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1. INTRODUCTION 

Now that the classification of finite simple groups is complete, it is logical 
to look at the extension problem. An important special case to consider is 
when M is a minimal normal subgroup of G and both G/M and M are 
known groups. If M is abelian, various techniques have been used to derive 
information about G. Indeed, almost the entire theory of finite solvable 
groups can be said to rest upon these techniques. 

The motivation behind the present paper was to develop techniques for 
dealing with the situation when M is not abelian. Specifically, we consider 
the following problems: (1) Determine the structure of G from the structure 
of G/M and some subgroup or subgroups of G. (2) Find subgroups H in G 
such that G = HM, and, in particular, determine whether M has a 
complement in G. (3) Determine when two subgroups H, and H, found in 
(2) are conjugate in G. 

If M is a non-abelian minimal normal subgroup of a finite group G, then 

where (S, 1 1 Q i < n} is a conjugacy class of subgroups of G. It turns out 
that G is completely determined by the groups G/M and 
~G(SI)I(SZ x -** x S,). Now N&Y,) =N,#, X ..a x S,) and it is more 
convenient to state our results in terms of the subgroups Ki = n+i Sj rather 
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than in terms of {Si 1 1 < i < n}. Then no finiteness assumptions are 
necessary and our main results are concerned with the following hypothesis: 

M is a normal subgroup of the group G. For each i E I, Ki is a normal 
subgroup of M and {Ki 1 i E I) is a conjugacy class of subgroups in G. 
Further, the natural homomorphism of M into the unrestricted direct product 
ni,l (M/K,) is an isomorphism onto. 

(Note that we are no longer requiring G or Z to be finite. Nor is M assumed 
to be a minimal normal subgroup of G. Finally, it does not matter whether 
or nor M is abelian.) 

Our most fundamental result is that knowledge of the groups G/M and 
N,(K)/K (where K is Ki for some fixed i) together with a certain obvious 
homomorphism of N,(K)/K into G/it4 is sufficient to construct G. This 
construction is called the induced extension and is described in Section 3. 
With regard to the existence of complements, we show that G splits over M 
if, and only if, N,(K)/K splits over M/K. Further, there is a one-to-one 
correspondence between the conjugacy classes of complements of M in G 
and of M/K in N,(K)/K. With regard to supplements, we show that if L/K is 
a subgroup of NG(K)/K such that N,(K)/K = (L/K)(M/K), then there is a 
subgroup H in G such that G = ZZM, L = (H n N,(K)) K, and H n M is the 
direct product of the groups { (Hn M)/(Hn Ki) ) i E I}. Further, H is 
unique up to conjugacy by some element of K. 

After proving the above results about complements and supplements in 
Section 4, we go on in Section 5 to extend these results to the situation where 
(Ki 1 i E I} is a union (not necessarily linite) of conjugacy classes in G. 
Finally, in Section 6, we construct some examples to illustrate why some of 
our theorems are the way they are. 

2. NOTATION AND PRELIMINARY RESULTS 

We write H Q G to indicate that H is a subgroup of the group G while 
H 4 G means that H is a normal subgroup. N,(H) and C,(H) denote the 
normalizer and centralizer, respectively, of H in G. If a is a homomorphism 
defined on G and H < G, then a* is the restriction of a to H. If Z is any set, 
then 111 denotes its cardinality. If P is a permutation group acting on Z and 
i E I, then Pi is the stabilizer of i in P. 

If Ki 4 G for each i E Z, then we will write 

G = n (G/K,) 
iol 

if the natural homomorphism of G into the direct product nisi (G/K,) is an 
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isomorphism onto. An equivalent definition, which we will use throughout, is 
the following: 

G = niC1 (G/K,) if whenever {xi 1 i E Z} is a subset of G, then 
nie,Kixi consists of a single element of G. 

In particular, note that if G = flie, (G/K,), then nio, Ki = 1. All direct 
products in this paper are unrestricted direct products. 

If H is a subgroup of G, then a right transversal T of H in G is a set 
consisting of exactly one element chosen from each right coset of H in G. 
We adopt the convention that each transversal contains the identity, i.e., the 
element chosen from the coset H is always 1. Of course, 1 Tj is the index 
1 G : HI of H in G. For the right transversal T, the function U, is defined on 
G by the rule that u,(x) is that element of Z belonging to Hx. Note that 

ur(x-‘)x E H 

for all x E G and 
u,(h-‘)h=h 

for all h E H. If M is a normal subgroup of G contained in H and if x and y 
are elements of G such that x = y(mod M), then u,(x) = z+.(y). 

If A is a group and Z is a non-empty set, then A* is the group of all 
functions defined on Z with values in A and multiplication defined point-wise. 
For i E Z, 

A [i] = {a E A’ 1 u(i) = 1 }. 

Then A[i] 4 A’, A’/A[‘] I is isomorphic to A, and A’ = ni,,A/A[i]. 
With A’ as above, assume that P is a permutation group acting on I. We 

have P operate on A’ as follows: 

a”(i) = a(ip- ‘) 

where a E A’, p E P, and i E I. The semi-direct product PA’ is denoted by 
A Wr(P, Z). (We use this notation to distinguish it from the so-called 
standard wreath product. In the standard wreath product, Z = P and P acts 
regularly on itself.) Every element of W = A Wr(P, I) has the form pa with 
pEPandaEA’.ForalliEZ,pEP,andaEA’,welindthat 

(pa)-’ A[i](pa) = A[ip]. 

Then N&A [i]) = PiA’. We will use e, to denote the function defined on PiA’ 
by 

e,(pa) = a(i). 
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It is easily verified that e, is a homomorphism of P,A’ onto A with kernel 
P,A [il. Suppose now that a is a homomorphism of A into a group B. Then a 
induces a homomorphism E of A Wr(P, Z) into B Wr(P, Z) where 

and aa is that element of B’ defined by 

au(i) = a(a(i)). 

We will also use e, to denote the homomorphism of PiB* onto B. Then E 
maps P,A’ into PiBr and 

ei E(x) = CZi(X) 

for all x E PiA’. Note that if a maps A onto B, then d maps A Wr(P, Z) onto 
B Wr(P, Z). In any event, the kernel of E is (kernel (a))‘. (Here, (kernel (a))’ 
is to be regarded as a subgroup of A’.) 

Suppose now that G is a group, H is a subgroup of G, and T is a right 
transversal of H in G. Let Z be the set of all right cosets of H in G and let p 
be the permutation representation of G on I. For x E G, let xT be that 
element of H’ defined by 

x,(Ht) = u&x-‘) xl-’ 

for all t E T. Let Ar be the mapping from G into H W@(G), I) defined by 

nT(x) = dx> xT* 

Then, as is well known (see [S, p. 4131, for example), A, is a monomorphism. 
If T’ is some other right transversal of H in G, then there is an m E H’ such 
that 

A,,(x) = m-‘A,(x) m 

for all x E G. If T is understood, we write simply A. With 
W = H Wr@(G), I), note that W = A(G) H’. Since p(G) acts transitively on 
Z, (H[i] ] i E I} is a conjugacy class of subgroups in W and {H[i] 1 i E I} are 
conjugate under A(G). Ifj denotes the coset H, then p(H) = @(G))j and SO 

If h E H, then 

ejA(h) = h,(j) = h,(H) = ur(h-‘) h = h. 

Thus ejA, = I,, the identity mapping of H. 
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We now list some properties of groups with a normal subgroup which is a 
direct product. 

2.1. LEMMA. Assume M 9 G, Ki d M for i E I, and M = nie, M/K,* 
Then the following are true: 

(1) Suppose xi E G for i E I. Then 1 n,,, Kixil = 0 or 1. Further, 
1 n,,, KiXi( = 1 if, and only if, xixi’ E Mfor all i, j E I. 

(2) Assume that H < G. Then the following are equivalent: 

(a) H = ni,, K,H. 

(b) HnM= niprKi(HnM). 

(c) HnM= &, (HnM)/(HnKi). 

Proof. (1) If x,yE nierKiXi, then xy-‘E niplKi= 1 and SO x=y. 

Hence, 

I I (-) Kixi < 1. 

If x E n,,, KiXi, then 

XiXJT’ = (xix-’ )(x~x-~)-~ E KiKj < M. 

Assume now that xix,: i E M for all i, j E I. Fixing j, n,,, K,XiXJ’ i must 
consist of a single element m. But then mxj E n,,, KiXi and SO 

I n~sIKixiI = 1. 
(2) Assume H < G. Now KiH need not be a subgroup of G but, as is 

easily checked, 

KiH n M = K,(H n M). 

Thus 

nM= n K,(HnM). 
isI 

It follows from this that (a) implies (b). 
Assume now that (b) holds and that x, E H nM for each i E I. Now, 

since xi E M, 

n KiXi = {m} 
iSI 

for some m E M. But then, using (b), 

mE n K,(HnM)=HnM. 
iEI 
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It now follows that 

0 (HnKi)Xi= (m} 
ieI 

and hence 

HnM= n (HnM)/(HnKi). 
isI 

Finally, suppose (c) holds. Clearly 

n K,H=,H. 
ieI 

We need to prove the reverse inclusion. Let x be an arbitrary element of 
n,,, K,H. Then x = k,h, for some ki E Ki and hi E H. Let j be some fixed 
element of I. Then kihi = kjhj and so 

h,hy’ = k;‘kj E HnM 

for all i E I. Then, by (c), 

0 (HnKi) h,hj’= (m} 
icI 

for some mfHnM. Then mEKihih,:’ for all iE1. Also hihjlkj’= 
k;’ E Ki for all i E I. Hence m and kj both belong to 

i?, Kihih,f ‘* 

It follows from part (1) that kj = m E H n M. But then 

x=k,h,E (HnM)H=H. 

It follows that 

0 K,H=H. 
id 

Remark. Suppose H is a subgroup satisfying the conditions in part (2) of 
the above lemma. If we identify M with niG1 (M/K,), then it follows from 
(2)(b) that 

H n M = n ((H n M) KJK,). 
iel 

This says not only that H n h4 is a direct product but that the direct decom- 
position of H nM is compatible with the direct decomposition of M. 
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In the sequel, subgroups which satisfy the conditions in part (2) of the 
lemma play a special role. The effect of the next two results is that if 
{Ki 1 i E I} is a union of conjugacy classes in G and if A is any subgroup of 
G, then there is a unique subgroup B of the desired type containing A but 
such that both AM and N,(K,) Ki stay the same when A is replaced by B. 

2.2. LEMMA. Assume M a G, Ki a M for i E I, and M = ni,, M/K,. 
Assume that {Ki 1 i E I} is a union of conjugacy classes in G. Let A be a 
subgroup of G and let B = n,,, K,A. Then B is a subgroup of G, B n M = 
niC,Ki(AnM), B=(BnM)A=niEIAKi=niE,KiB, and BnM= 

FIi61 CB n M)I(B n Ki)* 

Proof: As in the previous lemma, K,A need not be a subgroup of G. 
Since, however, Ki a M, K,(A n M) is a subgroup. Then 

BnM= 0 (K,AnM)= n K,(AnM) 
iEI iel 

is a subgroup. Conjugation by elements of A permute the members of 
{K,A 1 i E I} among themselves. Therefore A must normalize both B and 
B n M. It follows that (B n M) A is a subgroup of G. Clearly 

(BnM)Ac n K,(AnM)A= n K,A=B. 
ia isI 

Suppose x E B. Then x E Kiai for some ai EA. Then 1 nie, Kiail > 0 and 
so part (1) of the previous lemma yields 

aiaJ:’ E M 

for all i, j E I. Then, since ai and aj belong to A, 

xai ’ = (xa; ‘)(aia,: ‘) E K,(A n M). 

Therefore, 

xaj’E n K,(AnM)=BnM. 
is1 

It follows from this that x E (B n M) A. Thus 

B=(BnM)A. 

An argument similar to the above shows that 

. 
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But A n M normalizes K,, and (B n M) and (B n M) A are both subgroups 
of G. It now follows that 

n4=+( A ~M)K~ =A n K,(A nM) ) ( =ApnM)=B. 
icl iel ieI 

Finally, 

Bc n K,Bc n KiKiA= n K,A=B. 
icI iel ieI 

This implies that B = nit, K,B. It follows from the previous lemma that 

BnM= n (BnM)/(BnKi). 
iel 

2.3. THEOREM. Assume A4 4 G, K, _a M for i E I, M = Hi,, (M/K,), 
and (Ki ) i E I} is a union of conjugacy classes in G. Let A be any subgroup 
of G. Then the following are true. 

(1) G contains one and only one subgroup B such that A <B, 
B n M = nie, (B n M)/(B n K,), AM = BM, and NA(Ki) Ki = NB(Kt) Ki 
for all i E I. 

(2) B=n,,,K,A=A(BnK,)foralZiiEI. 

(3) IfA<C<Gand CnM=~i,I(CnM)/(CnKi), then C>B. 

(4) If A <C< AM and N,(K,) Ki=N,(K,) Ki for all if I, then 
C < B. 

Proof Let B = ni,, K,A. By Lemma 2.2, B is a subgroup of G and 
B n M = ni,, (B n M)/(B n Ki). Clearly B contains A, and since Ki < M, 
B is contained in MA. Certainly, then AM = BM. Now let i E 1. Then 
B C K,A and so, since B > A, B = (B n Ki) A. Setting Ni = Na(Ki), we have 

N,(K,) = B n Ni g K,A f7 Ni = K,(A f7 Ni) = K,N, (Ki). 

This implies that N,(K,) Ki = NA (Ki) Ki. 
We now have verified (2) and all but the uniqueness in (1). The 

uniqueness is an immediate consequence of (3) and (4). Thus we will be 
finished once we prove (3) and (4). 

Suppose then that A < C < G and C f7 M = ni,, (C f7 M)/(C f7 Ki). 
From Lemma 2.1(2), we obtain 

C= n K,C3 n K,A=B. 
icI iel 

Thus (3) is proved. 
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Finally, suppose A < C <AM and Nc(K,) Ki = NA(Ki) Ki for all i E I. By 
taking intersections with M and using Ki < M < NG(Ki), we obtain 

K,(A n M) = K,(C n M). 

From A < C <AM, we must have C = (C r7M) A and so 

K,C=K,(CnM)A=K,(AnM)A=K,A. 

But then 

CL fi K,C= n KiA=B. 
icI icl 

With this, the proof of the theorem is complete. 

Remark. Assuming the same hypothesis as in the theorem, suppose 9 is 
the set of subgroups H in G which satisfy 

HnM= n (HnM)/(HnKi). 
iel 

Then it follows from part (3) of the theorem that 27 is closed under arbitrary 
intersections. For suppose Hj E 9 for all j E J. Applying the theorem with 
A = n,,, Hj, we find that Hj > B for all j E J. But then this implies that 
A=BEY. 

3. THE INDUCED EXTENSION 

Assume that a is a homomorphism of a group A into a group B. We 
proceed to describe how to construct a group G which we will call the 
induced extension. This may be compared with the semi-direct product 
construction in which we start with a homomorphism of one group into the 
automorphism group of another group. 

Let C = a(A), let I be the set of right cosets of C in B, let p be the 
permutation representation of B on I, let P = p(B), and let T be a fixed right 
transversal of C in B. Then, as was shown earlier, there is a monomorphism 
A= A, of B into C Wr(P, I). Let E be the epimorphism of A Wr(P, 1) onto 
C Wr(P, 1) induced by a. If M is the kernel of E, then M = (kernel(a))’ and 
we have an exact sequence 

E: 1 +M-+A Wr(P,Z)% CWr(P,Z)-+ 1. 
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Let G be the middle term in the pull-back exact sequence EL. Then we have 
the following commutative diagram with exact rows. 

l-M- G 4 B -1 

II I IA 
l-M- A Wr(P, Z) -5 C Wr(P, Z) ---+ 1 

(This diagram serves to define a.) Since I is one-to-one, the 5 lemma implies 
that the middle vertical arrow is a monomorphism. Thus we may consider G 
as a subgroup of W = A Wr(P, Z). Then, as is easily verified, 

G={xE WIE(x)=A(b)forsomebEB}, 

and u = A-‘(&-. If T’ is another right transversal of C in B, then I,,(B) = 
m-IL(B) m for some m E C’. Then m = E(n) for some n E A’. Then 

{xE W(E(x)=&,(b)forsomebEB}=n-‘Gn. 

Thus, up to conjugacy in W and certainly up to isomorphism, G is 
independent of the choice of T. 

We will say that G is the induced extension defined by a : A -+ B. Strictly 
speaking, we should say that 

l-+M-+G4B-+l (G) 

is the extension-by-B induced from the extension-by-C 

1 + kernel(a) --t A 3 C -+ 1. (A) 

The origin of the terminology lies in a special case. If kernel(a) is abelian, 
one may regard it as a C-module and (A) as an extension of this module by 
C. Then M is the induced B-module and (G) is the extension of M by B 
corresponding to (A) in the natural isomorphism of the cohomology groups 
H’(C, kernel(a)) and H*(B, M) given by Shapiro’s Lemma [4, p. 291. Indeed, 
much of this paper may be thought of as a non-abelian generalization of 
Shapiro’s Lemma for the first and second cohomology groups, but space 
does not allow us to pursue that view here. 

We now derive some properties of G. Clearly M 4 G and G/M is 
isomorphic to a(G) = B. Also M = (kernel(a))‘< A’ I! W. For each i E I, 
let Kt = Mn A[i]. Then Ki a M, M/K, is isomorphic to kernel(a), and 
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A4 = niel (M/K,). If p E P, then p =p(b) and I(b) = a(x) for some b E B 
and x E G. Then 

x-‘Kix = K,. 

It now follows that {Ki ) i E I} is a class of conjugate subgroups of G. 
Let j be that element of I corresponding to the coset C, let K = Kj, and 

N = N,(K). Since Pj = p(C), we find that 

N = {x E W 1 E(x) = n(c) for some c E C}. 

Then o(N) = C. Let e be the restriction of ej (ej is defined in Section 2) to N. 
If x E N and a(x) = A(c) with c E C, then 

cfe(x) = ejE(x) = ejl(c) = c = o(x). 

Thus se(N) = C = a(A) and so e(N)(kernel(a)) = A. But N > It4 and ej(M) = 
(kernel(a)) (this follows since A4 = (kernel(a))‘). We now see that e(N) = A. 
Suppose x E kernel(e). Then a(x) = A(c) for some c E C and c = se(x) = 
a(l)= 1. Then E(x)= 1 and so xENnkernel(E)=NnM=M. But 

M n kernel(ej) = M n A [j] = K. 

It now follows that the kernel of e is K. 
We now have shown the following: 

(1) M 4 G, K 4 M, M = niE1 (M/K,) where {K, ] i E I} are all the 
conjugates of K in G, and N = No(K). 

(2) u is a homomorphism of G onto B, the kernel of c is M, and 
a(N) = a(A). 

(3) e is a homomorphism of N onto A, the kernel of e is K, e(M) = 
kernel(a), and ae = (TV. 

Since G is defined by a pull-back diagram, it is natural to expect G to 
satisfy some type of universal mapping property. Thus we obtain the 
following result. 

3.1. THEOREM. Let the notation be as above. Suppose z is a 
homomorphism of a group G* onto B and let N* = {x E G* 1 z(x) E a(A)}. 
Assume that b is a homomorphism of N* into A such that z,, = a/2. Then 
there is a homomorphism y of G* into G such that z = ay and /3 = ey,, . 
Suppose further that y’ is also a homomorphism of G* into G such that 
t=ay’ andp=e(y’),,. Then there exists k E K such that y’(x) = k-‘y(x) k 
for all x E G*. 

ProoJ For each t E T, there is a t* E G* such that t(t*) = t. Then if 
T* = {t* ] t E T), T* is a right transversal of N* in G*. (Of course, we 

481/90/l-10 
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choose 1* = 1.) We may identify Z with the set of right cosets of N* in G* 
so that p* = pt where p* is the permutation representation of G* on the 
cosets of N*. Let A* be the monomorphism 1, of G* into N* Wr(P, Z). 
(Obviously, p*(G*) = pz(G*) = p(B) = P.) Let p be the homomorphism of 
N* Wr(P, Z) into A Wr(P, I) induced by /I. Let r be the homomorphism 
induced by r,. of N* Wr(P, Z) onto C Wr(P, Z). Then, since r,, = a/3, i= E$. 
If x E G*, then 

s;*(x) = r@*(x) x,*) =p*(x)(T(x)), 

= P(r(x))(e))r 

= /Is(x). 

Hence, FL* = Ar. But then 

and we have the commutative diagram 

A Wr(P, I) A C Wr(P, I) 

Since G is the pull-back of 

A Wr(P, Z) A C Wr(P, I) 

it follows that there must be a homomorphism y of G* into G such that the 
following diagram commutes. 

G* - B 

A Wr(P, I) + C Wr(P, I) 
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(Recall that the map from G to A Wr(P, 1) is an inclusion map.) Then 
y=@* and r=oy. Now 

u(N) = a(A) = c = t(N*) = oy(N*). 

This forces y(N*) < N (since N > M = kernel(u)). Then 

ey,, = ej@ *)N* = @j(l *)N* = P 

where we have used the fact that ej(A*),, is the identity. We now see that y 
has the desired property. 

Suppose now that y’ is another homomorphism of G* into G such that 
r = ay’ and /I = e(y’),, . Define the function f on G* by f(x) = y(x)- i y’(x). 
Then since uf(x) = r(x)-’ r(x) = 1, we see that f(x) E kernel(a) = M for all 
xEG*. If x E N*, then ef(x) = 1 and so f(x) E kernel(e) =K for all 
xEN*. 

Now r(T*) = T which is a right transversal of C in B. Also o maps G 
onto B and N is the inverse image of C under u. Since ay = r, we conclude 
that y(T*) is a right transversal of N in G. It now follows that the distinct 
conjugates of K in G are {y(t*)-’ Ky(t*) 1 t* E T*}. Since f(t*) E M and 
since M = JJis, (M/Ki), we see that 

t*flT* ro*>-’ KY(t*v(t*) 

must consist of a single element k E M. Since 1* = 1, we conclude that 
f(1 *) = 1 and that k E K. To finish the proof of the theorem we will show 
that y’(x) = k-‘y(x) k for all x E G*. Equivalently, if we set y”(x) = 
ky’(x) k-’ for all x E G*, we need to show that y” = y. 

Clearly, y” is a homomorphism of G* into G. We assert that y” satisfies 
the following three conditions: 

(1) fYy” = 5; 

(2) e(Y),* = P; 

(3) f-l t*ET* y(c*)-’ Ky”(C*) = {I}. 

The validity of (1) and (2) follows from the similar equations satisfied by y’ 
and from 

k E K = kernel(e) < M = kernel(u). 

If t* E T*, then 

Ky(t*)=Kky’(t*)k-‘=Ky’(t*) k-‘=Ky(t*)f(t*) k-‘. 
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This implies that 

,-f-l* Yv-’ KY”(t*) = (,*!-I* r@*>-’ K7of(r*)) k-l = 11 I 

and so (3) is verified. Next we show that (I), (2), and (3) imply that y” = y. 
Note first that 

@*)-I Ky”(t”) = (y(r*)-’ KY@*)) JJ(t*)-’ y”(t*) 

and so it follows from (3) that 

JJ(t*)-’ y”(l*) E @*)-I Ky(r*). 

Hence y”(t*) E Ky(t*) for all t* E T*. From (2), we obtain y”(y) E Ky(y) 
for all y E N*. 

If x E G*, then x =yt* with y E N* and t* E T*. Since y(u) normalizes 
K. we have 

KY”(X) = Ky”(y) f’(t*) = Ky(y) f’(t*) = y(y) KY”@*) 

= Y(Y) KY@*) = KY(Y) G*) = KY(X). 

Thus we have shown that KY”(X) = KY(X) for all x E G*. Consequently, 
whenever u, x E G*, we must have 

KY(U) y(x) = Ky(ux) = Ky”(ux) = KY”(U) y”(x) = KY(U) y”(x). 

Since {r(t*)-’ Ky(t*) 1 t* E T*} are all the conjugates of K in G, Lemma 
2.1 implies that 

for all g E G. We now see that 

Mx)l = n W-’ KY@*> ~(~1 t*ET* 
= ,?,* W-’ KY@*) Y”(X) = W’(x)1 

for all x E G*. This shows that y” = y and the theorem is proved. 

3.2. COROLLARY. Let G, M, N, and K be as in the theorem. Then the 
automorphisms of G which leave M and K invariant as sets and act iden- 
tically on both G/M and N/K are precisely the inner automorphisms of G 
induced by the elements of K. 



NORMAL SUBGROUPSWHICHARE DIRECTPRODUCTS 147 

Proof. Set G* = G, r = u, /3 = e, and y = the identity automorphism of G. 
If y’ is any automorphism of G which fixes M and K as sets and which acts 
identically on both G/M and N/K, then Theorem 3.1 implies that y’ is an 
inner automorphism of G induced by some element of K. 

Keeping the same notation as in Theorem 3.1, suppose we have a 
homomorphism (D of a group A * into A such that a&4 *) = C. Then, setting 
a * = arp, let G* be the induced extension defined by a * : A * + B and let 
M*, K”, N*, u*, and e* be defined by analogy with M, K, N, u, and e, 
respectively. Then 

N* = {x E G* 1 a*(x) E a*(A*) = C = a(A)} 

and 

a(qe*) = (aq) e* = a*e* = a$*. 

Setting t = u* and /I = rpe*, Theorem 3.1 is applicable with the result that 
there is an essentially unique homomorphism y of G* into G such that 
u*=uyandrpe*=ey,,. 

Similarly, if I,U is a homomorphism of a group A* * into A * such that 
a * yl(A * *) = C, then with a * * = a *v/ and G* * the induced extension 
defined by a * * : A * * --t B, there is a homomorphism 6 of G* * into G* such 
that u** =u*6 and y/e** =e*6,,,. (Here a**, e**, and N** are defined 
by analogy with u*, e*, and N*, respectively.) Moreover, the composite map 
yS : G** + G is essentially unique with respect to the conditions u** = u(ys) 
and pwe** = e(y&* in the sense that any other homomorphism of G* * 
into G satisfying these conditions must be a composite of yS with an inner 
automorphism of G induced by some element of K. This shows that we are 
dealing with a functorial phenomenon. 

In particular, if q is an isomorphism of A* onto A, A ** = A, and if 
w=v-I, then the preceding shows that yS is an inner automorphism of G. 
Similarly, 6y is an automorphism of G *. This implies that both y and 6 are 
isomorphisms. We set out this conclusion in the following brief form. 

3.3. COROLLARY. Suppose a:A+B and a* :A*+B are group 
homomorphisms such that a* = ay, where q is an isomorphism of A* onto A. 
Then the induced extensions defined by a : A + B and a* : A * + B are 
isomorphic. 

An interesting particular case of this corollary concerns twisted wreath 
products (see [6] or [5, pp. 99-1001 for the definition, but note that we 
always mean the unrestricted product). It will follow from our Theorem 4.1 
that a twisted wreath product is precisely an induced extension defined by a 
homomorphism a : A -+ B such that A splits over the kernel of a. In this 
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situation, we may consider A to be the semi-direct product CS where S = 
kernel(a), C = a(A), and a is the natural projection. To complete the 
specification of A, we need a homomorphism of C into the automorphism 
group of S. Suppose x is a homomorphism of C into S and we define p(c), 
for c E C, to be the inner automorphism of S induced by x(c). Then A = CS 
is isomorphic to the direct product A * = C X S with o : (c, s) -+ ck(c- ‘) s) 
being an isomorphism of A * onto A and having the property that a* = ay, 
(where a* is the natural projection of A * = C X S onto its first direct 
factor). Corollary 3.3 now asserts that the induced extension G defined by 
a : A + B is isomorphic to the induced extension G* defined by a * : A * -+ B. 
When C contains no non-trivial normal subgroup of B (so that B is faithfully 
represented by a permutation group P acting on I, the set of all right cosets 
of C in B), G* is easily seen to be the wreath product S Wr(P, I). If x(C) is 
not contained in the center of S, then C (in A) acts non-trivially on S but the 
twisted wreath product G is still isomorphic to the ordinary wreath product 
G*. As a special case, we have the following result. 

3.4. COROLLARY. Any two twisted wreath products of the alternating 
groups A,,, and A,, in which A,,, is twisted by the point stabilizer A,-, are 
isomorphic. 

Proof: Here A is the semi-direct product A,A,- 1, C = A,- 1, S = A,,,, 
and B = A,, Any homomorphism of A,- i into the automorphism group of 
A,,, must map A,- i into the group of inner automorphisms. (If this were not 
the case, then A,-, would have to have a proper normal subgroup whose 
index is 2 or 4.) It now follows from our previous discussion that any twisted 
wreath product of A,,, and A,, with the twisting being done by A,-, is 
isomorphic to the ordinary wreath product of A, and A,. The corollary is an 
immediate consequence. 

Further properties of induced extensions will be proved in the next section. 
(In particular, see Sections 4.1 and 4.6.) 

4. THE MAIN RESULTS 

Throughout this section, we will be dealing with the following hypothesis: 

A4 4 G, K d M, M = n,,, (M/K,) where {Ki 1 i E I} are the 
distinct conjugates of K in G, and N = N,(K). (*I 

In the previous section, it was shown that every induced extension satisfies 
(*). Now we show the converse. 
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4.1. THEOREM. Assume (*). Let a : N/K + G/M be defined by Kx -+ Mx; 
let a:G-+G/M and e:N + N/K be the natural epimorphisms. Then the 
following are true. 

(1) G is the induced extension defined by a : N/K -+ G/M. 

(2) Suppose 5 is a homomorphism of a group G* onto G/M and let 
N* = {x E G* 1 T(X) E N/Ml. Assume that /.? is a homomorphism of N* into 
N/K such that ‘s,. = ap. Then there is a homomorphism y of G” into G such 
that s = ay and p = ey,, . If y’ is also a homomorphism of G* into G such 
that r = ay’ and /3 = e(y’),*, then there is a k E K such that y’(x) = 
k-‘y(x) k for all x E G”. 

Proof Let T be a right transversal of N in G. Then o(T) is a right 
transversal of N/M in G/M. We may identify Z with the set of right cosets of 
N in G and then with the set of right cosets of N/M in G/M. If p is the 
permutation representation of G/M on the right cosets of N/M, then we may 
regard p(G/M) as acting on I. Now pa is the permutation representation of G 
on the cosets of N. Let P = p(G/M) and let I= 1, be the embedding of G 
into N Wr(P, I). Let A =IzoCTj be the embedding of G/M into 
(N/M) Wr(P, 1). If 8 denotes the homomorphism induced by u of N Wr(P, I) 
onto (N/M) Wr(P, I), then we have the following commutative diagram. 

G u+ GIM 
.a 
I I 

a 

N Wr(P, 1) 0 WlWWP,O 

Next, let ~2 be the homomorphism of N Wr(P, 1) onto (N/K) Wr(P, 1) 
induced by e and let E be the homomorphism of (N/K) Wr(P, I) onto (N/M) 
Wr(P, I) induced by a. Since ae = u,,,, we find that ~7~2 = 8. Therefore, the 
following diagram is commutative. 

G A GIM 
a 

I I 
a 

(N/K) Wr(P, 1) 2 (N/M) Wr(P, Z) 

The commutativity of this shows that &M) < kernel(C). We in fact assert 
that d maps M isomorphically onto kernel (a). If m E M, then, as M < 
kernel(pu), I(m) = m, for all t E T. Since M is normal in G and contained in 
N, 

m,(Nt) = u.(tm-‘) mt-’ = tmt-‘. 
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Suppose now that x E kernel(E). Then x E (N/K)’ and 

x(Nt) = Kx, E M/K 

for some x, E M. There must be a unique m E A4 such that 

?, (t-‘Kt)(t-‘x,t) = {m}. 

But this implies that 

m,(Nt) = tmt ~ ’ E Kx, = x(Nt) 

for all t E T. It now follows that @l(m) = eT(m,) =x. -Hence C%(M) = 
kernel(E) and it only remains to show that Mn kernel(@A) = 1. Suppose, 
therefore, that m E M and d(m) = 1. Then 

1 = .?(m,(Nt)) = Ktmt - ’ 

for all t E T. But then 

mE 0 tr’Kt={l}. 
167 

Thus we have shown that e?I maps A4 isomorphically onto kernel(E). 
It now follows that the following diagram commutes and has exact rows. 

l+M---+ G A G/M - 1 

II I 
2 

I 
A 

l-M- (N/K) Wr(P, 1) A (N/M) Wr(P, I) - 1 

But then the top row is a pull-back of the bottom row. This implies that G is 
the induced extension defined by a : N/K + G/M. This proves (l), and (2) 
now follows from Theorem 3.1. 

One consequence of the above theorem is that induced extensions are quite 
common. For example, if A4 is a minimal normal subgrpoup of a finite group 
G and if A4 is not abelian, then A4 is a direct product S, x S, x ... x S, 
where (S, ,..., S,} is a conjugacy class of subgroups in G. The first part of 
Theorem 4.1 now shows that G is an induced extension. Theorem 4.1 also 
implies that any wreath product A Wr(P, 1) in which P acts transitively on I 
is an induced extension. Similarly, as pointed out in the previous section, it 
follows from our theorem that any twisted wreath product is an induced 
extension. 

Our original proof of the next theorem was based upon the induced 
extension construction, but there seems to be some merit in having a direct 
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simple proof without bringing in any extra notation. The motivation behind 
our present proof, however, comes directly from induced extensions. 

4.2. THEOREM. Assume (*). Let L be a subgroup of N such that K < L 
and N = LM. Then G has a subgroup H satisfying the following: 

(I) G=HM, L=(HnN)K, and HnM=ni,t(HnM/(Hr‘lKi). 

(2) Suppose H, < G, G = HIM, and H, n N < L. Then there is an 
element k E K such that k-‘H, k < H. Further, k-‘H, k = H if, and only if, 
L = (H, n N) K and H, n A4 = nis, (H, n M)/(H, n KJ. 

Proof. Let T be a right transversal of N in G. Then {Kt 1 i E I} = 
(t-‘Kt 1 t E T}. Let u = u, (recall that u,(x) E T and Nx = N+(x) for 
x E G). Then define H by 

If 1, is the embedding of G into N Wr(P, Z) and regarding L Wr(P, I) as a 
subgroup of N Wr(P, I) in the obvious way, it is not difficult to show that H 
is the inverse image under A, of the subgroup A,(G) f7 L Wr(P, I). From this 
it certainly follows that H is a subgroup of G. This also can be verified by a 
direct calculation without reference to wreath products. For suppose x, y E H 
and t E T. Setting t, = u(tx) and t, = u(tI y-‘), we have 

u(txy-‘)(xy-‘)-I t-’ = t*yx-‘t-1 = (t, y-It;‘)-’ (tlx-‘t-1). 

Since t, y-lt;‘= u(t, y)y-‘t;’ and tIx-‘t-’ = u(tx)x-‘t-l both must 
belong to L, we conclude that xy- ’ E H. We now proceed to show that H 
satisfies the conditions in the conclusion of the theorem. 

Let x be some fixed element of G and let t E T. Then 

u(tx)x-‘t-l E N=LM. 

Hence, for each t E T, there is an m, E M such that 

u(tx) x-It-’ E Lm,. 

If x E L, then u(x) = 1 and so we may choose ml = 1. Certainly t- ‘m, t E M 
and so 

?, (t-‘Kt)(t-‘m,t) = {m} 

for some m E M. If x E L, then m, = 1 and so m E K. In any event 

m,tm -‘t-l E K 
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for all t E T. Since tmx = tx(mod M), u(tmx) = u(tx). Then 

u(tmx)(mx)-’ t-l = u(tx)x-‘m-‘t-l 

= (u(tx)x-‘t-lm;‘)(m,tm-lt-l) ELK = L. 

This implies that mx E H and so G =, MH. If x EL, then m E K (L and so 
mxEHnL<HnN. Then xEK(HnN) and so L<K(HnN). On the 
other hand K < L and if h E H nlv, then u(h) = 1 (since h E N) and (since 
hEH) 

u(lh) h-‘1-l EL. 

It now follows that H n N < L. Therefore, L = K(H n N). 
We now claim that nisi K,(H n M) < H. If so, then it will follow that 

ni,, K,(HnM) = HnM and then, using Lemma 2.1, that HnM= 
ni,, (H n M)/(H n Ki). Suppose now that x E ni,, Ki(H n M). Then 
x E M and so u(tx) = t for all t E T. If t E T, then 

x E (t - ‘Kt)(H n M) 

and so x=t-‘kth for some kEK and hEHnA4. Since hEHnM, L 
must contain 

u(th) h-‘t-l = th-‘t-l. 

But then 

u(tx)x-‘t-’ = tx-‘t-l = t(t-‘kth)-’ t-’ = (th-‘t-l) k-’ ELK =L. 

It follows from this that x E H. We now have proved the first part of the 
theorem. 

Assume now that H, is a subgroup of G such that G =MH, and 
H, n N < L. For each t E T, there must be an m, E M such that t E m,H, . 
Clearly we may choose m, = 1. Now 

?, (tr’Kt)(tr’m,t) = {k} 

for some k E M. Since m, = 1, we see that k E K. Since t - ‘Kt g M, 

kt-‘Kt = (t-‘m,t)(t-‘Kt) 

and so 

m;‘tkt-’ E K 

for all t E T. We now show that k-‘H, k <H. 
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Let x E H, and t E T. Since 

tk- ‘xk = tx(mod M), 

u(tk-‘xk) = u(tx). Let t, = u(fx). Then 

u(tk-‘xk)(k-‘xk)-’ t-’ = t,k-lx-‘kt-’ 

= (tlk-lt;lm,,)(m;l t,x-‘t-‘m,)(m;‘tkt-‘) 

= (m;‘t, kt; ‘)-I (m; ltlx-lt-lm,)(m;ltkt-l) 

E K(m,;‘t,x-‘t-‘m,)K. 

Now t,x-‘t-l = u(tx)(tx)-’ EN and so 

m,;ltlx-lt-lm, E MNA4= N. 

Also 

mt;‘t,x-‘tr’m,= (m,‘t,)x-‘(m;‘t)-’ E H,. 

It follows from all this that 

u(tk-‘xk)(k-‘xk)-’ t-’ E K(Nn H,) K c KLK = L. 

This implies that k-‘xk E H and so k-‘H, k < H. 
Now suppose H, n M = J&, (H, n M)/(H, n Ki) and (H, n N) K = L. 

If k-‘H, k = H,, then we must have H, n A4 = JJiE, (H, n M)/(H, n Ki) 
and L = N,*(K) K = N,(K) K. The conjugates of K are transitively permuted 
by H, (since G = H,M) and H, normalizes H (since H, < H). It now 
follows that 

NH,(Ki) Ki = NdKi) Ki 

for all i E I. If we set A = H, in Theorem 2.3, then both H, and H satisfy the 
requirements for B in that theorem. It now follows from Theorem 2.3 that 
H,=H. 

If on the other hand, k-‘H, k = H, then it is immediate that (H, f7 M) = 
nial (H, n M)/(H, n K,) while, since k E K < L, 

L=k(L)k-‘=k(Hf?N)Kk-‘=(H,nN)K. 

The proof of the theorem is complete. 

4.3. COROLLARY. Let G, M, K, Ki, N, L, and H be the same as in the 
theorem. Then the following are true. 



154 GROSS AND KOVkS 

(1) H n M is isomorphic to ((L n M)/K)‘. 

(2) H is a complement of M in G if, and only IY, L/K is a complement 
of M/K in N/K. 

(3) If R & G and G = RM, then R is conjugate to a subgroup of H in 
G if, and only if, R n N is conjugate to a subgroup of L in N. 

(4) Let R < G. Then R is conjugate to H in G ift and only if, G = RM, 
R n M = ni,, (R n M)/(R n K,), and L is conjugate to (R n N) K in N. 

Proof. (1) Since H n M = niE1 (H n M)/(H n Ki) and since (H n Ki / 
i E I} is a conjugacy class in H (since G = HM), H n M is isomorphic to 
((H n M)/(H n K))‘. From 

K<LnM<L=(HnN)K 

we obtain 

LnM=K(HnNnLnM)=K(HnM). 

Thus (L n M)/K is isomorphic to (H nM)/(H n K). It now follows that 
H nM is isomorphic to 

(CL n W/K)‘. 

(2) From (l), H n M = 1 if, and only if, (L/K) n (M/K) = 1. 

(3) Suppose G = RM and R n N is conjugate to a subgroup of L in 
N. Since M< N < MR, we must have N = M(R n N). Then there is an 
m E M such that 

m-‘(RnN)m<L. 

If H, = m -‘Rm, then G = H,M and H, n N < L. It follows from the 
theorem that H, is conjugate to a subgroup of H. Hence R is conjugate to a 
subgroup of H. Conversely, if R is conjugate to a subgroup of H, then, since 
G=RM, m-‘Rm<Hfor some mEM. Then 

m-‘(RnN)m=m -‘RmnN<HnN<L 

(4) As in (3) if G = RM and if (R n N) K is conjugate to L in N, 
then there is an m E M such that 

L=m-‘(RnN)Km=m-‘(RnN)mK. 

Hence, if H, = m-‘Rm, then G = H, M, H, n M = ni,, (H, A M)/ 
(H, n K,)) and L = (H, n N) K. The theorem implies that H, is conjugate to 
H. The rest of (4) follows easily. 
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Although in Theorem 4.2 we start with the subgroup L and proceed to 
construct the subgroup H, we may reverse the procedure. Suppose, for 
example, that H is a subgroup of G such that (1) G = HM, and (2) H n M = 
ITIiel (HnM)I(HnKi)* Th en if we set L = (H n N) K, we find that L and 
H satisfy the conditions of Theorem 4.2. Thus the theorem and its corollary 
can be applied to obtain, for example, necessary and sufficient conditions for 
a subgroup of G to be conjugate to H. In particular, if Y denotes the 
conjugacy classes in G of subgroups H satisfying (1) and (2), then the 
mapping H -+ (H n N) K/K induces a bijection between 9 and the 
conjugacy classes in N/K of subgroups L/K such that N/K = (M/K)(L/K). 
Further, if H is any complement to M in G, then H satisfies (1) and (2) (the 
latter because H n M = 1) and it follows from Corollary 4.3 that we have a 
bijection between the conjugacy classes in G of complements of M, if any, 
and the conjugacy classes in N/K of complements of M/K. Thus we have 
proved the following: 

4.4. COROLLARY. Assume (*). Then there is a bijection between, on the 
one hand, conjugacy classes in G of subgroups H satisfying G = HM and 
HnM=&t(HnM)/(HnK,), and, on the other hand, the conjugacy 
classes in N/K of subgroups L/K satisfying N/K = (M/K)(L/K). Moreover, 
under this bijection, the conjugacy classes in G of complements of M, tf any, 
are in one-to-one correspondence with the conjugacy classes in N/K of 
complements of M/K. 

Because of the importance of the case when I is a finite set (this certainly 
happens if G is a finite group), we reformulate our results in this special 
case. 

4.5. THEOREM. Assume that M a G and that 

M=S,xS,x...xS, 

where {S, ,..., S,} is a conjugacy class of subgroups in G. Let N = N&S,) 
andK=S,x... x S,. Then the following are true. 

(1) IfK<L<NandN=LS,,thenthereisasubgroupHinGsuch 
that G=HM, L=(HnN)K, 

HnM=(HnS,)x (HnS,)X ... x (HnS,), 

{Hn S1,..., HnS,} is a conjugacy class in H, and HnS,=LnS,. 
Further, H is unique up to conjugacy under K. 

(2) Suppose H < G, G = HM, and 

HnM=(HnS,)x (HnS,)x .., x (HnS,). 
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Assume further that H, < G and G = H,M. Then H, is conjugate in G to a 
subgroup of H if, and only if, H, n N is conjugate in N to a subgroup of 
(H n N) K. Further, H, is conjugate to H in G if, and only if, (H, t? N) K is 
conjugate to (H n N) K in N and also 

H,nM=(H,nS,)X(H,f-iSJX ... X(H,nS,). 

ProoJ This follows directly from Theorem 4.2 and its corollaries. 
The next result about splitting in an induced extension merely restates 

earlier results in the language of induced extensions. 

4.6. THEOREM. Let G be the induced extension defined by a : A -+ B. Let 
S be the kernel of a and let M be the normal subgroup of G which is the 
direct product of 1 B : a( copies of S. Then G splits over M if, and only if, 
A splits over S. Further, there is a one-to-one correspondence between classes 
in G of complements of M and conjugacy classes in A of complements of S. 

Proof. This follows directly from the description of G given in Section 3 
together with Corollaries 4.3 and 4.4. 

To illustrate that the induced extension procedure can be used to construct 
groups which are not semi-direct products, we offer the following. 

4.7. THEOREM. Let B be anyfinite simple non-abelian group. Then there 
is a finite group G with a minimal normal subgroup M such that M is the 
direct product of copies of A,, G/M is isomorphic to B, and G does not split 
over M. 

Proof. Let A be the automorphism group of A,, the alternating group of 
degree 6. Since a Sylow 2subgroup of B can be neither cyclic nor 
quaternion (this follows from the Feit-Thompson Theorem, the Burnside 
Transfer Theorem, and a theorem of Brauer and Suzuki), B must contain a 
subgroup C which is elementary abelian of order 4. Then there is a 
homomorphism a of A into B such that a(A) = C and the kernel of a is A,. 
Now let G be the induced extension defined by a : A -+ B. It is well known 
that A does not split over A, and so it is easily verified that G has the 
required properties. 

5. UNION OF CONJUGACY CLASSES 

We now wish to consider our results when {Ki 1 i E I} is a union of 
conjugacy classes. First we look at the special case when Ki g G for all 
i E I. Thus we consider the following hypothesis: 

M g G; for each i E I, Ki is a normal subgroup of G contained 
in M; and M = ni,, (M/K,). (**I 
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5.1. LEMMA. Assume (**). Let a:G--+G/M, ei:G+G/Ki, and 
ai : G/K,+ G/M be the natural epimorphisms. Assume that 5 is a 
homomorphism of a group G” onto G/M. For each i E I, assume that pi is a 
homomorphism of G* into G/K, such that aiDi = s for all i E I. Then there is 
one and only one homomorphism y of G* into G such that 7 = uy and 
Pi=eiyfor each iEZ. 

Proof Let x E G*. For each i E I, 

Pi(x) = Ki Yi 

for some yi E G. If i,j E I, 

Myi = aiDi = t(x) = ajpj(x) = My,. 

Hence, y, y,:’ E M. Lemma 2.1 now implies that 

I I 
n Kiyi = 1. 
icl 

Define y(x) by 

{Y(X)/ = n KiYi* 
isI 

It is easily verified that y is a homomorphism and that 

ei y(X) = Kt y(X) = Ki yi = pi(X). 

Hence e, y = pi and then 

Z = atPi = (atei) y = oy. 

Finally, suppose y’ is a homomorphism of G* into G such that r = ay’ and 
pi = eiY’ for each i E I. Then, for x E G* and i E I, 

Kiy’(x) = eiy’(x) =pi(x) = eiy(x) = Kiy(X). 

But then y’(X) Y(X)-’ E r)isrKi = 1. Thus y’ = 7. 
A special case of the next result was proved by Gaschiitz in [3]. 

5.2. THEOREM. Assume (**). For each i E I, let Li be a subgroup of G 
such that G = LtM and K, < Li. Let H = nie, Li. Then the following hold. 

(1) G=HMandLi=HKiforeach iEI. 

(2) HnM=n,,,(HnM)/(HnKi). 

(3) H is a complement of M in G if, and only if, LJK, is a complement 
of M/K, in G/K, for each i E I. 
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(4) Let R be a subgroup of G such that G = RM. Then R is conjugate 
to a subgroup of H ly, and only ly, R is conjugate to a subgroup of Li for each 
i E I. Moreover, R is conjugate to H if, and only if, R n M = l-Ii,, (R n M)/ 
(R (7 Ki), and RK, is conjugate to Li for each i E I. 

Proof If xEG, then x=mili for each iEI with miEM and liELi. 
Then, for i, j E I, 

Iill:’ = m;‘mj E M. 

By Lemma 2.1, 

fl Kizi= {VI 
ir2 

for some y E G. Then, since Ki < Li, 

YE (-) Li=H. 
ieI 

Also 

xy-’ =~l;‘l~y-~ =m,(l,y-‘)EMK,=M. 

Hehce, x E MH and so G = MH. 
Clearly Li > HK,. Suppose x E L, and let mj, lj, and y have the same 

meaning as above. Since x E Li, we may choose mi = 1. Then 

xy-’ =Ziy-’ E Ki. 

Since y E H, we conclude that Li = HK,. 

(2) Since 

n HK,= fl L,=H, 
iol iEI 

Lemma 2.1 implies that 

HnM= fl (HnM)/(HnK,). 
iczl 

(3) L,nM=HK,nM= (HnM)Ki. It follows that (HnM)/ 
(Hn Ki) is isomorphic to (Li r7 M)/K,. Hence, using (2), Hn M= 1 
if, and only if, Li n M = Ki for each i E I. 

(4) Suppose G = RM and R is conjugate to a subgroup of Li for each 
i E I. Then there is an m, E M such that 

m;‘Rm, < Li 
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for each i E I. Then 

n Kin+= {m} 
isI 

for some m E M. Then m; lrn E Ki < Li and so 

m-‘Rm = (m;‘m)-’ (m,~lRmi)(m,~lm)~ (m;‘m)-‘L,(m,:‘m) 

GLi 

for each i E I. It follows from this that 

m-‘Rm< 0 Li=H. 
ieI 

Suppose next that R n&Z= niC1 (R nM)/(R n Ki) and that RK, is 
conjugate to Li for each i E I. Then, as before, M contains elements m and 
m, such that 

m;‘RK,m, = L, for all i E Z 

and 

Then, since m;‘m E Ki < Li, 

Li = (m;‘m)-’ L,(m;‘m) = m-‘RK,m. 

Lemma 2.1 implies that 

R = 0 RK,. 
iel 

Then 

m-‘Rm= n m-‘RK,m= n Li=H. 
iel ieI 

We now have proved (4) in one direction. The other direction is obvious and 
so the theorem is proved. 

For completeness, we include the following consequence of Lemma 2.1. 

5.3. LEMMA. Assume (**), Suppose H is a subgroup of G such that 
G = HM and H nM = niC, (H nM)/(H n Ki). Let Li = HK, for each 
i E I. Then G = L,M, Ki < Li, and n,,, Li = Hi. 

481/90/l-1 I 
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Proof It follows from Lemma 2.1 that 

c Li= 0 K,H=H. 
iel 

The rest of the result is obvious. 

5.4. THEOREM. Assume (**). For each i E I, let 4 denote the set of all 
complements (zf any) of MIKi in GIK,. Let S’i denote the set of conjugacy 
classes in 4 under G/K,. Let M’ be the set of all complements of M in G 
and let 9 be the set of all conjugacy classes in S? under G. Then I&’ I= 

InierJil a~W+lIT&Tl~ 
Proof Suppose HE &. Then HK,/K, E JX$ for all i E 4. Let f, be the 

element of the Cartesian product JJie, 4 defined by 

fH(i) = HKi/Ki. 

On the other hand, if f E niE1 4, then f(i) = Li/Ki where Lt/Kt is a 
complement to M/K, in G. Then f =fH where 

H= n Li. 
iel 

It now follows that ).M’[ = In,,, ~‘1. If H, also belongs to &, then H and 
H, are conjugate if, and only if, fH(i) and fH,(i) are conjugate in G/K, for 
each i E I. This implies that 

We now give our theorem covering the situation when {Ki I i E I} is a 
union of conjugacy classes. We first fix some notation. 

A4 4 G and A4 = nielM/Ki where Ki g M for each i E I 
and {Ki 1 i E Z} is a union of conjugacy classes in G. The 
subset J of Z is chosen so that (K/ I j E J} contains exactly one 
subgroup from each conjugacy class in (Ki I i E I}. The 
natural epimorphism of G onto G/M is denoted by cr. For each 
i E 1, Ni = No(K,) while ei : Ni + N,/Ki and ai : N,/K, -+ G/M 
are the natural homomorphisms. (***) 

The following omnibus theorem is really just a combination of several of our 
earlier results. 

5.5. THEOREM. Assume (***). Then the following are true. 
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Suppose 5 is a homomorphism of a group G* onto G/M. For each j E J, let 
Nj* = {x E G* 1 z(x) E o(Nj)} and assume that pi is a homomorphism of Nj* 
into Nj/Kj such that (z),,,; = ajfij. Then there is a homomorphism y of G* 
into G such that r = ay and pi = ej(y), f or each j E J. Further, y is unique up 
to composition with an inner automorphism of G induced by some element of 

njcJKj- 
(2) Suppose that for each j E J, L, is a subgroup of Nj such that 

Kj < Lj and Nj = L,M. Then G contains a subgroup H such that G = HM, 
H n M = nip1 (H n M)/(H n K,), and Lj = (H n N) Kj for each j E J. The 
subgroup H is unique up to conjugation by an element of nieJ Kj. Further, 
H n M = 1 if, and only if (Lj/Kj) n (M/Kj) = 1 for all j E J. 

(3) Suppose H < G, G = HM, and H n M = n,.,, (H n M)/(H n Ki). 
Let R be a subgroup of G such that G = RM. Then R is conjugate in G to a 
subgroup of H if, and only if, R n Nj is conjugate in Nj to a subgroup of 
(H n Nj) Kj for each j E J. Moreover, R is conjugate in G to H if, and only 
if Rf7M=ni,r(RnM)/(Rf7Ki) and (R A Nj) Kj is conjugate in Nj to 
(H n Nj) Kj for each j E J. 

(4) The following are equivalent: 

(a) G splits over Mj; 

(b) Nj splits over M for each j E J; 

(c) Nj/Kj splits over M/Kj for each j E J. 

(5) For each j E J, let q. denote the set of conjugacy classes of 
complements of M/Kj in NIK,. Let 59 denote the set of conjugacy classes of 
complements of M in G. Then 159 I= 1 njC, @$ I. 

Proof: For each j E J, let d(j) denote the subset of I consisting of all i 
such that Ki is conjugate in G to Kj. Define Bj by 

Bj= 0 Ki. 
iEd 

Then Bj 4 G, B, < Kj < M, and M= n.E,M/Bj. Also M/B, = 
nisAtj) (M/Bj)/(Ki/Bj) and {K,/B, 1 i E d(J)} is the set of all conjugates of 
Kj/Bj in G/B,. Certainly 

Let bj : G + G/B,, aj : G/B,-+ G/M, and cj : Nj/Bj + NjlKj be the natural 
epimorphisms. We now consider the various parts of our theorem. 

(1) Applying Theorem 4.1(2) with G, M, K, N, I, o, e, a, and p 
replaced by G/B,, M/B,, K/Bj, Nj/Bj, A(j), aj, cj, aj, and pj, respectively, 
we find that there is a homomorphism yj of G* into G/B, such that r = ajyj 
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and /3j = Cj(rj),~. Since this is true for eachj E J, we may apply Theorem 5.1 
with the result that there is a homomorphism y of G* into G such that r = ay 
and yj = bjy for all j E J. Then 

Pj = CjCYj>N; = cjCbjY)N; = cj(bj>Nj (~>pq; = ej(Y>N; - 

Thus y has the desired properties. 
Suppose y’ is another homomorphism of G* in G and 7 = oy’ and 

/Ii = ej(y’),,,; for all j E J. Set rj = bjy’. Then 

7 = uy’ = (ujbj) y’ = ujy; 

and 

It follows from Theorem 4.1 that for each j E J, there is a kj E Kj such that 

yj’ (x) = bj(kj) - ’ yj(X) bj(kj). 

Now 

n Bjkj= {m) 
jcJ 

for some m E M. Actually 

mE 0 BjKj= 0 Kj. 
jeJ .icJ 

Since Bj is the kernel of bj, we conclude that 

Ye’ = bj(m) ~ ’ Yj(x> bj(m> 

for all j E J. Now define y” on G* by 

y”(x) = my’(x) m-l. 

Then y” is a homomorphism of G* into G and 

qP(x)= a(m)uy’(x) u(m)-' = q'(x)= 7(x) 

while 

b,y”(x) = bj(m) bjy’(x) bj(m)-’ = bj(m) y;(x) b,(m)-’ = yj(X) 

for all x E G*. Hence, uy” = r and bjy” = yj. Theorem 5.1 now implies that 
y” = y and it follows at once that y’(x) = m- ‘y(x) m for all x E G*. 
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(2) Applying Theorem 4.2 with G, M, K, L, N, and I replaced by 
G/Bj, M/Bj, Kj/Bj, Lj/Bjv N,IBj, and d(j), respectively, we find that G/B, 
contains a subgroup Hj/Bj such that G = MH,, Lj = (Hj n Nj) Kj, and 

(Hj n M)/Bj = rI 
ieA(j) 

((4 n W/B j)I ( (Hj n Ki )/Bj)* 

It follows from Theorem 5.2 that if H = n,,, Hj, then G = Hh4, H nM= 

nj,J (HnWI(HnBj), and Hj = HB, for each j E J. But then 

Lj = (HBj n Nj) Kj = (H n Nj) BjKj = (H n Nj) Kj. 

It follows from Lemma 2.1 that 

HjIBj = n (KiIBj)(HjIBj)* 
icA(j) 

Hence, 

Hi = n K,H~= n K,B,H= n KiH. 
ieA(j) isA icA(j) 

This implies that 

H= n Hi= n n K,H= n K,H. 
jeJ .iEJ irA(j) iel 

Using Lemma 2.1 again, we obtain 

HnM= n (HnM)/(HnKi). 
isI 

By Theorem 5.2, H n M = 1 if, and only if, 

(Hj/Bj) n (MIB,) = 1 

for all j E J. Corollary 4.3 implies that this happens if, and only if, 

((LjIBj>I(Kj/Bj)) n ((M/Bj>/(Kj/Bj)> = 1 

for all j E J. Hence H n M = 1 if, and only if, 

for all j E J. 

(Lj/Kj) n (M/Kj) = 1 

To finish the proof of (2), we need to show that H is unique up to 
conjugation by an element of n jeJ Kj; Suppose then that H, is a subgroup of 
G such that G = HIM, Lj = (H, n N) Kj for each j E J and 

H, n M = n (H, n M)/(H, n Ki). 
id 
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Certainly G = (H,Bi) M and 

(H, Bj n Nj) Kj = (H, n Nj) BjKj = (H, n Nj) Kj = Lj. 

By Theorem 4.2, H,Bj/Bj must be contained in some conjugate of HBj/Bj 
under an element of Kj/Bj. Thus there is an element kj in Kj such that 

H, < kl?HBjkj. 

Then, since M = njsJ M/B,, 

n Bjkj= {k} 
jEJ 

for some k E M. Certainly, since Bjki E Kj 

kE n B,ik.i< n Ki. 
jEJ jeJ 

Since k,ik-’ E Bj < N,(HB,), we must have 

H, < kly’HBjk,i = k-‘HB,,k 

for all j E J. This implies that 

H,<k-’ ij-! HB,.) k=k-‘Hk. 

Also, since k E njcJ Kj < Lj < Nj for all j E J, 

(H,nNj)Kj=Lj=k-‘L,k=k-‘(HnNj)Kjk=(k-’HknNj)Kj 

for all j E J. Since for each i E I, Ki is a conjugate of some Kj with j E J and 
since G = H,M and since every element of H, must normalize k-‘Hk, we 
obtain 

(H, n Ni) Ki = (k-‘Hk n Ni) Ki 

for all i E I. The uniqueness portion of Theorem 2.3(l) (with A = H,) now 
yields H, = k-‘Hk. 

(3) We assume H<G, R<G, G=HM=RM, and HnM= 
nie, (H n M)/(H n Ki). Then H n M = fiE J (H n M)/(H r7 Bj) and so, 
by Lemma 2.1, H = n,., BjH. By Theorem 5.2, R is conjugate to a 
subgroup of H if, and only if, R is conjugate to a subgroup of BjH for each 
j E J. Corollary 4.3 applied to G/B/ yields that R is conjugate to a subgroup 
of B,H if, and only if, (R n Nj) is conjugate in Nj to a subgroup of 

(HBjnNj)Kj=(HnNj)BjKj=(HnNj)Kj. 
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Therefore, R is conjugate in G to a subgroup of G if, and only if, for each 
j E J, R n Nj is conjugate in Nj to a subgroup of (H n Nj) Kj. The proof of 
the rest of (3) is similar. 

(4) It is straightforward that (a) implies (b) and that (b) implies (c). 
Using (2) we see that (c) implies (a). 

(5) This follows directly from (2) and (3). 

The following corollary probably is known but is included as an easy 
application of our theorem. 

5.6. COROLLARY. Let P be a permutation group acting on the set I. Let 
A be any group and let W = A Wr(P, I). If M = A’, then the following are 
equivalent. 

(a) All complements of M in W are conjugate. 

(b) For each i E I, the only homomorphism of Pi into A is the trivial 
homomorphism, i.e., every element of Pi is mapped onto the identity of A. 

ProoJ N,(A [i ] )/A [i] is isomorphic to the direct product A X Pi. It 
follows from the theorem then that (a) is equivalent to the following 
statement: 

For each i E I, Pi is the only complement of A in A X Pi. Since it is 
immediate that this is equivalent to (b), the corollary follows. 

Note that the corollary includes P. Neumann’s theorem about standard 
wreath products [ 7, Theorem IO.11 as well as Dixon’s generalization 12, 
Lemma 21, since Pi is always 1 in both of these results. (Another 
generalization of Neumann’s theorem to twisted wreath products is presented 
as Theorem 10.7 on page 271 of [8]. This result follows directly from our 
Theorem 4.2.) 

6. EXAMPLES 

In the results assuming (*), it is necessary to assume that {Ki 1 i E I) is a 
full conjugacy class rather than just a collection of conjugate subgroups. 
For, if p is an odd prime, let G be the group with generators x and y and 
relations 

LetM=(xP,y),K=K1=(y), and K, = x-‘Kx. Then G is the nonabelian 
group of order p3 and exponent p2, M u G, M = ni=1,2 (M/K,), and 
N,(K) = M. Thus N,(K)/K splits over M/K. Since M contains all elements 
of order p in G, G cannot split over M. The point is that K has other 
conjugates besides K, and K,. 
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Suppose G, M, K and N are as in (*). If R is a complement to M in N, 
then RK/K is a complement to M/K in N/K. It follows from Theorem 4.2 
that G contains a complement H to M such that RK = (H n N) K. It is 
reasonable to ask whether H may be chosen so that R <H. In a similar vein, 
we might ask whether there is a one-to-one correspondence between 
conjugacy classes of complements of M in N and conjugacy classes of 
complements of M in G. Or perhaps the correspondence should be between 
the complements themselves rather than their conjugacy classes. 

However, consider the following example. Let S be a finite group of even 
order. Let M = S x S and let G be the semi-direct product G = M(x) where 
x has order 4 and operates on M according to the rule 

Let K = ((s, 1) 1 s E S}. This satisfies (*). Assume that S has a total of m 
involutions which are distributed into n conjugacy classes. 

The complements of M in G are precisely the subgroups (x(sI, s2)) with 
(s, s2)* = 1. Two such complements (x(s i, sz)) and (x(s; , s;)) are conjugate 
if, and only if, slsz and s{ s; are conjugate in S. Hence, M has (m t 1) /SI 
distinct complements in G which belong to (n t 1) distinct conjugacy 
classes. 

The complements of M in N are all the subgroups of the form (x*(si , s2)) 
with si = si = 1. It now follows that the number of complements of M/K in 
y/K is (m t 1), the number of c6mplements of M in N is (m t l)‘, and the 
number of conjugacy classes in N of complements of M in N is (n t l)*. 

It is easy to choose S such that the numbers (m t 1) IS, (n + l), (m t 1), 
(m + l)‘, and (n t 1)” are all distinct. (For example, let S be the symmetric 
group of degree 4.) Suppose, finally, that R = (y) where y = x*(u, 1) with u 
some involution in S. Then R is a complement of M in N but R cannot be 
contained in any complement of M in G. For if y were contained in some 
complement of M in G, y would be the square of some element of the form 
x(s, , s2). Since, however, 

(x(s, 3 s*))* = x2(s*s, 7 s1 s*>, 

this is impossible. 
Now suppose M is a non-abelian minimal normal subgroup of the finite 

group G. Then 

M=S,xS,x...XS, 

where (S, , Sz,..., S,) is a conjugacy class in G and S = S, is a nonabelian 
simple group. If 

K=S,x... XS,, 
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then it follows from Section 4 that M has a complement in G if, and only if, 
M/K has a complement in N,(S)/K. Our final two examples deal with other 
possible necessary and sufficient conditions. 

In [ 11, Bercov showed that G must split over M provided that the 
automorphism group of S splits over the subgroup of inner automorphisms. 
A slight modification of Bercov’s argument proves the stronger result that G 
splits over M if N,(S)/C,(S) splits over SC,(S)/C,(S). Since 
K = C,(S) n M, if N,(S)/C,(S) splits over SC,(S)/C,(S), then NG(S)/K 
splits over M/K. Thus, certainly G must split over M by our results. 
However, G may split over M even though NG(S)/CG(S) does not split over 

~cGw/cG(o T o see this, let M = S = A,, the alternating group of degree 
6, and let G be the semi-direct product G = AM with A the automorphism 
group of A,. Then G splits over M but NG(S)/CG(S) is isomorphic to A. 
Since A does not split over the group of inner automorphisms, NG(S)/Cc(S) 
does not split over SC,(S)/C,(S). 

If M/K has a complement in N,(S)/K, then S has a complement in 
NG(S). It is not enough though to simply assume that S has a complement in 
NG(S). This is shown by the following example. 

Let S = A 6, let L be the automorphism group of S, and let N be the semi- 
direct product 

N=LS={(I,s))IEL,sES}. 

Let x be an element of order 2 which operates on N according to the rule 

(I, sy = (/i(s), s - ‘) 

where i(s) is the inner automorphism 

y -+ s - lys. 

Let G be the semi-direct product N(x) and let 

Then M is a minimal normal subgroup of G, M is the direct product 
S X C,,,(S), and C,,,(S) is the only other conjugate of S in G. Further, 
NG(S) = N and L is a complement of S in N. However, there is no 
complement of M in N. For if N splits over M (which would have to happen 
if M had a complement in G), then N/S would split over M/S. This would 
imply that L splits over the group of all inner automorphisms. But this is not 
the case. 

Note added in proof: We have recently learned that those portions of Corollary 4.4 and 
Theorem 4.5 which are concerned with the existence and conjugacy of complements in finite 
groups were also obtained by M. Aschbacher and L. Scott 19, Theorem 21. 
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