
Proceedings  of  Sympos ia in  P ur e M at hem at ic s
Volume 4 7  (1987)

Some Representations of Special Linear Groups
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1. In t roduct ion .  Let p be a prime, q either oo or a power of p, and Fq a
field of characteristic p and order q. Denote by M the multiplicative semigroup
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an action of M  on all of U by graded algebra endomorphisms. Consider U an
M-module (C-module, S-module) accordingly.

This paper is concerned with the submodule structure of U. Obviously, each
homogeneous component Ud is an M-submodule, and so is the sum of any set
of the Ud. A s  is well known, in  the characteristic O analogue of this setup,
these would be the only S-submodules (let alone M-submodules). I n  prime
characteristic there are other kinds of submodules as well, at least if one excludes
(as I shall from now on) the rather trivial case r = 1. Namely, for each submodule
Y, denote by YP the F-span of all the yP with y E Y: this is also a submodule
(because on any commutative ring of characteristic p, the map u  u P  is a
ring endomorphism which commutes with all other ring endomorphisms), and
for instance O <  U  <  Ud
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submodules are always submodules (the product YY/ being as usual the set of
all sums of products of the form yyl with y E Y, E  Y
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The main results in the literature are due to Doty and to Krop.
For the case q o o ,  the S-submodules of U were determined in Doty's thesis

[3] (Notre Dame, 1982; see also [4]). I t  can be deduced from his result that
all S-submodules re  of the kind illustrated above: indeed, each can be given a 4  c2 ,  u
c t 1980 Mathematics Subject Classification (1985 Revision). Pr imary 20C20.

This paper is in final form and no version of it wil l  be submitted for publ ication elsewhere.
0 1 9 8 7  A m er ic an M at hem at ic a l  Soc iet y

0082- 0717/ 87 81 . 00+  8. 25 per  page

207



208 L .  G.  K OV A CS
1,11

canonical expression of that form. (Consequently, all S-submoduleelmit M aswell.)
In the case q < oo the picture is much more complicated and correspondingly

conclusive results seem to be completely out of reach. While one cannot hope to
know all submodules, Krop was bold enough to ask whether the lattice they form
is distributive. When q ,  p, he answered this in his thesis [7] (Chicago, 1983)
and the subsequent papers [8, 9[, for the M-submodules of each Ud with d < r.
(For some such d the answer is affirmative and for the others it  is negative.)
Some of his preliminary arguments work even better when q o o ;  for that case,
he actually determined all M-submodules of the Ud with d < r.

The main result of this paper is a theorem in which q is arbitrary. I t  deals
with certain quotients of the Ud, which include Ud itself when d <  q. Instead
of addressing the submodule structure directly, it  describes (in their action) the
quotients of the (semi)group algebras FM,  FG, FS modulo the annihilators of
the modules in question. The description is such that the submodule structure
can be read off it very easily. In  particular, the results of Doty and Krop for the
case q o o  follow. The proof is elementary in the sense that it makes no appeal
to the language (let alone to the theory) of algebraic groups.

It owes much to the long discussions and extensive correspondence I  have
had with Professor Krop• I  am also indebted to Professor Warren Wong, for an
elementary step which had kept eluding me (even at Arcata).

2. Resu lts.  Let e be a positive integer such that pe <  q, and let V be the
quotient of U modulo the ideal generated by the peth powers:

V = U/UP' U.

This algebra inherits a grading from U, with

Vd 0  i f  and only if  d < r(pe — 1).

It will be convenient to state and prove our result in terms of the Vd. Of course,
if pe >  d then Ud V d ;  given d, one can always choose e this way when q d .
When q < co, the largest quotients of the Ud accessible to the present approach
are the Vd with e chosen so that pe q .

An obvious F-basis in Vd is the set B of all monomials b such that
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(Strictly, one should speak of the set of the cosets of these b, but I shall not be
that pedantic.)

It will be relevant to write each b(i) to base p as
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When performing the addition E  b(i) d  in base p arithmetic, the amount ck(b)
carried to the column of digits with place value p
k i s  g i v e n  b yE E b(i,i)p7 = ck(b),4_ E d(j) 73
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b b '  i f  ck(19) > ck (b1) for all k.
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annihilates all monomials other than b. Refer to the homomorphism of M into
Endp-Vd given by the action of M on Vd•
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-
Vd  s p a n n e d  
b y  t h e  
i m a g e  
o f  
S  
c o n t a i n
s

the image of M. The set of the (b,b
/
) w i t h  b  › •  
1 1  i s  
a n  F -
b a s i s  
f o r  
t h i s  
s u b a l g e
b r a .

The proof of the Theorem will be sketched in the next two sections. Here we
discuss some consequences and related results: their deductions (either from the
Theorem or from its proof) will be left to the reader.

For a start, let us domesticate the Theorem by paraphrasing its second part
as follows. The relation >- is obviously reflexive and transitive; hence it  is easy
to see that there exist linear orders > on B which are compatible with ›- in the
sense that b > II and b' >- b imply b >- T h i n k  of Endp-Vd as acting on the right,
and identify it  with the full matrix algebra of the relevant size, with reference
to the basis B  (linearly ordered as indicated). The transformation (b , )  then
appears as the matrix whose entries are all O except for the b, II entry which is
1. The subalgebra in question becomes the algebra of all "blocked" matrices in
which certain specified blocks consist of zeros. A ll blocks above the diagonal, but
no blocks on the diagonal, are required to vanish. As in any such algebra, the
nonvanishing blocks graph a partial order on the set of the diagonal blocks. Here
the set of the diagonal blocks is bijective with the set, P say, of all carry patterns
obtained in base p arithmetic while writing d as a sum of r summands b(i) with
O < b(i) <  pe, the partial order matching that defined on P componentwise.

It will be useful to be familiar with another isomorphic copy of this poset.
That consists of all sequences 0(0), ,  0 (e - 1) of integers such that O < i
3 ( j )  <r(p — 1) and E  o(j)p ' d ,  the partial order being given by
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The relevant order-isomorphism is induced by the mapping of B onto this poset
which takes b to the ,(3 defined by OW E  b(i, j) : the isomorphism maps the
carry pattern of b to this 0. The relations
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show that the latter map is well defined, one-to-one, and order-preserving. To
see that it  is also surjective, given any t3 define b by b(i) E  b(i, 3
.
)1 3
3  w h e r e
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)
[ (
3
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) 1
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- 1
) ]

lo
note that O < b(i) <  pe and E  b(i) d  so b E B, and check that the image of
(the carry pattern of) this b is [3. [For later reference observe also that, with
respect to the lexicographic order on B (which need not be compatible with >-),
this b is the "highest" preimage of )31 I t  is straightforward to see that this poset
(and hence also P) has a unique minimal element and a unique maximal element.
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The Theorem shows that Vd has the same submodules regardless of whether
we consider it  an M-,  G-, or S-module. Indeed, since the basis it  describes is
independent of the choice of the subfield Fq in F (as long as Fq has at least pc
elements), the subalgebra spanned by the image of S contains even the image of
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immediate that all composition factors of Vd are absolutely simple and that the
factors of any one composition series are pairwise nonisomorphic.

The theorem yields full knowledge of the submodule structure along the fol-
lowing lines. As the relevant subalgebra contains all the diagonal primitive idem-
potents (b, b), each submodule is spanned by the monomials it contains A  subset
B' of B is the basis of a submodule if  and only if
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Thus the submodule lattice of Vd is finite and distributive. A  nonzero submodule
is a joinirreducible element of this lattice if and only if it is generated by a single
element of B: thus the poset of the nonzero joinirreducibles is isomorphic to
the poset P of the carry patterns discussed above. Since any finite distributive
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lattice is isomorphic to the (union/intersection) lattice of all filters (dual ideals)
on the poset of the nonzero joinirreducibles, our submodule lattice is isomorphic
to the lattice of all filters on P. We  have seen that P  has a unique maximal
element and a unique minimal element: so Vd itself must be joinirreducible (and
so have a unique maximal submodule) and must have a unique simple submodule.
Further, each composition series of Vd is bijective with P in such a way that the
factors of different series matched to the same carry pattern are isomorphic. (For
basic facts on finite distributive lattices, see Aigner [1].)

Explicitly, let b be any element of B: the submodule generated by b has basis
I b' E Bib >•- a n d  this is the joinirreducible submodule corresponding to the
carry pattern of b. For any 0 in the isomorphic copy of P discussed above, set

v
ß 
= 
f
J
v
.

If 0 is chosen as the image of b (in the sense of that discussion), then V0 is the
submodule generated by b. Further, the unique simple quotient of this module
represents the isomorphism type of the composition factors corresponding to the
carry pattern of b. I t  is not hard to deduce directly that this simple quotient is
the twisted tensor product of the unique simple quotients of the V
0
(
3
) .  I f  b  ' i s  t h e

(lexicographically) highest preimage of 0 in B, then the b(i) give the partition of
d which customarily labels this isomorphism type of C-modules when q ,  oo (see
for instance Green [6]). [When q < oo but F is infinite, our simple G-module is
the restriction to G of the simple GL,.(F)-module labelled by this partition. I f  F
is finite, let F denote its algebraic closure and take the simple FGL,(F)-module
bearing this label: the restriction of this to FG is the module obtained from
our simple FG-module by extension of scalars.] Conversely, let b(1), ,  b(r) be
any r-part partition of d and b = n  X t
b (2 ) :  t h e  
s i m p l e  C -
m o d u l e  
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partition occurs among the composition factors of Vd if  and only if b is maximal
(in lexicographic order) among the elements of B giving its carry pattern, and
it is not hard to see that this condition is equivalent to O < b(j) < pe and

Vj. 3 k. [b(i, 2
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where the b(i, j) are the base p digits of the b(i) as before.
An unusual feature of the submodule lattice of Vd is that all meets of joinirre-

ducibles are joinirreducible. Differently put: to any 11 ,b" in B, there is a b in B
such that b/FM n b"FM =bFAI. Namely, define first c(k) by
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c(k) = 0 i f  k e ,

and then /3 by 0(k) =  d(k) + c(k + 1)p c ( k ) ;  it  is not hard to verify that any
preimage of this 0 (for instance, the lexicographically highest preimage defined
explicitly above) will do as b.

To state another unexpected fact, let r* be any integer, r*  >  r,  and define
G*,S*,U*, V* with reference to r* in  place of r. Then U is a subalgebra of U*
and V may be considered a subalgebra of V .  Further, one may identify G with
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a subgroup of G* in such a way that the action of G on U is the restriction of the
action of G* on U* and G fixes each of the new indeterminates xr+1, • • • , x
r
- ;  o f
course then S becomes a subgroup of S*• I t  will be seen from the proof of the
Theorem that the S-submodules of Vd are just the intersections of Vd with the
S*-submodules of V .  [In general, for Ud the analogue of this statement is false.
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image of G in EndFUd need not contain the image of M.]

3. P r o o f  of the Theorem: T h e  plan. We begin with an elementary
exercise on semigroups, leaving the completely bare-handed deductions to the
reader. Let B be any set, C a subset of the cartesian square B
2  c o n t a i n i n g  t h ediagonal (b,b)lb E BI, and write C'P = b )1 (b , 1 1 ) E BI. Define a semigroup
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b2)(b3, b4) = O o t h e r w i s e .

Suppose that 101 U C is a subsemigroup [equivalently, that C is the graph of a
preorder, that is, of a transitive and reflexive binary relation, on Bl. Then B
can be partitioned so that C n cc.P is the union of the cartesian squares of the
parts [equivalently, C n 0
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product of this sequence is not O [and hence equals 00,140], then bo, bi, • • • , bn
must be pairwise distinct. The set O I  U C\C"P is an ideal in O I  U C; indeed,
it is a nilpotent ideal when B is finite.

We shall use these facts only via the following application to algebras. Let B
be finite, F  any field, and FB the F-space with basis B. Identify each (kb ') in
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basis vectors other than b. Write  linear transformations on the right, so their
composition agrees with the multiplication defined above on 101 U B
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Further, F (C  \C" ) is the radical o f I V ,  and F(C n C°P) is a  complement
to that radical. I f  B
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series of FB are absolutely simple and pairwise nonisomorphic.
Conversely, let W be a finite-dimensional F-space and A a (nonzero) subalge-

bra of EndFW such that the factors of a composition series of W as A-module are
absolutely simple and pairwise nonisomorphic: one can show that then A = FC
for some suitable basis B of W and some suitable subsemigroup {0
} U  C ,  c o n t a i n -ing all the idempotents, of {0
} U  B
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and Reiner [2] to deduce that the radical of A is complemented by a direct sum
of full matrix algebras whose degrees sum to dim W, whence 1 can be written
as the sum of dim W orthogonal idempotents in A, and B can be chosen so that
these idempotents become the (b,b). Then A =  ED El)(b,b)A(b
1 , b ' )  w h e r e  e a c h
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summand is of dimension at most 1 and so each nonzero summand contains the
corresponding (b, bi) : thus one may choose C as A n B
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containing A, then A' is also spanned by its intersection with B
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We are now ready to describe the proof of the Theorem, leaving six technical
steps for the next section. Take up the conventions of §2: in  particular, from
now on B is once more the fixed basis of Vd consisting of the "monomials." Let
A denote the span of the image of S in EndFlid, and T the semigroup of the
diagonal matrices in M.

When q o o  the first sentence of the Theorem can be obtained by a routine
argument which we shall merely sketch. Each monomial is an eigenvector for
each element of T, and to any two different monomials (of the same degree d)
there is an element in S n T whose eigenvalues on these monomials are different.
It follows that each (S n T)-submodule of Vd is spanned by the elements of B
that it  contains; equivalently, that the span of the image of S n T contains all
the (b, b). Conversely, the image of T lies in the span of the (b,b), so we are'done
because S and T together generate M.

When q < oo we have to work harder. Let A' denote the span of the image
of a  Step 1 is that A' contains all the (b,b). As we have seen, this implies that
A' =  FG with C = A' n B
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2: no two factors of this composition series are FS-isomorphic. Step 3 is that
these FG-composition factors are absolutely simple as FS-modules. Step 4: a ll
FS-submodules of Vd admit C. The last sentence of the third paragraph of this
section (applied perhaps with a different choice of B) would contradict this if we
had A' > A : hence A' =  A. In  view of Step 1, the claim now follows as in the
case of q D o .

This has not only proved the first sentence of the Theorem, but also reduced
the proof of the second sentence to establishing that

b' E bFM i f  and only if ck(b) > ck(b') for all k.

Let r*  be an integer, r*  >  r;  define M*,G*  , S* ,U* ,17* with  reference to
r* in  place of r. Th e n  U is a subalgebra of U*, and V  may be considered
a subalgebra of V*. Further, one may embed M  in  M*  in  such a way that
the action of M on U remains unchanged while z
r + 1
,  ,  x
r
•  a r e  
a n n i h i l a t e d

by M.  I n  particular, the identity element of M becomes the diagonal matrix
6 in  M*  with  1 in  the first r  diagonal positions and O elsewhere, and then
M  = 6M*6. (Beware: this puts C into M* as a group of singular matrices, not
as a subgroup of G*.) Then Vd is an M-submodule of the M*-module V
d
* ,  a n d
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it is easy to see that the M-submodules of Vd are precisely the intersections of
Vd with the M*-submodules of V; [as 6
2  =  S  a n d  
V 7 6  =  
V d ,  
i f  
v  
E  
V d  
t h e n

vFM = vF(6M*6) =  (vFM*)6  = Vd n vFM1.
(Before proceeding, we pause to justify the claim made in the last paragraph

of §2. By now we know that if  v E Vd then O W  v A  = vFS and so similarly
vFM* =  vA* =  vFS*, hence also vFS = Vd n vFS*. This conclusion no longer
involves the action of G on x
r + 1
,  , X r  
s o  
i t  
h o l d s  
a l s o  
w h e
n  
G  
i s  
t a k
e n  
t
o  
fi x

these extra indeterminates.)
The outstanding claim will certainly follow if  we can show that, for all b,b'

in B*,
b' E bFM* i f  and only if  ck(b) > ck(b
1
) f o r  a l l  k .Instead of carrying asterisks into all subsequent formulas, we exploit this by

assuming without any loss of generality that the number of available indetermi-
nates is large compared to the degree d we are interested in. Indeed, to simplify
typography we assume that U has further indeterminates y ,  as well as the x
t
,
with i running at least to d and j  miming from O to e — 1.

For each sequence 0 (0 ),  ,  (3(e — 1 ) o f  nonnegative in te e rs w i t h
= d (so that in particular (3(j) < d for all j),  set

e - 1 1
3
( 3 )Vo = 1117(11(31) and T3 = n i l  yl

i
)
; •

3 =0 3  =0 t =
Note that the monomials in Vd are precisely the monomials in ( x
1
x 2  •  •  •  x d ) M
similarly, the monomials in V g
3 ) a r e  t h e  
m o n o m i a l s  
i n  ( fl
i
'
3
=
C '
1
)  4
1
) M ,  
a n
d  
s
o  
t h
e

monomials in V0 are just the monomials in -
fi ' M .  I n  p a r t i c u l a r ,  
V 0  =

Let b = E  B with b(i) =  E  b(i, j)p
3 a s  b e f o r e ,  
a n d  s e t  
0 ( j )  
=  
E  b
( i ,  
j ) .

Step 5 is that b E 13M and 0 E bFM : consequently, bFM =
Let 0' be similarly defined from b
1
. S t e p  6 :  
w e  
h a v e  
E  
b F M  
i f  
a n d  
o n l
y  
i f

o(i)/y1 oup3
j < k  j < k

for each k.

Since E
3 <
k  0
( 3
.
) 7 3
3  
=  
c k
( b
) p
k  
+  
E
3
<
k  
d
(
i
)
p
3  
a
n
d  
a  
s
i
m
i
l
a
r  
e
x
p
r
e
s
s
i
o
n  
h
o
l
d
s

with 0 ' and b' , the inequalities in  Step 6 are equivalent to those we require.
While elements of B can now involve indeterminates other than the x
t
,  n o n e  c a n
involve more than d indeterminates; as i  does range at least up to d and as M
contains all permutations of the indeterminates in U, no generality was lost by
taking b and b' in the form above. Thus Steps 1 to 6 will indeed complete the
proof of the Theorem.

4. P roof of the Theorem: The  deferred steps. STEP 1. Each (b,b) is
the image of some element of the group algebra FG.

PROOF. Consider the case ye q
.  L e t  b  
= fl  x
b
i
( i )  E  
B  
a n d  
c h o o s
e  
q  
—

pairwise distinct nonzero scalars ,  f
q
_
i  i n  F q .  F o r  
e a c h  
i ,  
c o n s i d e r  
t h e



system of q — 1 linear equations
q -1 1 i f  L. b ( i )  mod q — 1,
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E
f
i
k
x
„  
k  
E  
f
l
,
.
.
.
,
q  
— 
1
1
.

i. O otherwise,3=1
The determinant is a nonvanishing vandermondian, so there is a unique solution
f
2
3 
i
n 
F
.  
L
e
t  
d
,
3 
d
e
n
o
t
e 
t
h
e 
d
i
a
g
o
n
a
l  
m
a
t
r
i
x 
i
n 
G 
w
i
t
h 
i
,
i  
e
n
t
r
y 
J
.
3 
a
n
d 
a
l
l

other diagonal entries 1, and consider the element 6, of the group algebra FG
defined by 6, =  E  I f  11 =  x
t
w ( t ) e  B  
t h e n  1 1
( 1 ,
3  =  f
b
'
( z )
b '  
a n d  
s o  
b '

3
is fixed by 6, i f  b'(i) a  b(i) mo d  q — 1 and annihilated otherwise. Since the
6, commute with each other, their product 6 fixes or annihilates b' according
to whether bi(i) b ( i )  for all i.  [When pe <  q, one can choose pe pairwise
distinct nonzero scalars and solve systems of pe simultaneous equations instead;
as b
1
( i )  
b
( i
)  
m
o
d  
p
e  
f
o
r  
a
l
l  
i  
a
m
o
u
n
t
s  
t
o  
b
1  
=  
b
;  
i
n  
t
h
a
t  
c
a
s
e  
(
b
,
b
)  
i
s  
s
i
m
p
l
y  
t
h
e

image of 6 and the proof ends here.]
As all permutations of the indeterminates belong to G, no generality is lost

by restricting attention to  b such that for suitable integers s, t one has that
r > s > t > O a n d

b ( i ) 1
=  q  
—  
1  
i
f  
0  
<  
i  
<  
t
,

= 0 i f  t <  i < s,
E —  21 i f  s < i < r.

Set b* =  H
i >
,  x
i
b ( i )  
a n d
,  
f o
r  
e a
c h  
t -
e l
e m
e n
t  
s
u
b
s
e
t  
I  
o
f  
1
1
,  
,  
s
l
,  
l
e
t  
b
i

ie l x
q  i 
•  
t
h
e  
e
l
e
m
e
n
t
s  
o
f  
B  
f
i
x
e
d  
b
y  
6  
a
r
e  
p
r
e
c
i
s
e
l
y  
t
h
e  
b
i
b
*
.  
I
f  
t  
=  
O  
o
r  
t  
=  
s
,

--' • h
then there is only one such I  and so b is the only element of B fixed by 6 : in
this case (b, b) is just the image of 6. I n  the remaining case, O <  t  <  s. Fo r
each pair i, j of integers such that 1 < i < t < j <  s, consider the element g
2 3  o fG which maps x, to x, + x
3  a n d  fi x e s  
a l l  
o t h e r  
i n d e t e r m
i n a t e s ,  
a n
d  
t h
e  
e l e
m e n
t

h
t
3  
w
h
i
c
h  
s
w
a
p
s  
x
,  
w
i
t
h  
x
3  
a
n
d  
f
i
x
e
s  
a
l
l  
o
t
h
e
r  
i
n
d
e
t
e
r
m
i
n
a
t
e
s
.  
N
o
w 
(
b
,  
b
)  
i
s  
t
h
e

image of T1 fJ 6(g6 —1)h,
3
. I n d e e d ,  
t h i s  
p r o d u c t  
a n n i h i l
a t e s  
a l
l  
e l e m
e n t s  
o
f  
B

other than the bibs (because 6 already annihilates them), while
bi + i f  i E I  and 3
. 1 %  I ,b ig 6

otherwise,

so bi is fixed by 6 (g6  — 1)h,
3 i f  i  E  I  
a n d  
i V  
I ,  
a n d  
a n n i h i l
a t e d  
o t h e r
w i s e .

This completes the proof of Step 1. One may note that this step works mutatis
mutandis if  Vd is replaced by V/Vo or V /V , . (
q
_
1
) b u t  n o t  f o r  
V  i t s e l f :  
i n d e e d ,  
i f

pe = q then Vo and V , -(
q
_ 1 ) a r e  C -
i s o m o r p h i
c  ( I -
d i m e n s i
o n a l  
t r i v
i a l )  
m o d
u l e
s .

STEP 2. No  two factors of the given FC-composition series of Vd are FS-
isomorphic.

PROOF. This will be seen by comparing traces.
The claim, and the discussion leading up to it, behaves well under extension

of scalars, so we may assume here that F  is algebraically closed.
By a fundamental theorem, the subalgebra of the symmetric polynomials in U

is the image of a one-to-one algebra endomorphism a of U such that xicr,.. . ,xra
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are the elementary symmetric polynomials. One can read off the standard proof
of this theorem that if  w is a symmetric polynomial whose degree in each inde-
terminate is smaller than n, say, then the total degree of the unique preimage
w a
- 1  
i
s  
s
m
a
l
l
e
r  
t
h
a
n  
n
.  
M
o
r
e
o
v
e
r
,  
i
f  
w  
i
s  
h
o
m
o
g
e
n
e
o
u
s  
o
f  
d
e
g
r
e
e  
d  
a
n
d  
w
a
-
1

is written as E  / 1
4
4  w i t h  
w ,  
E  F
[ X 1 , . . .
, x , _ 1 1
,  
t h
e n  
e a
c h  
'
m
a  
i
s  
h o
m o
g e n
e o u
s

of degree d — jr.
For each B
3
,  
d e fi n
e  
t h
e  
p o l
y n o
m i a
l  
u
3  
i
n  
U  
b
y  
r e
q
u i
r i
n
g  
t
h
a
t  
u
l
c
r  
b
e  
t
h
e  
s
u
m

of the (genuine) monomial preimages of the elements of B
3 ( i n  U ) :  t h e n  
e a c h  u
s

is of total degree less than q. Consider the endomorphism p of U which maps x
rto 1 and fixes the other indeterminates. I f  u
3 E  / v
i
e
r  a s  
a b o v e ,  
t h e  t u
t
u  a r e

the homogeneous components (of the relevant degrees) of u
3
p e r :  h e n c e  u
3  c a n  b e

reconstructed from u
3 p .  T h u s  
i f  
j  
k  
t h e
n  
u p  
u
k
p  
i
n  
F
[ x
l ,  
•  
•  
•  
, x
r -
1 ]
•

Given any ,  f
r
-
1  i n  F
q
,  
d e fi n e  
t h e  
p o l y
n o m i
a l  
c
p  
a
s  
x r +
( - 1
) r
+ E  
f
j
e
- -
1
;

write (p as a product of polynomials which are irreducible over F
q
,  a n d  l e t  s  b e
the direct sum of the companion matrices of these irreducible factors. Then s is a
completely reducible matrix whose characteristic polynomial is (p; in particular,
det s =  1 so s E S. I t  follows that the trace of the matrix representing s on
the composition factor (FBI. el • • • ED F B
3
) / ( F B 1  E D  •  
•  •  E D  
F B
3
_ 1 )  i s  
t h e  
i m a g e

of u
3  
u
n
d
e
r  
t
h
e  
h
o
m
o
m
o
r
p
h
i
s
m  
U  
F  
w
h
i
c
h  
m
a
p
s  
e
a
c
h  
o
f  
,  
x
r
_
l  
t
o

the corresponding f
t  a n d  
m a p s  
x
r  
t o  
1 .  
[ F o
r ,  
s  
i
s  
c o n
j u g
a t e  
i
n  
G I ,
r
( F )  
t
o  
a

diagonal matrix s' whose diagonal entries are the characteristic roots 6 ,  ,  e
rof s; each element b of B is an eigenvector for s', with eigenvalue He
t
b ( i )
,  a n d

so on.] Differently put: the trace is given by evaluating the polynomial function
u p  (of r — 1 variables) at l
i , . . .  f r - l •  
S i n c e  
d i s t i n c
t  
p o l y n o
m i a l s  
o
f  
d e g
r e e

less than q define distinct polynomial functions on F
q
,  w e  c o n c l u d e  
t h a t  
d i s t i n c t

composition factors afford different traces and so cannot be FS-isomorphic.
STEP 3 .  A l l  FG-composition factors of Vd are absolutely simple as FS-

modules. (I  am indebted to Professor Warren Wong for this step; see [10].)
PROOF. I t  suffices to show that if  q < oo and F is algebraically closed, then

each simple FG-module W is simple as FS-module. In  turn, this is equivalent
(see Theorem 111.2.14 in  Feit ]5]) to  the claim that each simple FS-module
is isomorphic to all its G-conjugates. A s the Brauer character determines the
isomorphism type of a simple module, all we need show is that if two p'-elements
of S are conjugate in C then they are already conjugate in S. To  see this, we
show that if h is such an element in S then SCG(h ) =  Gr: that is, to each nonzero
f  in Fq there is a g in the centralizer CG(11) such that det g = f .  I f  this holds
for some irreducible constituent of h, then it  holds also for h, so it  suffices to
consider irreducible h. The centralizer of an irreducible h in the matrix algebra
Mat, WO is a field of degree r over F
q
;  h e n c e  C G
( h )  i s  
c y c l i c  
o f  
o r d e r  
q r  
—  
1  
:  
l e t

c be one of its generators, and -7 one of the characteristic roots of c. The other
characteristic roots are then the Galois conjugates of o v e r  Fq and each must
have multiplicative order qr — 1. I t  follows that

det c = .71+q+•••+q-1
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and so det e has multiplicative order q -  1. Thus each nonzero f  in Fq is a power
of det e, that is, each such f  is the determinant of some power g of e.

STEP 4. A ll FS-submodules of Vd admit C.
PROOF. Th is is an argument by contradiction. L e t  W be minimal among

those FG-sections of Vd which have FS-submodules that do not admit G, let
W
I  
b
e  
m
i
n
i
m
a
l  
a
m
o
n
g  
t
h
e
s
e  
F
S
-
s
u
b
m
o
d
u
l
e
s  
o
f  
W
,  
a
n
d  
l
e
t  
W
2  
b
e  
a
n
y  
s
i
m
p
l
e

FG-submodule of W. By the minimality of W
1
,  a n y  m a x i m a l  
F S - s u b m o d u l e  
W 3

of W
I 
m
u s
t  
a
d
m
i
t  
C
,  
a
n
d  
t
h
e
n  
W
/
W
3  
i
n
h
e
r
i
t
s  
t
h
e  
r
e
l
e
v
a
n
t  
p
r
o
p
e
r
t
i
e
s  
o
f  
W
,  
s
o

by the minimality of W we must have W3 = 0: thus W
I  i s  a  s i m p l e  F S -
m o d u l e .
By the minimality of W used again and again, (W
I  +  W 2 ) / W 2  m u s t  
a d m i t
and so Wi + W2 must be W. From Step 3 we know that W2 is simple even as
FS-module, so in fact W =  W1ED W2. Thus W
i W / W
2
,  s o  f r o m  
S t e p  
2  
w e

know that Wi and W2 cannot be FS-isomorphic: hence W
I a n d  W 2  a r e  
t h e  o n l y
simple FS-submodules of W. Since S is normal in C, the simple FS-submodules
of W must be permuted by G. This contradicts the assumption that W2 admits
G but W
i 
d o e
s  
n o
t ,  
a
n
d  
t
h
e  
p
r
o
o
f  
i
s  
c
o
m
p
l
e
t
e
.

STEP 5. b E 73M and ,3 E bFM.
PROOF. The first claim is almost obvious: act on T3 by any matrix from M

which maps, for each j,  the first b(1, j) of the y
i3  t o  x
i
,  t h e  n e x t  
b ( 2 ,  j )  
o f  
t h e

y
z
3 
t
o 
x
2
,  
a
n
d 
s
o 
o
n
.

The second claim is a little harder. Instead of spelling out a formal proof, we
shall be content with demonstrating the key idea in action, proving the follow-
ing related result: i f  no monomial in bFM involves more indeterminates than b
itself, then each nonzero b(i) is a power of p. Suppose not, and permute inde-
terminates if  necessary to arrange that b(1) is neither O nor a power of p, none
of b(2), ,  b(s) is 0, but b(i) -,- O whenever i > s. Let p
k b e  t h e  l a r g e s t  p -
p o w e r
divisor of b(1); then the (binomial) coefficient of xb (
1
)
—
P
k  y P
k  i n  ( x  +  
y ) b (
1
)  i s  
n o t

divisible by p. Apply to b first the element of M which maps xi to xl +  x8+1
and fixes all indeterminates other than xi,  and then apply (11 , b') where

b
i 
x
b
(
1
)  
—
P
k 
X
P
k

1 8 + 1
i =2

the result is a nonzero scalar multiple of V. This proves that b' E bFM, contrary
to the fact that b' involves s + I indeterminates, more than b does.

STEP 6. We have E  bFM if  and only if

E  o
u )
p 3  
E  
1
3
'  
(
j
)
p
l  
f
o
r  
a
l
l  
k
.

3<k 3 < k

PROOF. Suppose first that 19' E bFM. We know as a consequence of Step 5
that this means b' E Vo So b
1 i s  d i v i s i b l e  
( i n  
t h e  
f r e e  
c o m m u t
a t i v e  
s e m i
g r o u
p  
o
f

all monomials) by the p
k
t h  p o w e r  
o f  
s o m e  
m o n o m
i a l  
o f  
d e g
r e e  
E
3 >
k  0
( j ) /
3 -
1 — k
.

On the other hand, the largest pkth power divisor of 11 has degree E
3 > k  ( j ) p "In view of E  /
3 ( j ) p 3  
d .  
E  
( 3
.
) 7 3
2  
,  
t h
e  
r e q
u i r
e d  
i n
e q
u a
l i t
y  
f o
l l
o w
s .
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Conversely, suppose that the inequalities all hold. Both sides of the inequality
involving k being congruent to d modulo p
k ,  w e  t h e n  
h a v e E o(j)p7 = cuopk + E o'u)pi3<k 3 < k
with nonnegative integers c(k). [In fact, c(k) =  ck(b) — ck(b/).] Then

0(k) + c(k) — c(k +1)p = [ 3
1
(k )  0  f o r  
a l l  
k ,

with c(0) =  c(e) O .  Let mk be a matrix in M  which leaves all indeterminates
fixed except the last c(k + 1)p of Y1,k, • • • Y(3(k)+c(k),Icl maps each of the last p
of these to afl(k-1-1)-1-1,k-1-1, each of the second last p to Y(k+1)+2,k+1, and so on.
Starting with

/3'(0) f 3 ( 1 ) + c ( 1 )  e
-
1 1
3
( i )

-
1
3
M
0 
y
i
o 
y
i
P
1 
y
f
;

i =1  , = 1  3 = 2  i =1

it is straightforward to  see that T3m0m1 • • • me-1 =  7
-
3
/ •

Tg
I
M 
C
M  
C  
b
F
M
,  
a
n
d  
t
h
e  
p
r
o
o
f  
i
s  
c
o
m
p
l
e
t
e
.
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