) in place of cr and such that ir D a1 and ir D a2, then <rx V a2 (the join
formed in A) is also a block of product-imprimitivity. Apply the previous paragraph
twice, both times with 0 — ai V <r2, to obtain two blocks of imprimitivity 5 J , S2

for the action of G on 0* , with both blocks containing T and satisfying (2.4a). By
Lemma 2.5, one of Sf and S2 must then contain the other: equivalently, one of O\ and

<T2 must be contained in the other. This is the desired analogue of Lemma 2.5.

Everytliing is together now for proving Theorem 4.G aud Corollary 4.7 by imitating
the proofs of Theorem 2.6 and Corollary 2.7; the details are left to the reader.

An alternative line would be to exploit the relevant version (1.2) of the associative
law, as follows. The blocks of product-iinprimitivity for G lying in n and satisfying
(5.4) must form a chain: say, <T\ D • • • D <rm. If m ^ 1 there is nothing more to
prove, so suppose in ^ 2. Let E i , D\ be a [wr]-decomposition with <rx £ £ x , and
Cx the coordinate subgroup corresponding to <7\ in this decomposition; set Go = C\..

For t = 2 , . . . , m , let S? be the relevant system of imprimitivity satisfying (2.4a)
for the action of G on M.. [Note that these are genuine systems of iinprhnitivity: the
blocks of Ej could perhaps be singletons, but never those of the E? with i ^ 2.]
Further, G J. M. = D\ j . M , and J. M is one-to-one on D\. Thus Theorem 2.6 can
be invoked, with the transitive D\ [ M. and in — 1 in place of G atid m , to provide
suitable subgroups G i , . . . , Gm in Di. It is then possible to prove along the lines of
(1.2) that the Go , . . . , G m so chosen have all the required properties.

6. T H E COUNTING PROBLEM

Consider a primitive subgroup G of Sym ft with non-regular socle M. How can
one account for all the subgroups W of Sym ft which contain G and which are wreath
products in product action? I can deal with this problem only under the additional
restriction that the socle of W is M. For such W, the counting may be done as
follows.

Let H be a point stabiliser in G, and K a maximal normal subgroup of M. Let
Ki,... , Kk be the maximal normal subgroups of M such that II C\ Ki = H fl K; set
P = f| Ki, Q = M N H ( I n A"), and R = CM{P). According to Theorem 2+ of [3],
the set of all blow-up decompositions of G is bijective with the set of all subgroups X

of G such that Q ^ X < G. For each such X, consider the direct decomposition of
M which is the blow-up decomposition of G corresponding to X, and then the product
decomposition E^ of ft corresponding to that. Explicitly, form the normal core of P in
X, let <rx denote the eqivalence relation on ft whose equivalence classes are the orbits
of that normal core, and let Hx ^ e t n e G-orbit of <rx . Next, form NQ(<TX ) [ (Sl/ax ) ,

form the normaliser Nx of NM^X ) i{^ / a X ) m Syin (ft/^y ), and count the number
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ax of the [wr] -indecomposable groups Ax which are such that

Further, count the number dx of those subgroups Dx of Sym E^- wliich contain

The result of tills section is that (he number of the relevant W is ^CLX^X > with
summation over the indicated range of X.

For a sketch of the proof, let W be a subgroup of Sym fi which is a wreath
product in product action, contains G, and has socle M. By Corollary 4.7, all |wr]-
decompositions of W with fwr]-indecomposable first factor involve the same product
decomposition, E say, of fl. This E determines a direct decomposition

M = n { M/CM(n/«r) | a 6 E }

of M which is such that each point stabiliser C M ( U ) is the product of its intersections
with the direct factors. Since E is a single (7-orbit, the direct factors in this direct
decomposition of M form a conjugacy class of subgroups of G. Thus what we have is
a blow-up decomposition of G, and so E is 'Ex f° r a unique X in the given range.
Further, ^w{^x)i{^l<Tx) is o,n Ax and VKjE_Y is a D x of the kind indicated.

Given any X , Ax , Dx , whether so obtained from a W or not, one can construct
a subgroup V in Sym il as follows. Choose a transversal T for NG(<^Y ) m G •

Since G is transitive on S^- , this T is also a transversal for the normaliser of ax in
Nsym n (SJV ). It is not hard to see that (4.4a) is satisfied by Nsy m n (EjY) and <rx

in the roles of G and <r. Consequently, Nsy m n (^x) n a s a [wr]-decomposition with
base group Csym n (E^Y ) and a top group D defined by (5.2a) and (5.2bb) [still with
Nsym n ( E x ) and ax in the roles of G and a). To each element v of Nsy m n (E^ ),
there is then a unique dv in D such that uiE^- = dJ.EvY • Set

DX & (v«er) (td;1vt

One can argue, in turn, that this V is a subgroup, that V ^ G, that EyY and D D V

give a [wr]-decomposition for V showing that V = Ax [wr] Dx , and that the socle
of V is M. Finally, one notes that if X, Ax > Dx were originally obtained from a
W then W ^ V; as W is also isomorphic to Ax [wr] Dx , it has the same order as
V and is therefore equal to V.

This completes the proof of our counting and the details of our accounting. Of

course we have done no more than reduce the problem to similar ones in smaller sym-

metric groups. In paticular, NG(C, Y )l(£l/<7x) is a primitive group with non-regular
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socle; the Ax we count are the larger subgroups of the ambient symmetric group which

have the same socle, but excluding those which are wreath products in product action.

This is reasonable because what we can count we can also discount, and Sym (fl/tr^)

is much smaller than Sym fi. Counting the Dx is perhaps a taller order, but then

Sym Tix is very much smaller than Sym fl.
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