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ABSOLUTE SUBRETRACTS AND WEAK INJECTTVES

IN CONGRUENCE MODULAR VARIETIES

BRIAN A. DAVEY AND L. G. KOVÁCS

Abstract. Absolute subretracts and weak injectives in congruence modular varieties

of universal algebras are investigated by focusing attention on the directly indecom-

posibles. The proofs rely on a congruence modular version of generalized direct

products (direct products with amalgamation) and on the generalized Jónsson

Lemma for congruence modular varieties. The results have immediate application to

varieties of groups or rings.

1. Introduction. Weak injectives and absolute subretracts were first considered in a

universal-algebraic setting in G. Grätzer and H. Lakser [7] and have since been

studied in a range of varieties; see [1] by H. Werner and the first author, particularly

§1 and the references given there. As shown in [1], these concepts are particularly

tractable in congruence distributive varieties. Unfortunately, there appears to be no

satisfactory theory for varieties in general.

In particular, there is little directly relevant literature for varieties of groups:

apparently none on weak injectives; only negatives on absolute subretracts except

the relevant half-page (p. 144) of Hanna Neumann's book [13] (where they are called

'closed') and its amplification in [12] of M. F. Newman and the second author.

Our first aim here is to extend to congruence modular varieties one of the claims

published (without the easy proof) for finite groups on p. 144 of [13], and to provide

a parallel for weak injectives.

The reason we can go this far, and no further, is that even the statements rely on

commutators (of congruences) for which a fully workable theory has been developed

only in the congruence modular case. For the relevant definitions the reader is

referred forward to the body of the paper. We note here that the terms in our

theorems have their usual meaning for groups, but "abelian ring" means zeroring, a

finitely subdirectly irreducible ring " has trivial center" means that either the left or

the right annihilator of the ring is 0, while a subdirectly irreducible ring "has

nonabelian monolith" means that its unique minimal ideal is not a zeroring.

1.1 Theorem. Let A be a nonabelian, directly indecomposable algebra in a con-

gruence modular variety X. If A is an absolute subretract in X, then A is finitely

subdirectly irreducible and the center of A is trivial. If A is weakly injective in X, then

Received by the editors August 29, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 08B30, 08B10; Secondary 20E10.
16A52.

Key words and phrases. Injectivity, congruence modularity, varieties of universal algebras, groups, rings.

©1986 American Mathematical Society

0002-9947/86 $1.00 + $.25 per page

181



182 B. A. DAVEY AND L. G. KOVACS

A is prime; in particular, if A is also finite, then it is subdirectly irreducible with

nonabelian monolith.

For example, the symmetric group of degree 3 is not weakly injective in its variety,

though (as hinted in [13] and mentioned in [12]) it is easily seen to be an absolute

subretract there. Theorem 1.1 is proved in §4.

The groups proof used generalized direct products (direct products with amalga-

mation); perhaps the most interesting aspect of the present proof is the use of that

construction in the general congruence modular context. We expect that by using

generalized subdirect products instead, one could strengthen the conclusion "the

center of A is trivial" to "the annihilators of nonabelian congruences of A are all

trivial", as was done for groups in some 1964 correspondence between M. F.

Newman and the second author. Without being named, such subdirect products with

amalgamation have been used in the general congruence modular context by R. S.

Freese and R. N. McKenzie; see the proof of Theorem 7 in [4] and the last

paragraph of §7 in [5]. We shall not pursue this point here, partly because even this

stronger form of the first half of Theorem 1.1 has no converse: as mentioned in [13],

M. F. Newman and the second author had found that a finite subdirectly irreducible

group can satisfy the stronger conclusion without being an absolute subretract in the

variety it generates. We sketch their example in the final section of this paper.

By contrast, we can give a partial converse to the second half of Theorem 1.1. A

variety X is called subregular if for all A e X, all B < A and all a, ß e Conyl,

[b]a = [b]ß for all b e B implies a = ß. Varieties of groups and rings are subregu-

lar; all subregular varieties are congruence modular (but not vice versa). See [2] by

K. R. Miles, V. J. Schumann and the first author.

1.2 Theorem. If A is finite and subdirectly irreducible with nonabelian monolith,

and if Var A is subregular, then A is weakly injective in Var^l.

The principal tool in the proof of Theorem 1.2, to be found in §5, is the

congruence modular generalization of Jónsson's Lemma (see [3, 5, 10]). We also

prove there some variants of Theorem 1.2, in which the finiteness assumption on A

is relaxed (though not simply dropped) and NarA is replaced by a larger subregular

variety. These results also show us algebras that are weakly injective in a variety X

without necessarily generating it: however, they do not even begin to give us an

overview of all weakly injectives in any given X. The only conclusive result we can

offer in that direction is the following. For any algebra A and Boolean algebra B

the algebra of all continuous maps from the Stone space XB of B into A (with the

discrete topology) is called a bounded Boolean power of A. (For a brief discussion of

functional completeness see §5 below.)

1.3 Theorem. // Var^l is subregular and if A is finite and functionally complete

(for instance, because NarA is congruence permutable and A nonabelian simple), then

the weak injectives of War A are precisely the bounded Boolean powers of A by complete

Boolean algebras.
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This relies on, and answers a question raised in, B. A. Davey and H. Werner [1]; it

applies, in particular, to the case where A is a finite simple nonabehan group or the

ring of all n X n matrices over a finite field.

The results above apply only to nonabehan algebras. For abelian algebras the

distinction between weakly injectives and injectives disappears. The following result

is proved at the end of §3.

1.4 Theorem. If an abelian algebra A is weakly injective in a congruence modular

variety X, then it is injective in X.

Theorem 1.4 does not extend to absolute subretracts since it is easy to see that the

cyclic group of order 9 is an absolute subretract but not an injectuve, and hence not

even a weakly injective, in the variety of groups usually denoted by sé3sé2 V sé9. In

this context, it should be noted that in varieties of groups all injectives are known:

O. C. Garcia and F. Larrión [6] determine the abelian injectives in each variety of

groups, while M. F. Newman and the second author [12] show that the injectives in

any variety of groups must be abelian.

We are indebted to Dr. M. F. Newman for his permission to use unpublished

material of which he was joint author, and for many stimulating conversations.

2. Preliminaries. We require some definitons concerning injectivity, a generali-

zation of the concept of congruence regularity, and some properties of the commuta-

tor in a congruence modular variety.

An algebra A is (weakly) injective relative to a class X of algebras if every

(surjective) homomorphism i/>: B -» A, where B is a subalgebra of some C e X, can

be extended to a homomorphism «//: C -* A. If A e X we say that A is (weakly)

injective in X. If A is weakly injective in X, then A is an absolute subretract in X

(also referred to as closed in X); that is, if \p: A -> B is an embedding with B e jf,

then there is a homomorphism ^': B -* A satisfying \p ° t// = id,,.

The lattice of congruences on A is denoted by Con A with smallest element 0 and

largest element 1. For a & A and a e Con A, [a]a denotes the congruence class of a

in a and for B ç A we define [B]a = \J([b]a\b e B).

An algebra A has subregular congruences if one of the following equivalent

conditions holds (see B. A. Davey, K. R. Miles, and V. J. Schumann [2]).

(i) For all B < A and all a, ß e Con A, [b]a = [b]ß for all A e B imphes

a = ß;

(ii) For all B < A and all a, ß e Con ,4, a \ B ç ß t B and [B]a = B implies

« ç ß.

If every algebra  A e X has subregular congruences, then we say that  X is

subregular. Both groups and rings have subregular congruences.

For a variety X congruence subregularity imphes congruence modularity (that is,

Con A is a modular lattice for all A e X). Whenever X is congruence modular we

may call upon commutator theory, for which J. Hagemann and C. Herrmann [10], C.

Hermann [11], H. P. Gumm [8, 9], R. S. Freese and R. N. McKenzie [5], R. Freese

[3]   and  W.   Taylor  [14]  are  basic  references.  We  now  collect  together  the
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commutator-theoretic results needed later; proofs can be found in one or more of

the references listed above. For the remainder of this section all algebras are

assumed to be in a congruence modular variety.

Let a, ß e Con A and let A^ be the congruence on a (viewed as a subalgebra of

A2) generated by {((a,a), (b,b))\aßb}\ note that A£ < (ß X ß) \ a. Then the

commutator [a,ß] e Con A is defined by

[a,ß]= {(a,b)\(3ceA)(a,c)tfa(b,c)}.

For groups and rings, where we may replace congruences by normal subgroups and

two-sided ideals, respectively, the commutator is familiar: it is the usual commutator

for normal subgroups while for ideals / and /, we have [/,/] = // + //.

2.1 Proposition, (i) [a, ß] < a a ß.

(ii)[a,ß) = [ß,a].

(üi)[a,V(/3,|/e/)] = V([a,ß,]|/e/).

(iv) // ax, ßx e Con Ax and a2, ß2 e Con A2, then in Con Ax X A2

[axXa2,ßxXß2] = [ax,ßx]x[a2,ß2].

(v) IfB < A anda, ß e Con A, then [a \ B,ß\ ß] < [a, ß] \ B.

Commutator theory began in congruence permutable varieties where we have a

Mal'cev term (that is, a ternary term p satisfying p(x,x,y) = p(y,x,x) = y).

More generally in congruence modular varieties there is always an almost-Mal'cev

term (called a difference term in [5]).

2.2 Proposition. Every congruence modular variety X has a ternary term p such

that

(i) p(y, x, x) = y is an identity in X, and

(ü) for all a e Con A, xay impliesp(x, x, y)[cx, a]y.

A congruence a is called abelian if [a, a] = 0. The almost-Mal'cev term of 2.2

yields a beautiful characterization of abehan congruences.

2.3 Proposition, (a) [a, a] = 0 if and only if

(i) xay impliesp(x, x, y) = y, and

(ii) p.B -* A is a (surjective) homomorphism where

B:= {(a,b,c) e^3|aaAac}.

(b) // [a,a] = 0 andaab, thenp(a, b,p(b, a,b)) = b.

(To see (b) use 2.2 and the fact that p : B -» A is a homomorphism to calculate

p(p(a, b, b), p(a, a, b), p(b, a, b)) in two different ways.)

An algebra A is called abelian if [1,1] = 0 in Con ,4. Note from 2.2 that an

almost-Mal'cev term becomes a Mal'cev term on an abehan algebra.

2.4 Proposition. A is abelian if and only if there are congruences a, ß, y on A2

such that (0, a, ß,y, 1} is a sublattice of Conv42 isomorphic to the five-element,

modular, nondistributive lattice Mv
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We shall need the Hagemann-Herrmann-Freese-McKenzie-Hrushovskii generali-

zation of Jónsson's Lemma. The largest congruence ß satisfying [a, ß] = 0 is called

the annihilator (or centralizer) of a and is denoted by anna. Recall that A is

subdirectly irreducible if 0 is completely meet-irreducible in Con A; then the unique

cover of 0 in Con A is called the monolith of A and is denoted by p.

2.5 The Generalized Jónsson Lemma. Let (C¡\i e /) be a family of algebras

from a congruence modular variety, let A be subdirectly irreducible with monolith p, let

B be a subalgebra of Y\(Ci | / e /) and let <f>: B -» A be a surjective homomorphism.

Then there exists an ultra)filter F on I such that 0F\ B < ker(<í> ° n) where n:

A -» A/ann p is the natural map. Hence there is a homomorphism ip: B/(6F \ B) -»

A /ann p such that the diagram below commutes.

B c-► n(C,|i e /)

A J^fB/(dF\B)^-►n(C,|ie/)/0F

A/annp

In terms of the usual class operators, we have A/armp e HSPu(sé) where sé= {C¡ \ i

e/}.

Finally, the following easy application of the modularity of Con Ax B will find

several applications.

2.6 Lemma. Every congruence on A X B below a X 0 is of the form a' X 0 for some

a' < a.

3. Central cubes. We need some further preliminaries on central congruences, that

is, congruences a e Con A satisfying [a, 1] = 0. The largest central congruence,

annl, is called the center of A and is denoted by ÇA or simply f. Throughout this

section we work in an arbitrary but fixed congruence modular variety with almost-

Mal'cev term p. Our approach relies heavily on the results of §9 of [9] by H. P.

Gumm which we summarize in the paragraph below.

Let a e A and a e Con A. For each operation f on A we define /v on [a]a by

/v(jc1,...,xJ = p(a,f(a,...,a),f(xf,...,xn)) for*,,.. .,x„ e [a]a.

The resulting algebra with base set [a]a, which is denoted by A^ [a]a, is of the same

type as A and has a one-element subalgebra { a } but need not be in the same variety

as A. Note that if a is abelian and {a} is a one-element subalgebra of A, then

-^v[ala is Just me subalgebra [a]a of A. If a is a central congruence, then

y4v[a]a = y4v[a]fc for all a, b e A; in this case we choose an arbitrary element 0 in

A and abbreviate ^4v[a]0 to ^v[a]. The algebras a, Av[a] and A are closely related.

3.1 Proposition [9]. Let a be a central congruence on A.

(i) Av [a] is an abelian algebra.

(ii)A*[a] = a/tia.

(iii) a = A X Av [a]: namely, the map (a, b) -* p(0, a, b) is a homomorphism of a

onto Ä7 [a] with kernel A1,,, and an isomorphism from a to A X Ä7 [a] may be defined

by (a, b) <-* (a, p(0, a, b)), with inverse given by (a, c) -> (a, p(a, 0, c)).
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The crucial fact that we need is the isomorphism between the lattice of central

congruences on A and the lattice of all subalgebras of ^4v[f] which contain 0,

mirroring the groups case where every subgroup of the centre is normal. For a

subalgebra S of Av [f ] containing 0, define

*(S) = {(x,y)&S\p(0,x,y)<zS}

and for a central congruence a define U(a) = Av[a]. If L is a lattice and a e L,

then the principal ideal { x e.L | x < a} is denoted by I a and its dual by T a.

3.2 Proposition [9]. U and ^ are mutually inverse lattice isomorphisms between the

interval J, f in Con ,4 and Sub0Av[Ç], the lattice of subalgebras of AV[Ç] which

contain 0.

The following is an easy consequence.

3.3 Corollary. Central congruences are regular, that is, if a and ß are central and

have a block in common then a = ß, and, more generally, if [a]a ç [a]ß for some

a e A, then a < ß.

We are now able to study the passage of central congruences under restriction to a

subalgebra. Note that by 2.1(v), if a is a central congruence on A and B < A, then

a \ B is also central.

3.4 Proposition. Let A be an algebra with subalgebra B containing an element 0

and define

Sa,b= {(x,y)<zi;A\p(0,x,y)<=B}.

(i) fA B is a central congruence on A.

(ii) Restriction is an isomorphism between the intervals i($A%B) 'M Con/I and

i($A r B)in Con B.

(iii) // ß < ÇA { B, then the unique congruence ß on A such that ß < ÇA B and

ß t B = ß is given by

P-.{(x,y)eSA\p(0,x,y)e[0]ß}.

(iv) // a is a central congruence on A and B is a union of a-blocks (that is,

[B]a — B), then restriction is an isomorphism between the intervals j a in Con^l and

i (a r B) in Con B.

Proof. It follows from 3.2 that if S e Sub0 Av [f ], then U and ^ form an inverse

pair of lattice isomorphisms between | ^(S) and Sub^S). Given A and B, choose

0 in B so it can serve both A and B, let ^fA, UA stand for the <ír, U defined above,

and tyB, UB for the maps similarly defined with B in place of A. By 2.1(v),

ÇA f B < fB. Note that the base set [0]ÇA n fi of UB(ÇA \ B) is also the intersection

of the base sets of UA(ÇA) and UB(ÇB), and that the operations of these algebras

agree on that intersection, so UB(ÇA [ B) e Sub0/lv[^] n Sub0 fiv[fB]. The defini-

tions of ^A and UB give that ^A(UB(SA f B)) = ÇAB: by 3.2, this proves (i). Two

applications of the consequence of 3.2 noted at the beginning of this proof yield that

the composite ^AUB maps l(ÇA [ B) via Sub0UB(^A f B) lattice-isomorphically onto

¿(f/f.s)- A set-theoretical one-sided inverse of an isomorphism is always the inverse
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isomorphism: hence for (ii) it suffices to show that if ß e l(Ç { B) and ß =

-*A(UB(ß)), then ß\ B = ß. By 3.3, this will in turn follow if we can show that

[0](ß r fi) = [0]ß. Indeed, as (0, b) e fB implies that p(0,0, b) = b by 2.3(a)(i),

[0](j8 f B) = [0]/Jnfi = {b e B\(0,b) e ^&/>(0,0,A) e [0]ß}

= fin[0]^n[o]ß

= [0]ß.

This proves (ii), and (iii) then follows from the definition of ^fAUB. [One may note

that while tyA and UB do depend (however harmlessly) on the choice of 0, their

composite (where it is defined) does not.] To deduce (iv), all one needs is that a < f A

and [B]a = B imply a < ÇA B, by 3.3, a < ÇA B is equivalent to [0]a ç [0]ÇA B, and

the latter inclusion now holds because by 2.3(a)(i) and the definition of lA B we have

[0]fM = [Cni.  □
We now apply 3.4 with A3 in place of A and B chosen to be {(a, b, c) e

A3\aÇbÇc}. Since the centre of A3 is f3 and [B]Ç3 = B, the restriction map is an

isomorphism between the intervals i(f3) in Con A3 and |(f3 { B) in Con fi.

By 2.3, />: B -* A is a surjective homomorphism. Denote its kernel by m, then

R/77 = A. It is easily seen that m < f3 [ B. (Indeed, (b,c) e f implies that

(/7(a, A, c), a) = p((a, a), (b, c), (c, c)) e f. It follows that if p agrees on two ele-

ments of B, then their first coordinates are congruent modulo f ; as they are elements

of B all three coordinates of each are congruent modulo f.) Let m be the unique

central congruence on A3 satisfying m \ B = m; ii required, 3.4(iii) can be used to

give an explicit description of m.

We regard A as embedded in A3/m via the isomorphism A = B/m obtained from

p. Since [B]Ç3 = B and m < f3 we have [B]m = B; hence the embedding of

A = B/m into A3/m is surjective if and only if ^43 = fi if and only if f = 1 (that is,

A is abelian). Trivially we have f = 0 if and only if A3/m = A3. Thus we get

something 'new' precisely when 0 < f < 1. We call A3/m a central cube of A.

We note that while p depends on the variety we choose to work in and is not even

determined by that, the homomorphism from B to A given by p, and so its kernel m,

is independent of these choices. We shall neither need nor prove this here. A

construction we would call a central square of A, namely ^42/Af, occurs in Proposi-

tion 7.6 of [5], but without a one-element subalgebra in A there seems to be no

general way to embed A into this central square.

Recall that an element a of a lattice with zero is called dense if 0 is the only

element x satisfying a A x = 0. An algebra A is said to be an essential extension of

a subalgebra fi if 0 < a in Con A implies 0 < a [ B in Con B.

3.5 Theorem. // f is dense in Con A, then the central cube of A defined above is an

essential extension of A.

Proof. We must prove that if m < a in Con A3, then m < a [ B in Con B. Since

restriction yields an isomorphism between |(f3) and J,(f3 [ fi) we have

m < a < f3 => m < a[ B;
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consequently it suffices to show that if f is dense in A, then f3 is dense in the

interval {0 e Con A3 \ m < a < 1).

Let f be dense in Con,4. It is sufficient to prove that if a A f3 = m in Con/43,

then a < f3. As f3 is the centre of A3, the additive property of the commutator

(2.1(iii)) yields this conclusion if we can prove that a annihilates each of 1 X 0 X 0,

0x1x0 and 0x0x1. Denote these congruences by ¿,, i2, t3, respectively. We

prove [a, i2] = 0; the proof of the other two claims are strict analogues of (proper

parts of) this proof. By 2.6 every congruence below i2 is of the form 0 X ß X 0 for

some ß e Con A, in particular, o A t2 = 0 X /3 X 0 for some ß e Con A. Note that

0 X(ß Af)XÖ^öAf3 = i.

Take any element (a, A) of ß A f and set a = (A, a, A) and A = (A, A, A). Then

aefin[A](0x(ß A f) XO)çfin[A]7f= [b]m,

that is, p(a) = p(b) = A and so p(a, b, p(a)) = a. On the other hand,

p(a, b, p(a)) = A by 2.3(b). We have proved that (a, b) e ß A f implies a = A: so

ß A f = 0. As f is dense, ß = 0 so a A t2 = 0. This proves [a, ¿2] = 0.   D

We close this section with a proof of Theorem 1.4, a further apphcation of the

abelian algebras >4V[«].

Proof of Theorem 1.4. Let A be an abelian algebra that is weakly injective in a

congruence modular variety X. Let C > B -> A be given in X: we have to find an

extension C -> A of <i>. Abbreviate /4V[1] to ,4V and consider the composite map \p:

<f>xid f-1
fiX/4v  ^v4Xy4v-*.4X/4-,4,

where f: A X A -> A X Av is the isomorphism given in 3.1(iii) and the last map is

the second projection. This \p is surjective: if a is any element of A, take any A in B;

as

(b,p(0, b<¡>, a)) -»' (A<¡>, p(0, b<¡>, a)) ^ (A<¡>, a)

we see that t|/ maps (A, p(0, A</>, a)) to a. Since yl is weakly injective, \p extends to a

homomorphism 0: C X Av -* A. The obvious map c •-> (c,0) from C to C X iv

composed with 6 will do as the required extension of <f>: indeed, (A, 0)0 = (b,0)\p =

A<> because

(A,0)*^d(A</>,0)¿(A</>,A<í>).   □

4. Directly indécomposables. Our aim in this section is to prove Theorem 1.1.

A congruence modular variety is assumed throughout.

4.1 Lemma. // L is a modular lattice with zero, if a e L and A e | a, and if b is

dense in Ta, then b is dense in L.

Proof. Assume A is dense in Î a and let x e L with A A x — 0. Since A ̂  a we

have A A (x V a) = (A A x) V a = a by modularity. Hence x V a = a and thus

x < a < A. Consequently, x = AAx = 0.   D
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An algebra A is called finitely subdirectly irreducible if 0 is meet-irreducible in

Con A

4.2 Theorem. Assume that A is a directly indecomposable absolute subretract in

Var/4. Then A is finitely subdirectly irreducible.

Proof. Assume that A is an absolute subretract in Var.4 and is not finitely

subdirectly irreducible: we shall find a direct decomposition of A. Since 0 is

meet-reducible in Con A, there exist y, 8 e Con A with y # 0, 8 =£ 0 and y A 8 = 0.

Since Con A is algebraic, meet distributes over arbitrary directed joins and hence we

can assume that each of y and 8 is maximal with respect to y A 8 = 0. Let e:

A -* A/y X A/8 be the natural embedding. We claim that A/y X A/8 is an

essential extension of Ae. For notational convenience we identify A with At and so

identify a with ([a]y, [a]8).

Let a = (yV 8)/y e Con A/y and ß = (y V 8)/8 e Con ,4/5. We shall prove:

(i) 0 < 0 < a X ß in Con(^/y X A/8) implies 0 \ A * 0;

(ii) a X ß is dense in Con(^4/y X A/8).

Clearly (i) and (ii) imply that e is an essential extension.

In proving (i) we need:

(iii) Restriction to A maps (ia) X {0} in Con(v4/y X A/8) isomorphically onto

i 8 in Con A ;

(iv) Leta0 = a A \A/y and ß0 = ß A lA/¿, then [A](a0 X ß0) = A.

Proof of (iii). Consider the composite of the following chain of natural isomor-

phisms:

i 8 = { a e Con j4|y<0<yVo}     in Con A by modularity

= i a in Con^/y

= (la)x{0} inCon(A/yX A/8).

Under this isomorphism an element 8' of i 8 maps to a' X 0 where a' = (y V 8')/y.

It remains to verify that 8' is the restriction to A by a' X 0:

.([a]y, [a)8)a' X 0([b]y, [b]8) <=> a(y V 8')b and a8b

»üÄA(yV 8')b

<=> aS'A   by modularity.

Proof of (iv). By (iii), a0 = (yV 80)/y where o0 = (a0 X 0) f .4 with 80 < 8.

Restrictions of central congruences are central (via 2.1(v)) and abehan congruences

permute with all congruences (see [9, 5, 4]): so y V o0 = y ° 80. Similarly, ß0 =

(ïo v fi)A 7o = (0 x ßo) M, Yo v 5 = Yo ° á and, of course, y0°80 = 80° y0. Thus

([a']y, [a"]8)a0 X ß0([a]y, [a]8) e A => a'(y • o0)a(y0 o 8)a"

=> a'(y ° o0 » Yo o 8)a" => a'(y ° y0 ° 5o ° SV =* a'(y °S)a".

Hence there exists a* e A with ([a']y, [a"]o) = ([a*]y, [a*]8) e yl.

PROOF of (i). Let 0 < 0 < a x ß with 0 r ^ = 0. As 0 A (1 X 0) < a X 0, by 2.6

there is an a' in la such that ÍA(lX 0).= a' X 0. As (0 A (1 X 0)) f A < 6 \ A
= 0,   (iii)  yields   a' = 0;   so   0 A (1 X 0) = 0  whence  [0,1 X 0] = 0.   Similarly,
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[0,0 X 1] = 0; hence [0,1 X 1] = 0 and so 0 is central. Thus 0 < lA/y X ÇA/S and

so

0 < (a X ß) a{£a/i X $A/„) = (a A ¡A/y) x(ßA $A/t) = a0 X ß0.

Since [A](a0 X ß0) = A, by (iv), 0 < a0 X ß0 implies that [A]0 = A. Thus by 3.4(iv)

restriction is an isomorphism between j 0 in Con(/4/y X A/8) and 4(0 f A) in

Con A. Since 0 \ A = Owe therefore conclude 0 = 0.

Proof of (ii). Since aXß = (aXl)A(lXß)it suffices to show that a X 1

and 1 X ß are dense in Con(^/y X A/8).

First note that y V 8 is dense in î y c Con A. (If 4> e î y with 4> A (y V 5) = y,

then

$ A 8 = <¡> A(y V 8) A 8 = y A 8 = 0,

yielding <b = y by the maximality of y with respect to y A o = 0.) Since î (0 X 1) in

Con(^/y X A/8) is isomorphic to î y in Con A, it follows that a X 1 = (y V 8)/y

X 1 is dense in T(0 X 1) ç Con(,4/y X A/8). By symmetry, 1 X ß is dense in

T(l X 0) ç Con(^/y X A/8). That a X 1 and 1 X ß are both dense in

Con(A/y X A/8) now follows at once from Lemma 4.1 above.

Hence A/y X A/8 is a proper essential extension of A. Since an absolute

subretract in a variety cannot have an essential extension in that variety, it follows

that e is an isomorphism and thus A is directly decomposable.   D

To complete the proof of the first half of Theorem 1.1 suppose that A is a

nonabelian, directly indecomposable absolute subretract in X with a nontrivial

center. Since (by 4.2) A is finitely subdirectly irreducible, every nonzero congruence

is dense; in particular, $A is dense in Con A. Thus by Theorem 3.5, a central cube of

A is a proper essential extension of A in Var.4, which is impossible because A is an

absolute subretract in Varyl. Hence A has trivial centre.

We turn now to the second half of Theorem 1.1. An algebra A is prime if it is

finitely subdirectly irreducible and every nontrivial congruence on A is nonabelian

(see [10]). Consequently, a subdirectly irreducible algebra is prime if and only if its

monolith is nonabehan; in particular, a finite algebra is prime precisely when it is

subdirectly irreducible with nonablelian monolith.

Let A be nonabelian, directly indecomposable and weakly injective in X. Since A

is an absolute subretract in X, it is finitely subdirectly irreducible and has trivial

center (by the first half of Theorem 1.1) and to prove that A is prime it remains to

show that every nontrivial congruence on A is nonabehan. Suppose that a ¥= 0 is

abelian. Then by 2.3(a), p maps B= {(a,b,c) e A3\aabac} homomorphically

onto A; as A is weakly injective in Var^l, p must be the restriction of a homomor-

phism q: A3 -» A.

By 2.6, (kerq) A (0 X 1 X 0) = 0 X a' X 0 for some a' e Con A. Let a(a A a')b;

then a = (A, a, A) and A = (A, A, A) both lie in B and are congruent modulo kerq,

whence p(q) = p(b) = A. Thus, as in the proof of 3.5, we have

a= p(a,b,b)= p(a,b,p(q))     as p(q) = A

= A by 2.3(b).
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This proves a A a' = 0, so a' = 0 as a + 0 and A is finitely subdirectly irreducible;

hence (kerg) A (0 X 1 X 0) = 0. By similar, but simpler, arguments we also obtain

(kero) A (1 X 0 X 0) = 0 and (kerç) A (0 X 0 X 1) = 0. Consequently, kerq avoids

and so annihilates the kernel of each coordinate projection on A3: so it annihilates

their join and so is central. But lA-i = (ÇA)3 = 0, therefore, kerq = 0; in particular, p

is one-to-one. Thus aaA imphes (b,a,a), (a, a, A) e fi with p(b,a,a) = b =

p(a, a, A) giving a = b, contrary to the assumption that a st 0. Thus, a is non-

abelian and this concludes the proof of Theorem 1.1.

5. Subdirectly irreducibles with nonabelian monolith. We now address the question

of when a subdirectly irreducible algebra with nonabehan monolith is weakly

injective in a variety containing it. Along the way we prove Theorem 1.2.

Throughout this section we shall be working with the variety Var sé generated by

some class sé of algebras. Just as in the congruence distributive case, the Gener-

alized Jónsson Lemma greatly restricts the whereabouts of a subdirectly irreducible

algebra with nonabelian monolith; we omit the proof.

5.1 Lemma. Assume that War sé is congruence modular and let A e Var sé be

subdirectly irreducible with nonabelian monolith. Then A e HSPu(sé) so if sé is a

finite set of finite algebras, then A eXy(sé) and hence A is finite. If A is also

weakly injective in War sé, then A e HPu(sé) with A e H( sé) when sé is a finite set

of finite algebras.

Most results in this section assume congruence modularity only because they need

5.1 (or the Generalized Jónsson Lemma itself). Similarly, the stronger assumption of

subregularity is imposed only to make the following lemma available.

5.2 Lemma. Assume that S(sé) is subregular. If an algebra A is (weakly) injective

relative to sé, then A is (weakly) injective relative to HS(sé).

Proof. As A is (weakly) injective relative to sé, it is obviously (weakly) injective

relative to S(sé). Let B < C e HS(sé) and let $: B -* A be the map to be

extended to C. Write C as D<¡> for some D e S(sé) and some <#>: D -» C.

E = B<t>x >-► D e S(j^)

y - "
a* ""

-■ ■». V

Bi~

Let <j>f = <b I E where E = B<p'x. Since A is (weakly) injective relative to S(sé),

there is a homomorphism y: D -» A making the quadrangle ADEB commute. It is

easily seen that (ker<i>) r E ç (kery) f E and since [£]ker<J> = E, the subregularity

of D e S(sé) gives ker<jj ç kery. Thus there exists a homomorphism t//': C -* A

such that <i> » \¡/' = y. A simple diagram chase yields <bf °(4/' I B) = <¡>f ° i/> and hence

\p' T B = xj/ as <bf is onto.   D
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5.3 Theorem. Assume that Varsé is subregular and let A e Varj^ be subdirectly

irreducible with nonabelian monolith. Then the following are equivalent:

(i) A is weakly injective in Var sé;

(ii) A is weakly injective relative to P(sé);

(iii) A is weakly injective to Pv(sé).

Proof, (i) => (iii) is trivial. Since Var sé= HSP(^), (ii) => (i) follows from the

lemma above. Since annju = 0 a simple application of the Generalized Jónsson

Lemma establishes (iii) => (ii).   D

5.4 Corollary. Let sé be a finite set of finite algebras and assume that Var sé is

subregular. A subdirectly irreducible algebra in Var sé which has nonabelian monolith

and is weakly injective relative to sé is weakly injective in Var sé.

Since a finite A is trivially weakly injective with respect to sé— {A}, Theorem 1.2

follows at once from Corollary 5.4.

A finite algebra A is functionally complete if for all n every map from A" to A is a

polynomial function (that is, a term function with some variables replaced by

elements of A). A functionally complete algebra A satisfies Con,4" = 2" for all n

and so is simple and, in a modular variety, nonabelian by 2.4. It is proved in H.

Werner [15] that in a congruence permutable variety a finite algebra A is function-

ally complete precisely when Con A2 = 22, that is, when A is simple and nonabehan.

Hence a finite group functionally complete if and only if it is simple and nonabelian

and a finite ring is functionally complete if and only if it is simple and not a zero

ring.
The next corollary is a partial answer to the question raised in B. A. Davey and H.

Werner [1], which motivated this work.

5.5 Corollary. Assume that Var(A) is subregular. If A is finite, simple and

nonabelian, in particular if A is functionally complete, then A is weakly injective in

Var A.

Combining Corollary 5.5 with Theorem 1.8 of [1] yields our Theorem 1.3.

We now wish to show that the results in 5.1 and 5.4 for finitely generated varieties

can be extended to locally finite varieties. The following result requires neither

subregularity nor congruence modularity. The operator Pf denotes products of

finitely many algebras.

5.6 Lemma. Assume that Var sé is locally finite and A e Var sé is finite. If A is

weakly injective in the subvariety Var A and is weakly injective relative to Pf(sé), then

A is weakly injective relative to P(sé).

Proof. Assume that A is weakly injective in Var^4 but is not weakly injective

relative to P(sé). Thus there is a subfamily {A¡\i; e /} of sé, a subalgebra B of

n(j4, | / e /) and a homomorphism (/>: B -» A which does not extend to 11(^4, | i e /).

Let yp: l\(Al , | i e /) -» C be the largest quotient of n(A,, | /' e J) in Var,4. Then the
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diagram below cannot be completed by a homomorphism from C to A.

B      ~     1X4,     -»      C

I*:
A

If ker(t/> f B) < ker<J>, then there exists a homomorphism

fi >—-► Y\Ai

N. \¿

A *-"

y: B\p -» >1 such that (^ r R)° Y = </>• Since C e Var A and ^4 is assumed to be

weakly injective in Var.4, there exists A: C -* A which extends y and consequently

yp » A extends <¡>, a contradiction. Thus ker(\p [ B) < ker<>.

Since fi lies in the locally finite Var A, some finite subalgebra fi' of fi must have

elements x, y with jet// = yyp but 7c<f> =£ y<j>, and as /I is finite such a fi' may be

chosen so that B'<(> = A. Because B' is finite, / must have a finite subset J such that

a I J — A T J implies a = b whenever a, A e B'. Let

r:Yl(A,\ieI)^U(Aj\jej)

be the natural projection; then t í fi': fi' -* llv4; is an embedding.

I.
«-   ru,
Y

Let y: YlAj -* A be any homomorphism; then kenp < ker(T ° y) (as Im(T ° y) < A

e Var^4) and thus 7c(T°y)=y(T°y). Since x<b ¥= y<f> it follows that y does not

extend <í> ¡ B'. Hence A is not weakly injective relative to Pf(sé).   D

5.7 Theorem. Assume that Varsé is subregular and locally finite. A finite subdi-

rectly irreducible algebra in Varsé which has nonabelian monolith and is weakly

injective relative to sé is weakly injective in Varsé.

Proof. Let A be a finite subdirectly irreducible algebra with nonabelian monolith

which is weakly injective relative to sé. By Theorem 1.2, A is weakly injective in

Var A. By Theorem 5.3, A is weakly injective in Varsé precisely when it is weakly

injective relative to @(sé) and hence, by Proposition 5.6 above, it suffices to prove

that A is weakly injective relative to Pf(sé). Since A is weakly injective relative to

sé, an easy application of the Generalized Jónsson Lemma shows that sé is weakly

injectiverelative toP{(sé).   D

It is no surprise that the local finiteness of Var sé cannot be omitted from 5.7: the

set sé of all finite nilpotent groups generates the variety of all groups, A5 is

obviously weakly injective relative to sé, yet S5 is a proper essential extension of it.
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Under the assumptions of 5.7 it can happen that sé consists of finite algebras yet

Varsé contains infinite subdirectly irreducible algebras A whose monoliths are

nonabelian. Such an A is trivially weakly injective relative to sé, but need not even

be an absolute subretract in Varsé. For example, let p be a prime, G a nonabelian

finite simple group, E any infinite elementary abehan /»-group, and sé the set of all

finite subgroups of the standard restricted wreath product A = GwrE. Such an A is

always subdirectly irreducible, the monolith being the commutator subgroup. If Ex

is a proper subgroup of E, then G wr£, is a proper subgroup of E, isomorphic to A

if E and Et have the same cardinality. Thus A may be viewed as 'a proper essential

extension of itself. On the other hand, A e Varsé and Varsé is locally finite. (One

may note further that the isomorphism types of the members of sé do not depend

upon the cardinality of the infinite E: thus the same Varsé has such A with

arbitrarily large cardinalities.)

In view of 5.7, it may be of interest to note the following:

5.8  Lemma.   Assume that  Varsé is congruence modular and locally finite.   If

A e Var sé is finite and subdirectly irreducible with nonabelian monolith, then A e

XSr°(sé). If A is also weakly injective relative to sé, then A e H( j/).

Proof. Let \A\ = n. Since the free algebra in Var sé on « generators is finite, it

belongs to SPf(sé) and hence A e HSP^(sé). Since A is subdirectly irreducible

with nonabelian monolith, we have ann p = 0 and the Generalized Jónsson Lemma

gives A e HS(sé).   D

6. An example. We describe the construction of a finite monolithic group G in

which the centralizer of the monolith is abelian yet G is not an absolute subretract in

the variety it generates. As acknowledged in the Introduction, this example was

made in 1964 by the second author in collaboration with M. F. Newman. The

verification of the relevant properties of G will only be sketched here.

Let U be a 6-dimensional vectorspace over the field F2 of two elements, with a

basis permuted transitively by the alternating group As (so the stabilizer in As of a

basis element is a dihedral group of order 10). Regard U as an F2^45-module. The

Figure 1
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Figure 2

sum of the basis elements spans a 1-dimensional submodule, call that Uy the set of

the vectors whose coordinates (relative to this basis) sum to 0, is a submodule of

codimension 1: call that U5. The only proper, nonzero submodules of U are Ux and

U5. The 1-dimensional composition factors Ux and U/Ux are of course absolutely

irreducible, but U5/Uf is not: while Endt/, = End U/Us = F2, the endomorphism

ring EndU5/Uf is the field F4 of order 4. It follows that End U/1/, is also F2.

Consequently, the submodule lattice of (U/Ux) © (U/Uf) is as shown on Figure 1.

In particular we see that there exists an F2v45-module, namely the quotient modulo

V, which is a monolithic sum of two copies of U/Ux.

Let G be the semidirect product of A5 and U/Uv As the simple group A5 acts

faithfully on Us/Uf, the only minimal normal subgroup of G is U5/Ux, and its

centralizer is the abelian U/Uv

To see that G is not an absolute subretract in the variety it generates, consider the

direct square of G; within this, let S be the product of the diagonal copy of G and

the direct square of U/Uv The F2v45-submodules of the direct square of U/Ux are

normal subgroups of 5. It is easy to see that S/V is monolithic and has three

(normal) subgroups of index 2 isomorphic to G: so S/V is a proper essential

extension of G. This completes the sketch of the proof; Figure 2 shows the normal

subgroup lattice of S/V, the numbers given being the relevant indices.
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