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1. A group of prime-power order pm is obviously nilpotent of class at
most m — 1; if it has class precisely m — 1, it is said to be of maximal class.
The derived length of a p-group of maximal class is bounded by
log2(3p-3) if p is odd and by 2 if p = 2. Indeed, if m ^ 9 p - 4 0 , the
derived length is at most 3 (Shepherd [6], Leedham-Green and McKay
[5].) The question of whether there is an unconditional bound indepen-
dent of p was answered in the negative, in a 1975 letter by Dr Shepherd
to the second author. The pursuit of refinements and generalizations of
the positive results mentioned above has continued with increasing
momentum but, despite its importance, the negative result appears to
have remained unpublished.

In this note we construct groups which prove Shepherd's claim (and are
presumably those he had had in mind). What prompts us now is that these
groups also answer a question which has arisen more recently. In his
thesis [1], Guan Aun How investigated nM-groups: finite groups whose
irreducible (complex) characters are all induced from linear characters of
normal subgroups. He gave a characterization of these groups in purely
structural terms (that is, without reference to characters). This enabled
him to prove that the Frattini factor group is a direct product of groups
which are either cyclic or Frobenius groups (whose kernels are abelian
and) whose complements have cyclic derived groups. However, this
characterization has so far proved frustratingly difficult to use on p-
groups; for instance, the question of whether there is a bound on the
derived lengths of nM-groups has remained open even for nilpotent
groups.

The groups we present in this note show that there is no such bound.
Namely, we construct, for each prime p, an nM-group of order pp,
exponent p, class p - 1 , and derived length the integer part of log2 (p + 1).
We also show that variants of these groups occur as kernels of Frobenius
groups (with nonnilpotent complements) which are nM-groups, so even
the metanilpotent residual of an nM-group can have arbitrarily large
derived length. The constructions use Lie ring methods which were
elaborated by M. Lazard in [4].

The maximal class groups above are perhaps the most complicated
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p-groups with accessible character tables. In a subsequent paper [3], M.
F. Newman and the first author explicitly calculate the irreducible charac-
ters and discuss some other remarkable properties of these groups.

The relevant special case of How's criterion {[2], or Lemma 5.2 in [1])
may be paraphrased as follows. Let G be a finite group with a unique
minimal normal subgroup N, and A an abelian normal subgroup of
maximal order in G. If GIN is an nM-group and if N*=[A, g] whenever g
is an element of G outside A, then G is an nM-group. We shall also use
part of Theorem 3.8 of his [1]: if F is a Frobenius group whose kernel is
abelian and whose complement has cyclic derived group, then F is an
nM-group.

2. Trivial examples exist when p«;3, so take p>3 . Let m be an integer
with 3 =£ m =£ p. Suppose that g1;. . . , gm are elements of a group G and
that the following hold.

(1) Each element of G may be written uniquely as g"(1) • • • g£,Cm) with

:
if i+]>m

where the product is taken over fc = i + / + 1 , . . . , m and the y(i, j , k)
are suitable integers.

We defer for the moment the construction which meets these conditions,
and show first that such a gTOup must be an nM-group of derived length
[log2 (m +1)].

The first point to note is that the centre Z(G) is just the subgroup (gm)
generated by gm. Indeed, if g e G\<gm> then g = g£(lc) • • • g^m) with k<m
and 0<a(k)=£p- 1; hence it is easy to see that [g, g,]^ 1 when kj= 1 and
[g. &2]¥z 1 when k = 1. (It is perhaps even easier to see that [g, gm-iJ^ 1.)
Next observe that G/Z(G) is either of order p2 or a group just like G
with m replaced by m — 1, so induction on m readily yields that the
normal non-maximal subgroups of G are precisely the subgroups
<gd, • • •, gm> with ds=3.

In particular, the nonabelian proper factor groups of G are all just like
G with m replaced by some smaller integer. Thus the paraphrase of
How's criterion is well suited for a proof by induction on m of the claim
that G is an nM-group. From the list of the normal subgroups of G we
see that A can be taken as ( g j , . . . , gm) with d = [(m +1)/2] (and indeed
this is the only choice when m > 3). All we are required to show is that
Z(G)ss[A, g] whenever g e G \ A . Write g = g£(lc) • • • g£,(m) with 0<
a(fc)==p-l; then fc=£d-l and so, as m ^ 2 d - l , we have tn-k^d;
hence gm-keA and [gm_k, g]=gST"2kV*(k)e[A,g]. Since p>m-2fcs=
m - 2(d -1 ) > 0, we are done.
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The list of the normal subgroups of G makes it easy to calculate the
derived length of G. By (3), ( g 4 , . . . , g™) cannot contain G' but
<gs, •••>gm> does, so G' = <g3, . . . , g m ) . Introduction on k yields that
G (k) = <gd, . . . , g m > with d = 2 k + 1 - l . Thus the derived length of G is

(m +1)].

3. We have to establish the existence of G and gi, . . . ,&„ which satisfy
(1), (2), (3). If such a G exists, the Lie ring U defined in the usual manner
on the direct sum of the lower central factors of G will have an additive
basis Ux, . . . , Un, such that

(4) (ui,ui) = \
[0 if i+j>m.

It is straightforward to check that (4) does indeed define a Lie ring on the
additively written elementary abelian p-group with basis u l s . . . , i^; we
shall use this Lie ring U for the construction of our group G. An abstract
procedure described in Lazard's thesis [4] could be used to this effect, but
one can just as easily appeal to a concrete and classical method.

Suppose first that m < p. Consider (m + l)-by-(m + 1) matrices over the
field of order p, with e(i, j) denoting the matrix whose only nonzero entry
is a 1 in the i, / position. Put

m + l - l

"(= Z ke(k,k + i)
fc-i

and verify that these matrices satisfy (4) with respect to the Lie product
(x, y) = xy — yx: thus we have realized U as a Lie subring of the associa-
tive ring T of the nilpotent upper triangular matrices. Note that T itself is
nilpotent, with T m > T m + 1 = 0; in particular, T" = 0. If teT, the usual
power series for exp t makes sense (division by p not being called for until
the powers of t vanish) and is finite, so exp t is a well-defined element of
the multiplicative group 1+ T(={1 +1 \ te T}) of upper unitriangular mat-
rices. Put g, = exp u, and G = {exp u\ue U}; by the Baker-Campbell-
Hausdorff Theorem G is closed under multiplication and is therefore a
subgroup of 1+T. As is well known, the 1 + Tk form a chain of normal
subgroups of 1 + T; clearly, gfcel + Tk but g k ^ l + Tk + 1 (as
{e(i, j) | i + k =£/} is an additive basis of Tk). Thus the G n (1 + Tk) form a
chain of m + 1 pairwise distinct normal subgroups in G. By definition,
|G|=e|L/| = pm, so in fact |G| = p m ; one can now readily see that

whence



52 L. G. KOVACS AND LEEDHAM-GREEN

and (1) follows. It is a formal property of the power series for exp that

(5) (expt)k=exp(kt);

hence (2) also holds. To verify (3), one calculates formally (that is,
without using explicit matrix forms) that

[exp x, exp y] = exp (-x) exp (—y) exp x exp y

= l + (x, y) + z

where z is a sum of associative products with factors from the set {x, y},
each product having each of x and y among its factors at least once, and
at least one of x and y at least twice. In particular

[ & & ] = ! +(«!,«() + » with ueT l + / + l .

On the other hand, by (5)

g£}= 1 - (i-/)«!+,•+ w with w 6 T 2 ( l + l ) ^ r 1 + i + 1 .

Hence by (4) and easy direct calculation

and (3) follows.
The hitherto excluded case m = p can be dealt with in the same way

after verifying that for the associative subring R of T generated by U one
has Rp = 0 even then: this was all we really used.

4. It is more convenient to describe the promised Frobenius groups in
terms of the abstract procedure of Lazard [4]. We shall apply that to a
certain Lie ring U and a group K of automorphisms of U; we construct U
and K first.

Let F be a finite field of order pr, and m an integer with 3 =£ m < p, both
to be specified later. Take the Lie algebra over F with F-basis u , , . . . , u^
and multiplication denned by (4); forgetting F we obtain a nilpotent Lie
ring U of characteristic p and nilpotency class less than p. Let Aut U be
the automorphism group of U (note the elements of Aut U are not
required to be F-linear). The elements of U may be written uniquely as
X (piUi with (pf6F. For each nonzero cp in F, define <p: U —> U by
(Z <PjU|)(p = Y. <p'<PiW(; check that <p e Aut U, and that <p •-> cp is an embed-
ding of the multiplicative group F+of F in Aut U. Further, check that
IT: U —* U defined by (Z, <PIU,)T7- = £ <p1ui is also an element of Aut U, and
that Tr̂ cpTr = <pp= <pp for all <p in Fx; clearly, the order of IT is r.

We now specify our parameters further. Let r be a prime, r > 3 ; by
Dirichlet's Theorem, there is a prime q such that q = 1 mod r. Let s be an
integer such that s+qZ has multiplicative order r in the field Z/qZ; again
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by Dirichlet's Theorem, we can choose a prime p such that p =
q + s-qs mod qr: so p = s mod q and hence

and p = l m o d r .

Let t be the largest integer such that r' divides p - 1 ; then r'+1 divides
p r - l . Finally, choose m so that 3=£m<r (and a fortiori m < p and
m < q). Note that as r can be chosen arbitrarily large, so can m.

Let if> and p be elements of F, of multiplicative orders q and r'+1,
respectively; then iff and p commute; the cyclic subgroup they generate is
normalized by TT; and pp commutes with -n\ As IT has order r, it follows
that the subgroup generated by ir and p is an r-group of class 2. Put
TTP = K: then K has order r'+1,(Kr) = (pr), K normalizes and KT centralizes
(iji). Take JC as the subgroup of Aut U generated by K and <£. The only
subgroups of prime order in K are (Kr')(=(pr'» and (i/j), and (as m<r
and m < q) each of these acts fixed point free on U: hence each nontrivial
element of K acts fixed point free. Note also that K is metacyclic but not
nilpotent.

Each Fiii admits K but no proper additive subgroup of an Fu, does
(because ip acts on Fu, as i(il and i^m<q implies that if/' generates F as
ring). As the central element pr of K acts by different scalars pri (from the
prime field) on different Fu,, the K-admissible additive subgroups of U
are just the ©FUj with the sum being over some subset of { 1 , . . . , m}.
(Here m<r was used once more.) It follows that the K-admissible ideals

m

of U are precisely the © Fit and © Fit, a K-admissible abelian ideal A

of maximal order being obtained with d = [(m + l)/2]. If u is any element
of U outside A, then u = X! <Pi". with k<d and ^ ^ 0 , and (A, u)

-k, u) = Fum: in fact,

(6) each element of Fu,,, is of the form (a, u) with aeA.
Now we are ready to apply the method elaborated in Chapter II (see

Section 4 in particular) of Lazard [4]. This defines, for each nilpotent Lie
ring U of characteristic p and nilpotency class less than p, a multiplicative
group L/x on the set of elements of U, such that

(7) a subset is a subgroup (abelian normal subgroup) if and only if it is a
Lie subring (abelian ideal);

(8) a permutation is a group automorphism if and only if it is a Lie ring
automorphism;

(9) within an abelian Lie subring, group product and Lie ring sum are
the same; and

(10) within any Lie subring of class 2, group commutator and Lie product
are the same.
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(Half of this is stated in Lazard's Theorem 4.6; the other half has to be
read off the explicit definitions of the various operations.) It follows that
the derived length of the group U* and of the Lie ring U are the same:
with our choice of U, this is clearly [log2 (m +1)]. Further, K may be
viewed as a group of automorphisms of Ux, and the semidirect product F
of Ux by K is then a Frobenius group with kernel t/x and (nonnilpotent)
complement K. (Thus C/x is also the metanilpotent residual of F.) The
unique minimal normal subgroup N of F is the unique minimal K-
admissible ideal of U, namely Fu ,̂. The factor group F/N is just like F
with m replaced by m — 1, except when m = 3. In that case F/N is a
Frobenius group with abelian kernel and metacyclic complement: hence
an nM-group by the result of How quoted at the end of our Section 1.
The paraphrase of his criterion given there can now be used to prove, by
induction on m, that F is an nM-group. The ideal A of U is now an
abelian normal subgroup of maximal order in F; we are required to show
that N**[A, f] whenver feF\A. If f£ Ux then the centralizer of / in Ux

is 1, hence [A, / ] = A 5* N. If fe U* and b e N then by (6) there is an a in
A such that (a, /) = b; as b is central in U, the Lie subring generated by a
and / has class 2, so (10) applies: b = (a, f) = [a, f]e [A, f]. This completes
the proof.

Remark (added in proof, 25 September 1985). It has just been
brought to our attention that groups like those presented in the first half
of this paper were also constructed by B. A. Panferov, ('Nilpotent groups
with lower central factors of minimal ranks', Algebra i Logika, 19 (1980),
701-706).
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