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I. Introduction

Priffer [8], [9] introduced the notion of Servanzuntergruppe, now more commonly
called pure subgroup, into the theory of abelian groups, where it is now firmly estab-
lished as a useful tool. A  modem and comprehensive account of pure subgroups
of abelian groups, together with some natural generalizations, can be found in the
monograph [3] by FUCHS; see also GACSkL)(1 [5]. We define here the natural extension
of the concept to not necessarily abelian groups, and answer some of the questions
that naturally present themselves. In  fact the basic definitions apply to more general
algebraic systems than greups, and some o f  the fundamental reults are capable
of the corresponding generalization; these results are collected together in  §  3,
formulated for groups but so that they can be extended without difficulty.

Given a group G, we consider systems of equations of the form

( 1 . 1 )  w , ( g i  g 2  9 •  • •9 X 19 X29 • • •) =  13

indexed by the elements i  o f  some index set I
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c o e f -
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coefficients and variables, but if  the index set /  is infinite, then the total number
of coefficients or of variables or of both may be infinite. We call (1.1) a system of

*) The authors started work on this paper in 1960 when the late A. KERTÉSZ visited the Uni-
versity of  Manchester. I t  is published now, retaining the form in which i t was written in 1961, to
complete the record of  his mathematical work. — A. KERTÉSZ died on Apr i l  3, 1974. For  an obit-
uary by K. Gy&i , see these Publicationes, Vol . 21, pp. 159- 160.
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equations over G, and we say that it has a solution h
i
,  h
2
,  i n  a  
g r o u p  H  
c o n t a i n -

ing G  as a subgroup if  h,, h
2
,  a r e  
e l e m e n t s  
o f  
H  
w h i c h
,  
w h e
n  
s u b s t
i t u t e
d  
f o
r

the variables x
l
,  x
2
,  
t u r
n  
( 1 .
1 )  
i n
t o  
a  
s y
s t
e m  
o
f  
v
a
l i
d  
e q
u a
l i t
i e
s :

wi(gi, g2, •-, h
i
,  h
2
,  . . . )  
=  
1 ,  
i E
L

We now define the subgroup G  o f  the group H  to  be pure in H  i f  every
system of equations over G  in  a finite number of variables which has a solution
in H  also has a solution in G. Note that we restrict the number of variables in-
volved in the equations, but not the number of equations themselves — if the number
of equations is restricted instead of, o r in addition to, the number of variables,
one arrives at different, fruitful and interesting notions that are, however, outside
the scope of the present paper.

The restrictions on the number of variables can be varied, leading to a notion
that depends on a cardinal it  and that we call n-pure. We  defer the precise (and
incidentally less intuitive) definition ; what we have called pure will coincide with
N
o
-
p
u
r
e
.  
M
o
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t  
o
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i
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a
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n
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subgroups for finite n .
In abelian groups there is no distinction between pure subgroups and n-pure

subgroups for Mute n. I n  fact the silt group G  o f  the abehan group H  is pure
in H  i t  (and trivially only if ) every single equation over G  in  a single variable
has a solution in G  if  it has a solution in H :  thus G is pure in H  i f  for all h  E H
and integers n,

hnEG implies gn=h"  f o r  some g  EG.

This then could be made, and has been made (PRUFER [8]), the definition of a pure
subgroup of an abelian group; for a proof of the equivalence of this with our defi-
nition, see FUCHS [3]. Theorem 25.5. I n  non-abelian groups, as we shall see, the
position is different.

2. Notat ion and definitions

The following notation is used throughout.
I f  S  is a set, IS  I is  its cardinal. I f  G is  a group, IG1 is  its order. I f  g  is

an element of a group, its order is I  g ; we make the usual convention that Ig l -= 0
means that g  generates an infinite cyclic group. I f  G is a subgroup of the group H,
write G H ,  and G < H  i f  it is a normal subgroup. The index o f G in  H  is
IH: GI. The  subgroup o f  H  generated by a subset Sg_ H is  gp  (S), and  the
sul group generated by G H  and S H  is gp (G, S). The group with generators

g
2
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a
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d  
d
e
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i
n
g  
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e
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2
,  
.
.
.
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g p ( g
l
,  g
2
,  
. .
. ;  
g
2
5  
•  
-
)  
=  
1
,  
i
E  
I
)
.

Conjugates and commutators are written

X
Y 
=  
y
x
y
,  
[
x
,  
y
]  
=  
-
=  
x
y
1
x
y
,  
[
x
,  
y
,  
z
]  
=  
y
]
,  
z
]
.

The derived group of G is G' ; the trivial group is denoted by E.
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An idempotent endomorphism i t  o f  a group H  wi l l  be called a projection
of H  (Baer [1] calls this a retraction, the image a retract). I f  it  is  a projection of
H  and if Hn=G, then it  restricted to G is the identity mapping of G. I f ,  further,
the kernel of it  is N,  then N  is a normal complement of G in  H,  that is to say

N H ,  G N  = H, G n N  = E.

A normally complemented subgroup is also often called a semi-direct factor. To
every normally complemented subgroup G o f  H  and to every ncrxial complement
N o f  G in  H  there is a projection I t  o f  H  such that Hn = G  and N  is the
kernel o f  it .  A  normally complemented sul group is normal i f  and only i f  it is
a direct factor.

We denote by X  a set of variables, and w(G, X) wi l l  denote a word in coef-
ficients gEG and variables xEX, o r,  briefly, a word over G  in  X .  A  system of
equations over G  in  X  is a family

(2.1) t w i ( G ,  X)11E1

of words indexed by the elements of a set I ;  strictly speaking this is a system of
left-hand sides o f  equations only; and in  more general algebraic systems, where
there is no unit element to provide a convenient universal right-hand side, one would
instead consider families
(2.2) t ( u
t
( G ,  
X ) ,  
v ,
( G ,  
X )
T h
e l

of pairs of words that are to be equated.
I f  O is  a mapping of the set X  o f  variables into a group H  containing G,

and if  w(G, X) is a word over G in  X ,  then

w(G, X0)

is obtained by substituting x0  f o r each x  EX and Clen evaluating the resulting
word as an element of H.  The system of equations (2.1) is soluble in H  i f  there is
a mapping O o f  X  into H  such that

for all i E  w
i
( G ,  
X 0 )  
=  
1 .

[Correspondingly, the system (2.2) is soluble in H  i f  there is a mapping O o f  X
into H  such that for all iE l
r
,  u , ( G ,  X 0 )
= v
i
( G ,  
X 0 ) . 1  
W e  
t h e
n  
c a l
l  
X
0  
a  
s p l u
t i o n

of the system of equations.
We now make the definition that is fundamental to this paper.

Definition 2.3. The subgroup G  o f  the group H  is n-pure in H ,  where a  is
a cardinal number, i f  every system o f  equations over G  in  X  with  I X  k  tt+ I
has a solution in G  i f  it has a solution in H.

The condition IX1-<n +1 concisely and conveniently expresses the restriction
on the number of variables, namely that it is to be a  i f  a  is finite and -<rt  i f

is infinite; it  allows one also to stipulate ".._1•„", namely as " -<  R„,,". Thus
"G is pure in H "  means precisely the same as " G  is t
o
- p u r e  i n  H " ,  
a n d  b o t h

terms can be used interchangeably.
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Definition 2.4. The subgroup G  o f  the group H  is absolutely pure in H  i f
every system of equations over G, irrespective of the cardinality of the set X  o f
variables, has a solution in G i f  it has a solution in H.

3. General results

In this section we collect together some simple facts that flow from the defini-
tions; most o f them are not peculiar to group theory but require only universal
algebraic concepts (exceptions are those which use the group-theoretic notion o f
a normal complement). Although group-theoretic language is used throughout,
it will be obvious how the results can be generalized to other classes of algebraic
systems.

Lemma 3.1. L e t  G  be n-pure in H  and let 1 /1 .
-
-n ;  t h e n  G  i s  
m - p u r e  
i n  H .

I f  G is  absolutely pure in H ,  then G  is  it-pure in H  fo r all n ,  and conversely.
We omit the (obvious) proof. The  question whether conversely' an m-pure

subgroup is also n-pure will be considered in the next section.
Lemma 12. I f  G K H  and i f  G  i s  n-pure (absolutely pure) in  H  then

G is n-pure (absolutely pure) in K.
Lemma 3.3. I f  G is n-pure (absolutely pure) in K  and if K is n-pure (absolutely

pure) in  H  then G  i s  n-pure (absolutely pure) in  H ;  in  other words, n-purity
(absolute purity) is transitive.

Again the (obvious) proofs are omitted. F o r  countable n  w e  also have
the following. o

s
s

Lemma 3.4. Let n  l  a n d  let H  = H ,  be the direct limit of a chain
n= 1

G H ,  H ,
of groups in each of which G is n-pure. Then G  is n-pure in H.

PROOF. We deal with the case that 1 1
,
-- -A
)
,  t h a t  i s  
t h a t  G  
i s  
p u r e  
i n  
e a c h  
H „ ,

and we show that then G  is  pure in H .  The case of finite n  is  similar. Le t  a
system of equations over G  in  X ,  where X I < l 0 ,  have a solution X 0  in  H .
As X0 is finite subset of H, there is an integer n and that X0 I I .  Now G is pure
in H„,  and so the given system of equations has a solution in G; thus the lemma
follows.

The following criterion is implicit in ERDÉLYI [2].
Theorem 3.5. The group G  is  n-pure in H  i f  and only if, to every subgroup

K o f  H  that is generated by G and a set S  o f  cardinal IS1-<n+ 1, there is a pro-
jection n  o f  K  onto G.

PROOF. L e t  G  have the property that to every sul-group K = g p  (G, S) o f
H  with IS  1-<n+ I there is a projection I t  o f  K  onto G. Le t W  { w
t
( G ,  X ) }
i  E i

be a system of equations over G  in  X  with IXI -<n + 1, and assume it has a solu-
tions X 0  in  H .  P u t  XO= S and K  =gp (G, S), and let i t  be a projection o f
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K onto G  — such a projection exists by hypothesis. Applying i t  to  the equations

w
i
(
G
,  
X
O
)  
=  
1
,  
f
o
r  
a
l
l  
i
E

and noting the homomorphism property o f it  together with the fact that i t  acts
on G  as the identity, we see that also

w
i
(
G
,  
X
0
m
)
=  
1
,  
f
o
t  
a
l
l  
i
E
I
.

Thus XOn is  a solution in G  o f  the given system W,  and it  follows that every
system of equations over G  in  fewer than n  +1 variables has a solution in G  i f
it has a solution in H :  In  other words, G is n-pure in H.

Conversely, assume G is n-pure in H,  and let K  =-gp (G, S) with  IS! +  1.
Let X  be a set of variables of the same cardinal number as S, and let O denote
a one-to-one mapping of X  onto S .  Denote by W  the set of all words w(G, X)
that satisfy

w(G, X0) = 1.

Then the system W  has a solution in H ,  namely X0, and as I X  HISI -<n+1
and as G is, by hypothesis, l i
- p u r e  i n  H ,  
t h e  
s y s t e m  
W  
a l s o  
h a s  
a  
s o l u t
i o n  
i
n  
G
,

say Xi/. We define a mapping i t  o f  K  into G  as follows: i f  kEK then k  can be
written as a word

in elements of G and of S. Put
k = u(G, S)

g = u(G, S O
-1
1 1 ) ;this is the element o f  G  obtained f ro m u  b y  first  substituting the variable

x = 5 0
- 1
E  
X  
f o
r  
t
h
e  
c o
r r
e s
p o
n d
i n
g  
e
l
e
m
e
n
t  
s
E  
S  
a
n
d  
t
h
e
n  
t
h
e  
e
l
e
m
e
n
t  
x
r
i
E
G

for the variable x. Now g depends only on the element k  E K, not on the particular
word u  chosen to represent it; for if another representation is

k = v(G, S)

then w(G, S)=u(G, S )lt (G ,  S)= 1, and so w(G, X)=w(G, S O
-
' ) E 1
,
K  I t  f o l l o w s

that w(G, Xii)= 1, and therefore also

v(G, g .

Thus we may put g=lo t ,  without ambiguity. One now verifies without difficulty
that it  is a projection of K  onto G, and the theorem follows.

Corollary 3.6. I f  H  =gp (G, S) where IS I -<n+ i and i f  G is  n-pure in H,
then there is a projection of H  onto G [that is to say, G  has a normal complement
in H] .

Corollary 3.7. The subgroup G  o f  H  is absolutely pure in H  if ,  and only if,
there is a projection o f H  onto G  [that is to say, if, and only if, G  is  normally
complemented in H] .
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Corollary 3.8. I f  G  i s  n-pure in  H  =gp (G, S) where I S Hn + 1 ,  then G
is absolutely pure in H.

Corollary 3.9. I f  H  =gp (S) where I S H I I  +1 then the n-pure subgroups
of H  are the absolutely pure subgroups [that is the normally complemented subgroups] ;
the pure subgroups of a finitely genrated group are absolutely pure.

4. Comparison of n-purity for different n

For abelian groups there is no difference between n-purity for different finite
values of n : I f  the s u l
-
g r o u p  G  
o f  
t h e  
a b e l i a
n  
g r o u
p  
H  
i s  
1 -
p u r
e  
i
n  
H
,  
t h
e n  
i
t  
i
s

pure in H  (see FUCHS [3], Theorem 25.5); and then it  is also n-pure in H  fo r all
n between 1 and t•,, (see Lemma 3.1). This is no longer so for non-abelian groups,
as will be shown in this section; and to heighten the contrast to abelian groups,
we choose our groups nilpotent o f class 2. Before we define them, we prove two
simple lemmas.

Lemma 4.1. Let G be an abelian pure subgroup of the group H;  then G C H' -
= E .PROOF. I f  Gr'  H' t h é n  there is a subgroup K  =gp (G, k,, k
n
)  o f  H ,

finitely generated over G,  such that G n K ' = E .  I f  N<I1 ( and G N= K ,  then
K I A T
-
- -
G I G  
(
-
I N  
i
s  
a b
e l
i a
n ,  
h
e
n
c
e  
K
'
N
,  
a
n
d  
G
n
N
=
E
.  
T
h
u
s  
G  
i
s  
n
o
t  
a  
n
o
r
m
a
l
l
y

complemented subgroup o f  K ,  and by Corollary 3.6, G  is  not pure in K .  B y
Lemma 3.2 then G  is not pure in H,  and the lemma follows.

Lemma 4.2. L e t  H  be a  group such that H ' H '  i s  elementary abelian, and
let G  be a subgroup of H  such that G fl H' =E. Then G  is absolutely pure in H.

PROOF. In  e v e r y  subgroup is a direct factor; hence there is a subgroup
N o f  H, which we may take to contain H ' ,  such that

HI l l '  =
Clearly N  i s  normal in  H ,  and  G H ' n N =  H', whence G r I / V
-
- - - G C 1 H ' =  E ;
finally GN=H,  and N  is seen to be a normal complement of G in  H.  The lemma
then follows from Corollary 3.7. — It could also have been derived from the more
general Lemma 7.3.

Let now p be an odd prime, d  a positive integer, and put

(4.3) H  -= Ha = gp(h
i
,  h
2
,  h d ;  
h i '  
=  
[ h
i
,  h
i
,  h
i
j  
=  
1
,  
i
,  
j
,  
k  
=  
1
,  
2
,  
d
)
.

These relations ensure that H  is nilpotent o f  class 2 and has exponent p ;  and
it is in fact the free d-generator group of the variety of second nilpotent groups of
exponent p .  The  derived group H '  coincides with the centre o f  H  and is an

(c1\
elementary abelian group of order pu l , and HI H'  is an elementary abelian group
of order pd.

Let a  EH', and write it in the form

a = 11 [h
i
, h
i
] a u  
•
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We assign to a  the d x d  skew matrix A  over G F(p ) whose (i, A-element is
cc
ij 
i
f  
i
-
<
/
,  
O  
i
f  
i
=
j
,  
a
n
d  
—
a
u  
i
f  
i
>
j
.  
I
f  
b  
i
s  
a
n
o
t
h
e
r  
e
l
e
m
e
n
t  
o
f  
H
'  
a
n
d  
i
f

B is the skew matrix that corresponds to b ,  then the matrix that corresponds to
ab i s  A  + B. I n  this way an isomorphism is defined between the multiplicative
group H '  and the additive group of all skew d X  d matrices over GF(p).

The isomorphism depends on the particular set o f generators chosen for H.
I f  new generators h ,  h ,  h
d
'  a r e  
c h o s e n  
f o r  
H  
s u c h  
t h a
t

hi I /  hpi (mod In ,  i  = I, 2, d .

so that the 7r0 fo rm a non-singular matrix P  over GF(p), and i f  A '  denotes
the matrix assigned to a E H'  in  terms of the new basis h ,  h ,  h ,  then

A =  P
T
A / P .Hence A  and A '  have the same rank, and this rank is, therefore, an invariant of

the element a ; we shall call it simply the rank of a. As the rank of a skew matrix
it is necessarily an even number.

Lemma 4.4. I f  the rank o f  aEH' i s  r  then there is a subgroup o f  H  with
r generators, but no subgroup with fewer than r  generators, in whose derived group
a is contained.

PROOF. L e t  a  EK' where K
-
- H  i s  
g e n e r a t e d  
b y  
( 5  
e l e m e
n t s  
l c
"  
k
d

which we may assume independent modulo H ' ,  as H ' ,  being central, does not
affect the derived group of K. We  complete the basis of K  to a basis k
i
,  k
j
,

k
6
+
1
,  
o
f  
H
.  
T
h
e  
s
k
e
w 
m
a
t
r
i
x  
t
h
a
t  
c
o
r
r
e
s
p
o
n
d
s  
t
o  
a  
h
a
s  
n
o
n
-
z
e
r
o  
e
n
t
r
i
e
s

only in the first (5 rows and columns, hence has rank at most (5, and it  follows
that t h a t  is to say, no subgroup with fewer than r  generators contains
a in  its derived group. On  the other hand, we can choose a basis h ,  h
p  o fH in  terms of which the matrix corresponding to a  becomes

A' =

0 Iwhere J =
(  T
h e  
n u
m b
e r  
o
f  
t
e
r
m
s  
J

kof H, — 1  0)

O

is —
2 r
'  
a
n
d  
i
n  
t
e
r
m
s  
o
f  
t
h
i
s  
n
e
w  
b
a
s
i
s

a =  [14, ,

Hence aEK' where K=gp(14,14, ...,11) is an r-generator subgroup o f  H;  and
the lemma follows.

Corollary 4.5. I f  the number d  o f  generators of H
-
= H
d  ( g i v e n  b y  
4 . 3 )  i s  
e v e n ,

then the element
g = [ h
1
, h
2
] [ h
3
,  
h
d
l
E
H
/

does not lie in the derived group of any proper subgroup of H.
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The rank of • g is  d , and if  K  is a proper s u l
-
g r o u p  o f  H ,  
t h e n  K  
c a n  
b e

generated by fewer than d  elements modulo its centre; hence g i  K'.
Corollary 4.6. With H  and g  as in Corollary 4.5, G=g p  (g) is  (d  —1)-pure

in H  but not d-pure.
As an abelian sul-group that intersects the derived group non-trivially, G  is

not pure in H ,  no r then d-pure, as H  has d  generators (Lemma 4.1 ; Corollary
3.9); but as G lies in the Frattini s u l
-
g r o u p  o f  H ,  
a l l  
g r o u p s  
g e n e r a t e
d  
b y  
G  
a n d

at most d  —1 further elements are proper subgroups of H,  and in such a s u l
-
g r o u p
G is  absolutely pure (Corollary 4.5; Lemma 4.2). Hence G  is (d— 1)-pure in H .

Corollary 4.7. With H  as in  Corollary 4.5, with d  4 ,  and with g  a s in
Corollary 4.5, G,  =gp (h
i
,  g )  i s  
( d  —
2 ) - p u r e  
i n  
H  
b u
t  
n o
t  
(
d  
— 1 ) -
p u r e
.

As an abelian sul-group that intersects the derived group non-trivially, G ,
is not pure in  H ,  n o r  then (d— 1)-pure, as H  =gp (G
1
, 1 1
2
,  h
d
)  h a s  d —  
1

generators in addition to G ,  (Lemma 4.1; Corollary 3.8); but all groups K  gen-
erated by G, and at most d  —2 further elements are proper sul-groups of H,  and
then G, n K' =E; hence G, is absolutely pure in all such K, and thus (d-2)-pure
in H  (Corollary 4.5; Lemma 4.2; Corollary 3.7; Theorem 3.5).

Thus we can distinguish between n-purity and (n+1)-purity for all finite values
of n, and we can do it  within the variety of nilpotent groups of class 2 and odd
prime exponent p .  B y  an obvious modification of our construction we can even
do it within a single group

Put further

and

H -  H d  •

Theorem 4.8. Let p  be an odd prime and put

H_ =  gp(h
i
,  h
2
,  . . .
;  
h r  
[ h
L
,  
h
i
,  
h
k
]  
=  
1
,  
i
,
j
,  
k  
=  
1
,  
2
,  
.
.
.
)
.

gt = [hi, 1
i 2 1 [ h 3
,  
h d  
•  
•  
•  
[ h 2
t - 1
,  
h 2
t ]
,

G 2t  =  g P  ( gt )
,  G 2 t
+ 1
=  g P (
1 1
1 ,  
g t
+ 1
) ,  
t  
=  
1
,  
2
,  
•
•
•  
•

Then, for every n =2 ,  3, t h e  group G
n  i s  ( n — l )
- p u r e  i n  
H _  
b u t  
n o t  
n -
p u r e .

We omit the proof. I t  may be remarked that a similar construction, with the
same result, can be carried out in the variety o f nilpotent groups o f  class 2 and
exponent 4.

It will be noticed that the even-indexed subgroups G2
t a r e  c e n t r a l  a n d  
t h e r e -

fore normal in H
o
,  0
.  O n e  
c a n  
f u r t
h e r  
m o d
i f y  
t
h
e  
e x
a m
p l
e  
s
o  
a
s  
t
o  
p r
o
d
u c
e  
a
l
s
o

normal subgroups that are (n —1)-pure but not n-pure for odd n.
Theorem 4.9. Let p be an odd prime and put

gp(h
o
, h
i
,  
h
2
,  
.
.
.
;  
h
e  
=  
h
r  
h
r  
=  
-
=  
[
h
i
,  
h
i
,  
h
k
]  
-
=  
1
,  
i
,
j
,  
k
z  
=  
0
,  
1
,  
2
,  
.
.
.
)
.

Put further
= hg[h
i
, h
2
] [ h
2
,  
N
I  
•  
•
[ h
2 t
- 1
,  
h
2
1
]
,
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q +1  = 8P (g7), t  = 1, 2
,Then for every odd n=3 ,  5, t h e  group G

n
*  i s  c e n t r a l  
a n d  ( n - - - 1 ) -
p u r e  
i n  
H *

but not n-pure.
The proof is not difficult, and we omit it. I t  can be based on the fact — also

easily proved — that a subgroup G  o f  prime order is normally complemented in
a nilpotent group H  if ,  and only if, it is not contained in the Frattini subgroup of H.

The exponent of H *  is p
2
;  w e  d o  
n o t  
k n o w  
w h e t h
e r  
t h e r
e  
a r
e  
s i m i
l a r  
e x a
m p l
e s

of exponent p.

5. Normal n-pure subgroups

A normal subgroup G  o f  H  is a direct factor if  (and only if) it has a normal
complement in H .  Thus we may expect a normal n-pure subgroup of H  to  be in
some sense "nearly" a direct factor o f  H.  I n  fact we immediately deduce from
Theorem 3.5 and its corollaries a criterion for our present case:

Lemma 5.1. The normal subgroup G  o f  H  is  n-pure in H  if ,  and only if,
G is  a direct factor of every subgroup K  =gp (G, S) o f  H  with I S  T h e
normal subgroup G  is absolutely pure in H  if, and only if, it  is a direct factor of H.
The normal n-pure subgroups of a group with fewer than it + 1 generators are its direct

factors.
We now look at the particular case n =1 .
Lemma 5.2. Let G  be a normal 1-pure subgroup of H,  and let C  denote the

centralizer o f G in  H .  Then H  =GC. Thus H  is the generalized direct product
of G and C, amalgamating the centre of G.

PROOF. Le t  h  EH, and consider the system { w
g
( G ,  x ) }
9 E G  o f  
e q u a t i o n s  
o v e r

G, indexed by G itself, in the single variable x,  where
w
g
(
G
,  
x
)  
=  
g
x
g
-
h

— noting that 1
1
1 
i
s  
a
n 
e
l
e
m
e
n
t  
o
f  
G
,  
a
s  
G 
i
s  
n
o
r
m
a
l  
i
n 
H
.  
T
h
i
s

system has a solution in H,  namely h ;  hence it has a solution, say k ,  in  G. I t
follows that k
- 1
1 1  
c o m m
u t e s  
w i
t h  
a l
l  
g
E
G ,  
w h
e n
c e  
k
-
' h
E C
,  
a
n
d  
l
i
E
G
C  
a
s

required.
Corollary 5.3. A  normal 1-pure subgroup G  o f  H  with trivial centre is a direct

factor of H, hence absolutely pure in H.
Corollary 5.4. An abelian normal 1-pure subgroup is central.
The following criterion generalizes a theorem o f  P Rt
.
J FE R [ 8 ]  ( s e e  
F u c H s  [ 3 ] ,

Theorem 25.1).
Theorem 5.5. Let G  be a normal subgroup o f H.  Fo r G  to  be 1-pure in H

it is necessary and sufficient that every coset o f  G in H  contains an element that
centralizes G  and whose order equals the order of the coset modulo G.
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PROOF. Assume that G  is  1
- p u r e  i n  
I r ,  
a n d  
c o n s i d e
r  
t h e  
c o s e
t  
G s  
o
f  
G
.

Now K  -=gp (G,$) i s  a direct product, K = G X B  (Lemma 5.1), hence we can
write s in  the form s=gXb  with g EG and b EB. Clearly b EGs and b centralizes
G. Also, if  the order of Gs modulo G  is q, then sq=gqXbgEG, whence bq=1;
and conversely, i f  q  is  the order o f b, then (Gs)q-=(Gb)q=G• Th is proves the
necessity. Fo r the sufficiency, assume every coset Gs o f G  contains an element b,
say, which centralizes G  and whose order equals the order o f  Gs modulo G.
Let K  =gp (G, s); then also K
,
-
-
g p  ( G ,  b ) ,  
w i t h  
t h e  
b  
c h o s e
n  
a s  
a b o v
e .  
A
s

b centralizes G ,  i t  generates a normal s u l
-
g r o u p  B = g p  ( b )  
o f  K .  
M o r e o v e r

MEG implies bg=1, so that GC1B--=E. Thus K = G X B ;  and it now follows from
Lemma 5.1 that G is 1-pure in H,  as required.

This criterion is of limited usefulness, as its conditions are in general not easy
to verify; it  is included only as a formal generalization o f Priifer's theorem. The
following theorem provides a more natural criterion.

Theorem 5.6. Let G  be a normal subgroup of H;  denote by C  the centralizer
of G in  H  and by Z  (=Cn G) the centre of G. Then G  is n-pure in H  if ,  and
only i f  H  =GC and Z  is n-pure in C.

PROOF. Assume that H  =GC and that Z  is n-pure in C.  Let K = g p  (G, S)
where IS1-<n +1. By our assumption every sE S can be written in the form

gc, g E  G, cEC.

We may then replace s by c, and thus assume, without loss of generality, that S C .
Put L =g p  (Z, S). Then L C  and as Z  is assumed n-pure in C  and LS Hn-l- I,
there is a subgroup B  o f  C such that

(Lemma 5.1); now
L =- ZXB

BnG B n C n G  = Br1Z = E,

and B  centralizes G and thus is normal in gp (G, K .  I t  follows that K  = G X B,
and by Lemma 5.1 again G  is n-pure in H.

Conversely, let G  be n-pure in H .  Then G  is  1-pure in H  (Lemma 3.1),
hence H  = GC (Lemma 5.2). Next  let S  C  and  S  -< n 1 .  a n d  consider

(Z, S) and K = g p  (G, S). B y  the assumption on G  and by Lemma 5.1,
K = G X B  with  a suitable subgroup B  o f  H.  Bu t  B  clearly centralizes G  and
so is a subgroup of C.  Hence also L = Z x B ,  and an application o f Lemma 5.1
again shows Z  to  be n-pure in C,  as required.

Corollary 5.7. With the notation of Theorem 5.6, G  is a direct factor of H  if ,
and only if, Z  is a direct factor of C.

The theorem reduces the investigation o f normal n-pure subgroups to that o f
central n-pure subgroups. We  remark that our examples o f  normal subgroups
that are (n-1)-pure but not n-pure (see Theorems 4.8, 4.9) are in fact made with
central subgroups.

Our results enable us to demonstrate some further points of divergence between
the abelian and the non-abelian cases. L e t  b e  an ascending
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chain of direct factors of the group H,  and put G =  u  G
i
. I f  H  i s  a b e l i a n ,  
t h e n

1
G is pure (-= R
o
- p u r e )  
i n  
H  
( s e
e  
F U C
H S  
[ 3
] ,  
p
.  
7 7
) ,  
b
u
t  
i
f  
H  
i
s  
n o
n -
a b
e l i
a n
,  
t
h
e
n

G need not even be 1
- p u r e  i n  
H .  
T o  
s h o w  
t h i s
,  
w e  
f o
r m  
t h
e  
c a r t
e s i
a n  
p r
o d
u c
t

H  o f  an infinite sequence of strictly non-abelian groups A
l
,  A
2
,  A
3
,  a n d  
c o n s i d e r

the direct product G  o f  the same family as a suLgroup o f  H.  Then G  U G „
where

A
1
X
A
2
X
.
.
.
>
<
A
„

is a direct factor o f  H  (a  complementary factor being the cartesian product o f
A p
i+
, ,  
A
n
+
2
,  
.
.
.
)
.  
N
o
w  
G  
i
s  
n
o
r
m
a
l  
i
n  
H
,  
a
n
d  
t
h
e  
c
e
n
t
r
a
l
i
z
e
r  
C  
o
f  
G  
i
n  
H  
i
s

the cartesian product o f  the centres Z(A , ),  Z(A,), o f  the component groups.
As GC= H — no element of H  whose components in all A
i  a r e  o u t s i d e  t h e  
c e n t r e
can belong to GC w e  can apply Lemma 5.2 to deduce that G is not even 1
- p u r ein H.

I f  we take all the A
i  
i s o m o r p h
i c  
t o  
t h e  
n o n -
a b e l i
a n  
g r
o u
p  
o
f  
o r
d e
r  
P
3  
a
n
d

exponent p, where p  is an odd prime, or as one of the non-abelian groups of order
8, then H  will be nilpotent of class 2 and of odd prime exponent or exponent 4,
respectively: Note that by contrast in an abelian group of exponent p  every sub-
group is absolutely pure. Again, with the same choice o f A
i
,  t h e  d i r e c t  p r o d u c t
G is  countable, but it  is not contained in any countable 1
- p u r e  s u b g r o u p  o f  
H ;
we omit the proof, which is not difficult. This again contrasts with atelian groups,
because every countable subgroup of an abelian group is contained in a countable
pure subgroup; see FUCHS [3], p. 8.

6. The case of infinite n

The case n =  t h a t  is the case o f normal pure subgroups, deserves closer
study because of its importance for abelian groups. We shall also extend the results
to n>- W e  first deal with central subgroups, in order then to apply Theorem 5.6.

Lemma 6.1. Let  Z  be a subgroup o f  the centre of  the group C. Then Z is pure in
C if, and only if, (i) Z n C '  E ,  and (ii) ZC' I C'  is pure in C/C',  or,  as we shall say,
Z  is pure in C modulo C'.

Proof. Assume firstly that Z  n c' E  and that Z is pure in C modulo C' .  I f
y denotes the canonic epimorphism of C on to C/C', then Zy is pure in Cy. Let S
be a finite subset of C, and let K  = gp(Z, S). Then Zy  is a direct factor of Ky
= gp(Zy, Sy); thus there is  a  subgroup B y  o f  Ky such that K y= ZyxB y .
Here we can take B  as a subgroup o f  K  containing the kernel K n  C' o f  the
restriction o f y to  K .  Th is ensures that K = Z B ;  f o r every kEK is of the form

k = zbc' w i t h  zE Z,  bEB,  c ' E  C' K ;
and bc'EB, too. Moreover, B  is clearly normal in K .  Finally

Z n B  Z fl K fl C '  Z n C '  = E,

as Z y
.  n By 
= E y .  
H e n
c e  
K  
= Z
X B
,  
s h
o w
i n
g  
Z  
t
o  
b
e  
p
u
r
e  
i
n  
C
.  
(
T
h
i
s  
i
s  
a  
s
p
e
c
i
a
l

case of Lemma 7.3.)
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Conversely, assume Z  t o  be pure in C .  Then Z n  C'=E b y Lemma 4.1.
Next, if  (cy)q=zy fo r some cEC, ZEZ, and integer q, where again y  is the canonic
epimorphism o f  C  onto C/C' ,  then cq=zc' with  c'E  C'. We  choose a finite
set S  so that cES and that c '  E(gp (S))', and put K  =gp (Z, S). Then Z  is
a direct factor of K, that is K = Z X B  with a suitable sul-group B. Now c'EK'=B',
and i f  c = z
o
b  
w i t h  
z
0
E Z ,  
b E
B ,  
t
h
e
n  
z
g
=
z
.  
T
h
u
s  
( z
o y
)
q
= z
y .  
I
t  
f
o
l
l
o
w
s  
—  
a
s

Cy is abelian — that Zy is pure in Cy, in  other words, Z  is pure in C  modulo C' ,
and the lemma follows.

The extension o f  this lemma to uncountable n  requires a  more elaborate
argument.

Lemma 6.2. Let Z  be a subgroup o f  the centre o f  the group C.  Then Z  is
n-pure in C,  where t t > - t
o
,  i f ,  a n d  
o n l y  
i f ,  
( i )  
Z n  
C ' =
E ,  
a n
d  
( i i
)  
Z  
i
s  
n -
p u
r e  
i
n

C modulo C ' .

PROOF. The sufficiency of the pair o f  conditions (i), (ii) is proved as before,
with the set S  now being only required to have cardinal S  I -< n+ 1. To  prove the
necessity, we assume that Z  is  n-pure in C .  Then Z n  C'=E b y  Lemma 4.1.
It remains to prove that Z  is n-pure in C  modulo C' .  Let T  be a subset of Cy
with I T <  n 1 .  We may assume that T  is infinite. Thus

I TI =  m -<

Let S
o  
b e  
a  
s
u
b
s
e t  
o
f  
C  
s
u
c
h  
t
h
a
t  
S
0
y
=
T  
a
n
d  
m
,  
a
n
d  
p
u
t  
K
O
=  
g
p  
(
Z
,  
S
o
)
.

Let K
o
n C '
= D
o
.  
T
h
e
n  
1
D
0
1  
i
n
,  
b
e
c
a
u
s
e  
1
K
0
:  
Z
1
-
-  
m  
a
n
d  
Z
n
C
'
=
E
.  
E
a
c
h

dED, can be written in the form
d -= [e
i
,  e
2
1 { e
3
,

with finitely many e  E C. Thus there is a subset S ,  o f  C  such that (i) s
0
c  S , ,
(ii) D
o  
( g
p
( S
„ ) )
'  
(
i
i
i
)  
S  
'
1
1
=  
m
.  
W
e  
p
u
t  
K
l
=  
g
p
(
Z
,  
S
i
)
,  
a
n
d  
t
h
e
n  
c
o
n
t
i
n
u
e  
t
o  
d
e
f
i
n
e
,

inductively, D„-=K „n C' ;  then S
o +
,  C  s o  
t h a t  
( i )  S
o  
( i i )  
D _ ( g p ( S „
+ 1
) ) ' ,

and (iii) I S „
+ 1
1  =  
m ;  
fi n a l
l y  
K
o + 1
=  
g p
( Z
,  
S
o
,
i
) .  
O
b
s
e
r v
e  
t
h
a
t  
i
f  
I
S
„
1  
=  
m
,  
t
h
e
n

IK„: Z1 i n ,  and then as Z n C' =-- E, also (D,I=IK„ n C'l i n ;  this makes it possible
to choose S
o +
,  s o  
t h a t  
a g a
i n  
I S „
+ 1
1  
=  
m
,  
a
n
d  
s
o  
t
h
e  
i n
d
u c
t i
v e  
d
e
fi
n
i t
i
o
n  
p
r
o
c
e
e
d
s
.  
I
t

is so arranged that
K
n
n
C
"

for all n. I f  now we put K = U  K„, then
n

(6.21) K n  C' =  K ';
for obviously K '
-
- K n C ' ;  
a n d  
i f  
k E K
n C ' ,  
t h
e n  
t h
e r
e  
i
s  
a
n  
i n
t e
g e
r  
n  
s
u
c
h  
t
h
a
t

kEK„ n a n d  then k E K ,
1
-
_ - K ' ,  s o  
t h a t  
a l s o  
A l s
o  
K  
= g p
( Z ,  
S o
) ,

and nIU
n

It follows — as Z  is n-pure in C  and in  -< —  that Z  is a direct factor of K,
say K  = Z X B. From (6.21) and the fact that Z  is abelian, we see that

(6.22) C '  = B'.
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From this again we deduce that
(6.23) B C ' n Z  = E;
for if  zEBC'nZ, say z=b c'  where bEB and c'E C', then c ' = b
-
l z E K ,  a n d  s o
c' EB' by (6.22); but then also z  eB, and so z=1 .  No w K
o
=  Z X  B
o  w h e r e

B
o
=
K
o
r
I
B
;  
a
n
d

By (6.23)

so we finally have

K
o
y  
=  
g
p
(
Z
y
,  
,  
S
o
y
)  
=  
g
p
(
Z
y
,  
,  
T
)  
=  
Z
y
.  
B
o
y

Zy CI B
o
y 
Z y  
n  
B
y  
=  
E
,

gp(Zy, T) = Z y .  x B
o
y

As this is true for evrey subset T  o f  C
y  w i t h  1 7
.
1 i t  + 1 ,  
w e  
s e e  
t h a t  
Z y  
i s  
n -
p u r e

in Cy, and the lemma follows.
As a corollary we now have the following criterion.
Theorem 6.3. Let G  be a normal subgroup of H;  denote by C  the centralizer

of G in  H  and by Z  (=CAG) the centre of G. Then G  is n-pure in H,  where
n is an infinite cardinal, if, and only if, (i) H  =GC, (i i) G fl C' =-E, and (iii) Z  is
n-pure in C  modulo C' . •

This follows at once from Lemmas 6.1, 6.2 and Theorem 5.6. The following
corollary could also have been proved directly, and much more simply than
Lemma 6.2.

Corollary 6.4. With the same notation, G  is a direct factor of H  if, and only if,
Z is  a direct factor o f  C modulo C '  (tha t is to say, ZC' I C '  is  a direct factor
of C/C').

This follows by choosing n  so  large that n-pure becomes absolutely pure
and noting that a normal absolutely pure subgroup is a direct factor (Lemma 5.1).

Theorem 6.3 and Corollary 6.4 allow us to translate the splitting theorems for
pure subgroups of abelian groups to analogous theorems for non-abelian groups.
The following are examples.

Theorem 6.5. Let G  be a normal subgroup o f  H,  le t  C  be the centralizer
of G in  H,  and Z  the centre of G. I f  Z  is the direct product of cyclic groups of
(fixed) finite order n, then the following three propositions are equivalent.

(i) G is a direct factor of H.
(ii) G is pure in H.

H  =GC and GnCnC'=E,  where Cn is  the group generated by the n-th
powers in C.

This follows from a theorem of SZELE [10]; see FUCHS [3], Theorem 24.1.

Theorem 6.6. A pure normal subgroup whose centre has finite exponent is a direct
factor.

This follows from a theorem o f  KULIKOV [7]; see FUCHS [3], Theorem 24.5.

Theorem 6.7. I f  G is  a pure normal subgroup o f  H  and i f  HI G H'  i s  a
direct product of cyclic groups, then G  is a direct factor of H.
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PROOF. We  note first that, with the notation of Lemma 6.1 and its proof,

HIGH' (HIG)1 (HIG)'  (CI Z)/ (CI Z)
/  C y l Z y .By a theorem o f  KULIKOV [71 (see FUCHS [3], Theorem 25.2) then Zy  is a direct

factor of Cy, and the theorem now follows from Corollary 6.4. Similarly we have:
Theorem 6.8. Let G  be an n-pure normal subgroup of H, where n is an infinite

cardinal, and let HIGH'  be a direct product of groups of orders less than n .  Then
G is a direct factor of H.

PROOF. By Theorem 6.3, Z  is n-pure in C  modulo C' ,  hence a direct factor
of C  modulo C '  by Proposition G, p. 88, o f Fuchs [3]; application of Corollary
6.4 completes the proof.

7. Homomorphisms and n-purity

The proofs o f  Lemmas 6.1, 6.2 indicate that preservation o f  n-purity under
a homomorphism is not in general a simple matter. It is easy to show by examples that
if  G is  an n-pure subgroup of H  and if  v is  a homomorphism of H,  then Gy
need not be it-pure in Hy ;  in  fact one can take H  abelian, G  as a direct factor
(hence absolutely pure) in H,  and yet have Gy not even 1-pure in HY. Let H  be
the abelian group of order 8 generated by an element g  o f  order 2 and an element
h o f  order 4. Then G=g p (g ) is a direct factor. I f  v is the projection of H  onto
the complementary direct factor gp (h) which is defined by

g
y 
= 
h
2
,  
=  
h
,

then gy has a square root in Hy  but not in Gv: thus Gy is  not 1-pure in Hy.
Note that the kernel N  o f  v has the property

Nn  G =  E;

this corresponds to the situation met with in Lemmas 6.1, 6.2.
One is thus led to look for necessary and sufficient conditions for a homo-

morphism to preserve it-purity; but we have unable to find such conditions, and can
present some partial results only.

Lemma 7.1. Let G be an n-pure subgroup of the group H,  and let v be a homo-
morphism o f  H  with kernel N.  Then Gy is  n-pure in H y  i f  to every st,bgroup
K=gp (G, S) with  t h e r e  is a projection i t  o f  K  onto G  whose kernel
P satisfies the condition
(7.11) N n K  =(Nn G)(Nn P ).

PROOF. Under the assumptions, we first see that

(7.12) i f  k , k 'E K  and i f  kv = k'v then k m
,  =  k ' n y ;for then k'=kn  with nENnK, hence by (7.11) n=gp with  gENnG and pENnP:
thus

flirt/ = (gp)nv = gy = 1,
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and (7.12) follows. I f  now we define 7E
1 b y = k7v,

then (7.12) ensures that 7C1 is  a mapping of Ky. I t  is evidently a homomorphism
of Kv in to  Gv, and easily seen to be an epimorphism; in fact it  is a projection,
as (on K)

yrcT = nvm,, = 7r
2
y =  
7 E V  
=  v n
i
,

hence (on Kv) m
i i s  
i d e m p o
t e n t .

Now if  L =g p  (Gy, T) is  a subgroup o f Hy generated by Gy and a subset
T g H  of cardinal 171-<n+ I, then we can choose a subset S c H  such that Sy= T
and 1,51=14 Then L =  Ky where K  -=gp (G, S); and there is then, as we have
shown, a projection 7E1 o f  L  onto GI% By Theorem 3.5 then GI
, i s  n - p u r e  i n  H y ,and the lemma follows. The assumption that G is n-pure in H  is seen to be super-
fluous, as this is ensured by the existence of the projections n.

Corollary 7.2. I f  G is  n-pure in H  and i f  the normal subgroup N  o f  H  is
contained in G, then GIN is n-pure in HIN.

We now consider conditions that ensure conversely that n-purity o f  Gy in
Hy implies n-purity of G in  H.  The following simple lemma is a natural generali-
zation of the easier part of Lemmas 6.1, 6.2.

Lemma 7.3. Let G  be a subgroup of the group H  and v a  homomorphism of
H  such that GI
,  i s  n -
p u r e  
i n  
H y
.  
I
f  
y  
r e s
t r i c
t e d  
t
o  
G  
i
s  
a  
m o
n o
m o
r p
h i
s m  
o
r

equivalently, i f
(7.31) N  G  = E,
where N  is the kernel of v, then G  is n-pure in H.

PROOF. Let K =g p (G,S ) where Sg.I1  and S I -< n +  1. Then there is a pro-
jection 7E
1
, o f  
K v  
= g
p  
( G
y ,  
S
y
)  
o
n
t
o  
G
y
.  
N
o
w  
d
e
n
o
t
e  
t
h
e  
r
e
s
t
r
i
c
t
i
o
n  
o
f  
v  
t
o  
G
,

which by assumption is a monomorphism, by v
i
;  t h e n  t h i s  
h a s  a n  
i n v e r s e  
I V ,

and we can define a homomorphism it  o f  K  into G  by
it =

This is in fact an epimorphism, because vn ,,  is an epimorphism (on K  to  Gv)
and i s  even an isomorphism (on G I
,  t o  G ) .  
M o r e o v e r  
i t  
i s  
i d e m p o t e n
t ,

because
- 1  - 1  _  2  - 1  _  - 1

7E
2 
-
_  
V
7
C
1
1
,
1  
V
I
E
1
V
1  
-  
V
7
E
1
1
,
1  
-  
V
I
E
1
1
,
1  
-  
i
t
.

Thus i t  is a projection of K  onto G, and the lemma now follows by an applica-
tion of Theorem 3.5.

A certain duality may be noted: I f

(7.31) N n  G = E,

then n-purity of Gy in  I l v  entails n-purity o f  G in  H ,  bu t not in general con-
versely; if
(7.32) N G ,
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then n-purity o f G in  H  entails n-purity o f Gv in  Hy,  bu t again, as we shall
now see, the converse is not generally true. Fo r a simple counter-example we take
H  to be the quaternion group, with G a subgroup of order 4 and N  the subgroup
of order 2 (which is the derived group and the centre of H).  Then G IN is a direct
factor of H
I
N ,  
b u t  
G  
i s  
n o
t  
e v
e n  
1 -
p u
r e  
i
n  
H  
a  
g
e
n
e
r
a
t
o
r  
o
f  
G  
i
s  
t
r
a
n
s
f
o
r
m
e
d

into its inverse by an element o f  H  outside G ,  b u t  not by any element o f  G
(alternatively, Corollary 5.4 may be applied).

Again we have no necessary and sufficient criteria, but only sufficient conditions,
and examples to show that these conditions cannot be relaxed very far. The  first
result, a partial converse of Corollary 7.2 for abelian groups, is due to FUCHS [3].

Theorem 7.4. I f  H  is abelian, i f  N  is a subgroup o f  the subgroup G  o f  H,
i f  N is n-pure in H  and if  GIN is n-pure in HIN,  then G is n-pure in H.

For a proof, the reader is referred to FUCHS [3], p. 88. I f  H  is non-abelian,
we add the assumptions that G  and N  are normal and N  is also 2-pure in H :
the first o f  these assumptions is trivially satisfied in abelian groups, and the second
is then implied by the n-purity of N. The theorem of Fuchs is, therefore, a special
case o f the theorem which follows.

Theorem 7.5. Let G be a normal subgroup of the group H  and let v be a homo-
morphism o f  H  with kernel N;  further let Gv be n-pure in Hy.  I f  (i) N
and (ii) N  is m-pure in H,  where m=max (2, n), then G  is n-pure in H.

PROOF. Le t  K = g p  (G, S) where S  H  and I S  I +  1. Then — as Gv is
normal and normally complemented in Kv t h e r e  is a direct decomposition

Kv =- Gv X Mv

of Ky. Here we can take M  to be a normal subgroup of K  containing the kernel
N o f  v. Then

GM = K, G n M  = N.

Now every s  E
S c a n  
b e  
w r i t t
e n  
i n  
t h
e  
f o
r m  
s
=  
g
s
,  
w
i
t
h  
g  
E
G  
a
n
d  
s
,  
E
M
,

and the set S ,  o f  second components s,  then generates M  modulo N,  that is
M  =gp (N, S,). A s  IS,I I S  I -<n+ 1 1 ,  and as N  is a normal nt-pure sub-
group of H,  there is a direct decomposition

M  N X P .

It remains to show that P is the kernel of a projection of K  onto G. Clearly K  =GP
and G n P =E, and we only have to prove that P  is normal in K  or, equivalently,
that G and P  centralize each other. Let g EG and p EP be arbitrary, and consider

(7.51) [ g ,  p] = n,

say. Then —  as [g , p] must belong to the normal subgroups G  and M  that
contain g  and p ,  respectively, — we have nEN. Now the set o f  "equations"
over N
(7.52) { i t
-
l [ x
l
,  x
2
] ,  
[ n
' ,

X2]}n' EN
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where n  is  fixed by (7.51) but n '  ranges over all elements o f N,  has a solution
O in  H  given by x
1
0 =  g ,  x
2
0 = -  
p ,  
a s  
p E
P  
c l e a
r l y  
c e n t
r a l i
z e s  
N
.  
N
o
w  
N  
i
s

(at least) 2-pure in H ,  and (7.52) must then also have a solution, say x
1
1 7 = - - n
i
,

x,r1= n
2
, i n  
N .  
B
u
t  
t
h
e
n  
[
n
,
,  
n
2
]
=
1  
a
s  
[
n
'
,  
n
2
]  
=  
1  
f
o
r  
a
l
l  
n
'  
E
N
,  
a
n
d  
f
i
n
a
l
l
y  
n
=
1

because n
-
q n „ ,  
n
2
1 - = - n
- 1  
=  
1
.  
W
e  
s
e
e  
t
h
e
n  
f
r
o
m  
(
7
.
5
1
)  
t
h
a
t  
g  
a
n
d  
p  
c
o
m
m
u
t
e
,

and as they were arbitrary elements of G and P, respectively, G and P  centralize
each other; and the theorem now follows by an application of Theorem 3.5.

To see that it is not sufficient to assume N  to be I -pure even when only 1-purity
is to be deduced, one considers the non-atelian group H  of exponent 3 and order 27,
and takes N  to be the centre of H  and G an ar1-rtrary su' group of order 9. Then
N is 1
-
p u r e  
i n  
H  
b e
c a
u s
e  
a
l
l  
g
r
o
u
p
s  
g
e
n
e
r
a
t
e
d  
b
y  
N  
a
n
d  
o
n
e  
f
u
r
t
h
e
r  
e
l
e
m
e
n
t  
a
r
e

elementary abehan and so contain N  as a direct factor; and G I N is absolutely
pure in H N ,  as this is also an elementary abelian group; but G is not even 1
- p u r ein H,  by Lemma 5.2, because G  is its own centralizer in H.

I f  we drop the assumption that G  is normal in H ,  then again the conclusion
of Theorem 7.5 need not remain valid. We  take H  to be the group H -  o f  Theo-
rem 4.8, G  as the subgroup G2
t + 1  a n d  N  
a s  G
2 (
, ,
1 )  
i n  
t h e  
n o t a t i
o n  
o f  
t h a
t

theorem. Then N  is central in H ,  hence normal, and 1 ʻ 1
-
G .  M o r e o v e r ,  G I N
is absolutely pure in H  N, because it is a su' group of prime order not contained
in the Frattini su'
- g r o u p  
o f  
t h e  
n i l p o
t e n t  
g r
o u
p  
H  
N
;  
a
l
s
o  
N  
i
s  
( 2 t
+ 1
) -
p u
r e

in H  but G is not (2 t+ 1)-pure in H ,  by Theorem 4.8.
Hence, to deal with the case o f  non-normal G,  we  have to strengthen the

assumptions on N.  I f  we assume N  to  be absolutely pure in H ,  we obtain an
almost obvious lemma.

Lemma 7.6. Let G  be a subgroup o f  H  and let v  be a homomorphism o f
H  with kernel N.  I f  (i) N  G ,  and (n) N  is absolutely pure in H,  that is a direct
factor of H, then G is n-pure in H  i f  and only if, Gil is l t
- p u r e  i n  H y .PROOF. We may assume that v is the projection of H  onto a complementary
direct factor o f  N.  Thus H = N X I I I )  and G=NX Gy.  I f  K  =gp (G, S) wi t h
IS -<n+ 1, then K  =Nx Kv, and  K v  =gp (Gv, Sy): then, assuming G I
,  t o  b en-pure in HY, there is a projection, say 7E1, o f  Kv onto Gy. From this one obtains
a projection i t  o f  K  onto G  by defining i t  t o  act as the identity on N  and as
7C1 on Kv:

It follows that G  is n-pure in H .  The converse is a trivial consequence of Corol-
lary 7.2.

More generally we can prove the following theorem.
Theorem 7.7. Let G  be a subgroup o f  H  and let v  be a homomorphism o f

H  with kernel N G .  I f  G = g p  (V, R) with IRI-<m+1, and (ii) N  is (in+ ft)
-pure in H,  then G is n-pure in H  if ,  and only if, GI
,  i s  n - p u r e  i n  
H Y .

PROOF. Assume that Gy is  it-pure in Hy.  Le t  K  ( G ,  S) where IS
-<1t+ 1. Then K  g p  (V, RU S) and I R  S  + n  +1 ; thus N,  as a normal
(m+n)-pure s u l
-
g r o u p  
o f  
H  
a n d  
t h u
s  
o
f  
K  
( L
e m
m a  
3
.
2
)  
i
s  
a l :
s o l
u t e
l y  
p
u
r
e  
i
n  
K

2

kn -= k ( k v )
- l
x k v n
i  
f o r  
a l l  
k E
K .
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(Corollary 3.8). Then, as similarly Gv is absolutely pure in Kv, Lemma 7.6 shows
G to be absolutely pure in K ,  and it follows that G is n-pure in H.  The converse
is again a trivial consequence of Corollary 7.2.

8. Cartesian products, direct products, and n-purity

I f  H  is the cartesian product of a family {1 4 }
1 E 1  o f  g r o u p s ,  
a n d  i f  
G  i s  
t h e

cartesian product of a family fG, I ,
E /  o f  
s u t s g r o u p s ,  G
1
H
,  
t h e n  
o n e  
w o u l
d  
e x p e
c t  
G

to be n-pure in H  if eads G. is n-pure in H .  This is indeed the case, and the converse
is also true. We  formulate the proof, which is not deep, so that it  can be easily
generalized to other algebraic systems.

Theorem 8.1. Let H  be the cartesian product of the family {
I l i ) , E 1  o f  g r o u p s ,let G

i
-
H  
,  
a
n
d  
l
e
t  
G  
b
e  
t
h
e  
c
a
r
t
e
s
i
a
n  
p
r
o
d
u
c
t  
o
f  
t
h
e  
f
a
m
i
l
y  
I
G
i
l
i
E
l
.  
T
h
e
n  
G  
i
s

n-pure in H  if ,  and only i f  each G, is n-pure in H .
PROOF. I t  is convenient for the sake of the proof (and for the sake of generaliza-

tions not here presented) to  characterize the cartesian rroduct H  b y  a family
p h l
iE l  
o
f  
e
p
i
m
o
r
p
h
i
s
m
s

n
i
:  
H
—
H
,

with the property that to every family t h
t
l
iE  o f  e l e m e n t s  
h
t
E H ,  
t h e r e  
i s  
o n e  
a n d

only one element h  EH such that h it=h ,  f o r all i  EL Similarly to every family
I g
i
l
t
E
I  
o
f  
g
i
E
G
,  
t
h
e
r
e  
i
s  
o
n
e  
a
n
d  
o
n
l
y  
o
n
e  
e
l
e
m
e
n
t  
g
E
G  
s
u
c
h  
t
h
a
t  
g
n
i
=
g
,  
f
o
r

al l  i E l .
Now assume that each G. is  n-pure in H
i
.  L e t  K = g p  
( G ,  S )  
w h e r e  
S . q  
H

and IS  n  + 1. Then K n
i
= g p  ( G n
i
,  S O ,  
a n d  
a s  
' S t i
j
l  
I S  
I ,  
t h e
r e  
i
s  
a  
p r o j
e c t i
o n ,

say 7E1, o f  Kn, onto W e  define a mapping It :  K -
,
- G  b y

=  11
l
i t
1
.

This is legitimate, as there is to given kE K  precisely one gEG such that g ib =
= k n
i
n
i
;  
a
n
d  
t
h
e
n  
k
i
t  
=
g
.  
O
n
e  
e
a
s
i
l
y  
v
e
r
i
f
i
e
s  
t
h
a
t  
i
t  
i
s  
a  
p
r
o
j
e
c
t
i
o
n  
o
f  
K  
o
n
t
o  
G
.

This shows, by Theorem 3.5, that G  is n-pure in H .
Conversely, assume that G  is  n-pure in H .  Le t  jE /  be fixed, and let K
J
=

=g p (G
i
,  S
i
)  
w h
e r
e  
S
i  
g  
H
i  
a
n
d  
I  
S
i  
-
<
n  
+
1
.  
L
e
t  
K  
b
e  
t
h
e  
c
a
r
t
e
s
i
a
n  
p
r
o
d
u
c
t

of the family defined by K n
i
= G
i
,  K n
i
= K
i
.  
T h e n  
K = g p
( G ,  
S
)  
w h e
r e

S consists of all sEH for which = 1  ( i
.
j ) ,  s n
i
E S
J
.  H e n c e  
a n d  
t h e r e

is a projection i t  o f  K  onto G. Then n
i  d e fi n e d  b y

= 7
u lf

is a well-defined mapping; for if  k, k' E K and lob ,  then ( k
-
l k ' ) i l
i
=  1  E  G
i
;  n o w

( k
-
1
1
( '
)
1
1
1
E
G
1  
a
l
s
o  
f
o
r  
a
l
l  
i  
j
,  
a
n
d  
s
o  
k
-
-
-
1
1
(
'
E
G  
a
n
d  
(
k
-
l
k
'
)
n
=
k
-
l
k
'
:  
h
e
n
c
e

( k
-
1
k '
)
n
t l
1
=
( k
-
i k
' )
1
1
,
=
1
,  
a
n
d  
f
i
n
a
l
l
y  
k
n
r
i
i
=
k
'
n
n
i
.  
I
t  
i
s  
e
a
s
y  
t
o  
v
e
r
i
f
y  
t
h
a
t  
7
E
1  
i
s

an epimorphism of K; t
i o n t o  G
i
,  a n d  
a s

7
0
1
1
.
i  
I
t
t
l
i
=
n
i
"
»
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it is  idempotent. Thus i r  i s  a projection o f  K
J  o n t o  G
i
,  a n d  
a p p l i c a t i o n  
o f

Theorem 3.5 now completes the proof of the theorem.
In the case of groups we also have the direct product H *  o f  the family

{ H
}
j
E /  
a
v
a
i
l
a
b
l
e
,  
a
n
d  
o
n
e  
w
o
u
l
d  
e
x
p
e
c
t  
a
l
s
o  
t
h
e  
d
i
r
e
c
t  
p
r
o
d
u
c
t  
G
*  
o
f  
{
G
}
i
E
I

to be n-pure in H  i f  each G, is  n-pure in H ,  and conversely. Th is is in fact
true, and can be proved by adapting the proof of Theorem 8.1.

Theorem 8.2. Let H *  be the direct product o f the family {11 , ),
E1  o f  g r o u p s ,let G , H  , and let G*  be the direct product o f the family {G , } ,

E 1
.  T h e n  G *  i s
n-pure in H *  if ,  and only i f  each G, is n-pure in H .

PROOF. The direct product H *  consists of those elements h* EH, the carte-
sian product, whose support

o (h*) = I  I h*t =  11

is finite. No w the proof proceeds as that of Theorem 8.1, noting that in the direct
part again the projection i t  is well defined by

because to a  given k  EK=gp (G*, S) there is precisely one g *  EG* such that
e i i
i
= k
r w
r
i
,  
a
s  
c
(
k
)  
m
u
s
t  
b
e  
f
i
n
i
t
e
.  
I
n  
t
h
e  
c
o
n
v
e
r
s
e  
p
a
r
t  
o
f  
t
h
e  
p
r
o
o
f
,  
w
e  
u
s
e

again that an element l c
-
J - 1 c '  l i e s  
i n  
G *  
i t  ( 1 c
-
l k ' )
1 7 , E G
1  
f o
r  
a l
l  
i  
—  
a g
a i
n  
b e
c a
u s
e

o ( k
-
i -
l c ' )  
i
s  
fi
n
i
t
e
.

It should be noted that in general the direct product G* wi l l  not be n-pure
in the cartesian product H  — an example was given at the end of §  5.

9. Groups in which certain subgroups are n-pure

In this and the following section we examine groups in which all su' groups
of a given kind are n-pure, for some n .  Thus we might ask for those groups in
which all su'groups are absolutely pure: it  is not difficult to see that such groups
are simply the elementary abellan groups, that is the direct products of groups of
prime orders; in fact, as we shall see, much less is sufficient for the same conclusion.
In an abelian group it suffices to assume that all its cyclic sill
- g r o u p s  a r e  1 - p u r e  
i n  i t :
then it  must be elementary, so that then all its su' grc ups are direct factors of it
(see FUCHS, KERTÉSZ, SZELE [4], Theorem 4). I n  non-abelian groups the position is
less simple. Ou r first goal is the following characterization oi grcups in which all
cyclic subgroups are 1-pure.

Theorem 9.1. Th e  group H  has the property (*) that a ll its cyclic subgroups
are I-pure in it if, and only if, it  is the direct product of groups P  with the following
two properties:

()  P  h is prime exponent, say p ;
(is) i f  K  P  is  generated by two elements but not by one, then 1K : K ' i=  p
2
.
The proof requires several lemmas. We  first show that a p-group has property

(*) if, and only if, it  has properties 0  and (u); then that a direct product of such

2*

nth =
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p-groups also has property (
I ) ;  a n d  
fi n a l l y  
t h a t  
a  
g r o u
p  
H  
t h a
t  
h a
s  
p r o p
e r t y  
( *
)  
i
s

a direct product of its Sylow subgroups.
Lemma 9.2. The p-group P  has the property (*) that every cyclic subgroup

is 1-pure in it  if, and only if, (i) P  has exponent p, and (n) i f  K
-
• - . 1
1  i s  g e n e r a t e d

by two elements but not by one, then 1K: K' I p
2
.

PROOF. L e t  P  have properties (i), (ii). I f  G=gp  (g) i s  a cyclic subgroup,
and if

K = gp(G, h) -= gp(g, h) G ,

then M  =gp (K' , h) is  clearly a normal complement of G in  K  ; hence, by Theo-
rem 3.5, G  is  1-pure in P .  Conversely, let P  be a p-group with property (*).
I f  g EP is an element of order p  then g  has no p-th root in gp (g) and therefore
can have no p-th root in P :  thus P  contains no elements of order p
2
,  a n d  m u s t
have exponent p. Next, let K  -=gp (g, h) be a non-cyclic two-generator sul
- g r o u pof P; then gp (g) must have a normal complement, say M,  in  K .  The p elements
h, gh, g
2
h ,  
g P
-
' h  
a
r
e  
m
u t
u
a l
l y  
i
n
c
o
n
g
r
u
e
n
t  
m
o
d
u
l
o  
M
,  
h
e
n
c
e  
o
n
e  
o
f  
t
h
e
m
,  
s
a
y

h' = gmh, must belong to M.  As K  g p  (g, h') also, gp (h') has a normal comple-
ment, say N,  in  K .  Both M  and N  contain K '  and have index p  in  K ;  more-
over /  a s  h 'E M b u t  h 'E N.  Thus I K : MCI NI = p
2  a n d  I K : K ' I p
2
;

as K  is generated by two elements of order p, also 1K : a n d  the lemma
follows.

Corollary 9.3. I f  P is a group of exponent p in  which all 2-generator subgroups
are finite, then all cyclic subgroups of P  are 1-pure in P .  I n  particular, the cyclic
subgroups of a locally finite group of prime exponent are 1-pure in it.

It is known that there are groups o f  prime exponent which are not locally
finite; but it  appears to be unknown whether a group must be locally finite i f  all
its 2-generator subgroups are finite, or even boundedly finite. We  draw attention
to the following "hyper-Burnside" problem.

PROBLEM 9.4. I s  there a positive integer d* such that a group is locally finite
i f  all its d*-generator subgroups are finite? I s  there a positive integer d,, such that
a group is locally finite i f  all its cl„-generator subgroups have orders dividing a fixed
integer n? Is there a bound b=b(d, d,, n) for the orders of all finite d-generator groups
whose d-generator subgroups have orders did ding n?

We advance no conjectures beyond the guess that these problems are difficult.

Lemma 9.5. I f  IP , I ,
E I  i s  a  
f a m i l y  
o f  
p -
g r o u p
s ,  
f o
r  
fi x e
d  
p
,  
e a
c h  
o
f  
i l
h i
c h  
h
a
s

the property (*) that its cyclic subgroups are 1-pure in it ,  then both the cartesian
product P  and the direct product P *  o f  the family have property (*)•

PROOF. Clearly P  has exponent p, like  all the P
i
.  L e t  I
n i
l
t E
,  b e  t h e  
f a m i l y

of epimorphisms
n
i
:  
P
-
-
P
.

I f  K  =gp (g, h) is a non-cyclic subgroup of P, then either there is an i  E I such that
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Km is  non-cyclic, in which case
p
2 
= 
(
K
n
i
)
'
l  
I
K
:  
K
/
I  
p
2
;

or else there are i,  jEI and an integer m such that

gri
t 
=  
1
,  
(
g
m  
h
)
n
,  
=  
1
,  
(
g
m  
h
)
n
i  
=  
1
,

and then, if  I l
i  
d e n o t e
s  
t h e  
e p i m
o r p h i
s m  
o
f  
P  
o
n
t
o  
P
i  
x  
P
i
,  
w
e  
s i
m i
l a
r l
y

have
p
2 
= 
(
W
I  
K
'
i  
p
2
.

Thus P  has property (*), by Lemma 9.2. A s property (*) is evidently inherited by
subgroups, P *  also has it, and the lemma follows.

We are now ready to prove the sufficiency part of Theorem 9.1.
PROOF OF THEOREM 9.1. FIRST PART. Le t  H  be the direct product o f groups

P with  the properties (i), (ii) o f  the theorem. Those factors that have the same
prime exponent p  can be combined to a single group with the same properties,
by Lemma 9.2, 9.5; thus we lose no generality i f  we assume that H  is the direct
product o f  its Sylow p-subgroups P ,  f o r varying p ,  and that these Sylow sub-
groups all have property (*). Then a cyclic subgroup o f H  is the direct product
of its intersections with these Sylow subgroups P ,  and as each such intersection
is cyclic and thus 1-pure in P,  the given cyclic s u '
-
g r o u p  i s  1 - p u r e  
i n  H ,  
b y  
T h e o -

rem 8.2. Thus H  has property (*).
To prove the converse, we require another lemma.
Lemma 9.6. Let the group H  have the property (*) that all its cyclic subgroups

are 1-pure in it. Then H  is periodic, and if  g, h are two elements of H,  then the
order ighl o f  their product divides the product 1g 1111 o f  their orders.

PROOF. A s  property (*) is inherited by R e
-
g r o u p s ,  a n d  
a s  t h e  
i n fi n i t e  
c y c l i c

group does not possess it ,  H  must be periodic. P u t  K =g p (g ,  h). Then also
K=gp(gh, h), and  so the cyclic subgroup gp(gh) has a  normal complement,
say N,  in  K .  A s K I N is cyclic, I C /
-
N ;  a n d  a s  
1 K :  
N I = I g h l ,  
w e  
s e e  
t h a t  
1  
g h l

divides I K :  ICI. No w 1K ICI  divides l I  h!, as g  and h  generate K .  Thus
1 ght divides I I  Ihl, and the lemma follows.

We can now prove the necessity part of Theorem 9.1.
PROOF OF THEOREM 9.1. SECOND PART. We  assume that H  has property (*).

By Lemma 9.6 then H  is periodic, and the elements whose orders are powers of
a fixed prime p  fo rm a subgroup P ,  say, o f H.  Th is is clearly characteristic in
H, and the Sylow p-subgroup of H.  Different such Sylow subgroups have trivial
intersection; the ir product is H ,  a s H  is  periodic, and the product is clearly
direct. Each P  inherits property (*) from H ,  and by Lemma 9.2 has properties
(i), (ii). Th is completes the proof of the theorem.

Corollary 9.7. I f  I H j
i E r  i s  a  
f a m i l y  
o f  
g r o u
p s  
e a c
h  
o
f  
w h
i c
h  
h
a
s  
t
h
e  
p r
o p
e r t
y

(*) that its cyclic subgroups are 1-pure in it, then the direct product of the family also
has property (*).

The same is not true for the cartesian product, as it is in general not even periodic.
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Theorem 9.8. I f  every cyclic subgroup of a group H  is 2-pure in H,  then H is
elementary abelian, that is to say, a direct product o f groups o f prime order. Thus
every subgroup of H  is then a direct factor.

PROOF. Theorem 9.1 shows that it suffices to show that H  is abelian. I f  g, h
are two arbitrary elements of H,  the cyclic sul
- g r o u p  g e n e r a t e d  
b y  t h e i r  
c o m m u t a t o r

[g, h] must be 2-pure in K  =-gp(g, h), and so [g , hi must also be the commutator
of two elements in the cyclic group gp({,g, h]); i t  follows that [g ,  h ]
,  I ,  a n d  a sg, h were arbitrary, H  is abelian, and the theorem follows.

Theorem 9.9. I f  every two-generator subgroup o f  a group H  is 1-pure in  H,
then H  is elementary abelian, and thus every subgroup is a direct factor of H.

PROOF. Again it suffices, by Theorem 9.1, to prove that H  is abelian ; and, still
by Theorem 9.1, we need only show that the elements of prime order p  commute.
Let then g , h :H and 1 gl ,
1 1 1  p ,  
a n d  
p u t  G
— g p  
h p  
a n
d  
K  
= g p
( G ,  
1 1
)
=

=gp(g, h). A s  a 2-generator group, G  is  1-pure in H ,  hence, by Theorem 3.5,
there is a projection n  o f  K  onto G. No w

(9.91) [ g , 1 4 = [ g ,  h]n =[gn, hit]=[g, hn]EG/ ,

as hic E G. Hence 1G: G'I divides p, and Lemma 9.2 (with G here taking the place
of K  there) shows that G  must be cyclic. Thus G '  -=-E, and then from (9.91)
we deduce [g, h]=1; and the theorem follows.

Thus we see that though the non-abelian groups in which all cyclic subgroups
are 1
-
p u r
e  
f o
r m  
a  
w
i
d
e
r  
c
l
a
s
s  
t
h
a
n  
t
h
e  
c
o
r
r
e
s
p
o
n
d
i
n
g  
a
b
e
l
i
a
n  
g
r
o
u
p
s
,  
s
t
r
e
n
g
t
h
e
n
i
n
g

the assumption to 2-purity of cyclic segroups instead of 1-purity, or to 1-purity of
2-generator sul
- 
g r o u p s  
i n s t e
a d  
o f  
c y c
l i c  
s u b
g r c
u p s
,  
l e
a v
e s  
u
s  
w
i
t
h  
o
n
l
y  
t
h
e  
s
a
m
e

groups as in the abelian case, and with the narrowest class of groups that can occur
in this context.

10. Groups whose normal subgroups are n-pure

A different way of generalizing the theorem of Fucus, KERTESZ, and SZELE ([4],
Theorem 4) referred to and extended in the preceding section restricts the assumption
of purity to normal subgroups. I f  all normal subgroups are absolutely pure, and
thus direct factors, a simple description of the groups is available.

Theorem 10.1 (WIEGoLD). The normal subgroups of the group H  are absolutely
pure in H  if ,  and only if, H  is a direct product of simple groups.

For the proof we refer the reader to WIEGOLD [11]. We shall again find that the
conditions of the theorem can be relaxed. The main criterion we establisch here is
as follows.

Theorem 10.2. Let H  be a group with centre Z.  Then all normal subgroups of
H are n-pure in H  if, and only if, (i) Z  is n-pure in H;  (ii) Z  is elementary abelian;
and (iii) H1Z is a direct product of non-abelian simple groups.

It is to be understood that Z  o r H I Z  may be trivial. Throughout the proof
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we shall denote by t h e  canonic epimorphism of H  onto HIZ.  We  require two
lemmas, of which the first makes no reference to n-purity.

Lemma 10.3. Let H  be a group such that I g  is a direct product of non-abelian
simple groups. I f  G is  a normal subgroup o f H,  then the centralizer C  o f  G in
H  is the unique subgroup with the properties (i) Z C ,  and (ii) I g = G X

PROOF. As a normal subgroup of the direct product I g  o f  non-abelian simple
groups, Gc i s  the direct product of some of the simple direct factors of H
,  a n dthe remaining factors combine to form the unique complementary direct factor of

in I g ;  the inverse image under o f  this complementary direct factor is then
the unique subgroup C
o
,  s a y ,  
s u c h  
t h a t  
Z  
C
o  
a n
d  1
-
g -
, - -
- G X C g •  
C l
e a
r l y

C C
o
,  
a
n
d  
i
t  
r
e
m
a
i
n
s  
t
o  
p
r
o
v
e  
t
h
a
t  
C
0  
C
,  
t
h
a
t  
i
s  
t
h
a
t  
a
l
l  
e
l
e
m
e
n
t
s  
o
f  
C
o  
c
e
n
t
r
a
l
-

ize G. No w [G, C
o
l - Z ,  
a n d  
i t  
f o l l o
w s  
t h a
t  
i f  
g
,  
g '
E G  
a
n
d  
c
E  
C
o
,  
t
h
e
n

[gg', c] = [g, c][gi, c].
Thus for fixed c  E C
o t h e  
m a p p i n
g  
y  
d e fi n
e d  
b
y

gy [ g ,  c]
maps G  homomorphically into Z .  The kernel o f y clearly contains G', as Gy
is abelian, and also G  Z .  But G'(G r1Z)= G, because

= (GO' =
this being a direct product o f  non-abelian simple groups. Hence the kernel o f y
is G, and [g , c]= 1 f o r  all gEG and c  EC,. Th is shows that C
o  c e n t r a l i z e s  G ,and the lemma follows.

Corollary 10.4. Under the assumptions and with the notation o f  the lemma,
H  =-GC.

Lemma 10.5. I f  all normal subgroups that contain the centre Z  o f  the group
H  are 1-pure in H,  then the centre of IR is trivial or, differently put, Z  is the hyper-
centre of H.

PROOF. I f  h is an element of the second centre of H,  that is if  Ig  is central
in H
,  
t h
e
n  
K
=
g
p
(
Z
,  
h
)  
i
s  
a
n  
a
b
e
l
i
a
n  
n
o
r
m
a
l  
s
u
b
g
r
o
u
p  
o
f  
H
;  
b
y  
C
o
r
o
l
l
a
r
y  
5
.
4

then K Z
,  
a n d  
h  
E
Z  
;  
a
n
d  
t
h
e  
l
e
m
m
a  
f
o l
l o
w
s .

PROOF OF THEOREM 10.2. First  assume that H  has properties (i)—(iii) o f
the theorem. We remark that then every s u l
-
g r o u p  Z
o  o f  Z  
i s  n -
p u r e  
i n  
H ;

for Z
o  
i s  
a b
s o
l u
t e
l y  
p
u
r
e  
i
n  
Z  
a
n
d  
Z  
i
s  
s
t
-
p
u
r
e  
i
n  
H
,  
s
o  
t
h
a
t  
L
e
m
m
a
s  
3
.
1
,  
3
.
2

are applicable. Now let G be a normal subgroup of H, and let C be its centralizer.
Then H= G C,  b y  Corollary 10.4. Moreover, i f  G  C = Z
o  i s  t h e  c e n t r e  
o f  G ,
then Z ,  is, as we have just remarked, n-pure in H  and thus also in C.  I t  now
follows from Theorem 5.6 that G  is  n-pure in H ,  proving the sufficiency of the
stated conditions.

Conversely assume that every normal s u l
-
g r o u p  o f  H  
i s  n - p u r e  
i n  
H .  
T h e n  
i n

particular Z  is n-pure in H ;  also every sul-group of Z  must be at least 1-pure
in Z ,  and so Z  must be elementary abelian ; thus (i) and (ii) are established. Now
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let G  b e  an arbitrary normal s u l
-
g r o u p  o f  I g ;  
w e  
m a y  
t a k e  
G  
a s  
a  
n o r m
a l

su' groupo f  H  containing Z .  Then G  is  it-pure in H  by hypothesis, and
is n-pure in I g  b y  Corollary 7.2. Moreover the centre o f  G  i s  trivial, as by
Lemma 5.2 it is contained in the centre of H i
,  a n d  t h i s  
l a t t e r  i s  
t r i v i a l  
b y  
L e m m a

10.5. We  apply Corollary 5.3 and see that G  i s  a direct factor of H .  As this is
true for every normal sul group G• o f  H
,  W i e g o l d ' s  
T h e o r e m  
1 0 . 1  
s h o w s  
T R

to be a direct product of simple groups. Finally, as by Lemma 10.5 the centre of
I g  i s  trivial, these simple groups must be non-abelion. Thus (iii) also follows,
completing the proof of the theorem.

I f  i t =  w e  can say more.
Theorem 10.6. The normal subgroups o f  the group H  are pure in H  if ,  and

only if, H  is a direct product of simple groups; thus the normal subgroups are then
absolutely pure in H.

PROOF. I f  H  is a direct product of simple groups, then all its normal subgroups
are direct factors, hence absolutely pure, hence pure in H ;  see also Theorem 10.1.
Conversely, assume that all normal su,groups of H  are pure in H.  From condi-
tion (iii) o f  Theorem 10.2 we see that ( 1 1 ' )= (H , ) ' = H ,  hence H  -H'.Z. B y
Lemma 6.1, with H  here for C  there, H ' n Z = E .  I t  follows tha, H= H' > < Z.
Now i s  a direct product of (non-abehan) simple groups, and also Z  is
a direct product of (abelian) simple groups, both by Theorem 10.2. Thus H  is a
direct product of simple groups, and the theorem follows.

We do not know whether in this situation purity can be distinguished from
n-purity for finite n. I t  is conceivable that H  must necessarily be a direct product
of simple groups even if  the normal subgroups are only assumed to be 1-pure in H.
This would be the case if  the conditions of Theorem 10.2 imply that Z  is a direct
factor of H, and this is so if  and only if H '  rIZ= E; see the proof of Theorem 10.6.
The answer depends on the solution to the following problem.

PROBLEM 10.7. Does there exist a group H  14hose centre Z  is  1-pure in H ,
non-trivial elementary abelian, and contained in the derived group H',  and such that
HIZ is a non-trivial simple group?

11. Groups that are n-pure as subgroups

The divisible abelian groups have the property that they are 1-pure, and indeed
absolutely pure, in every abelian group that contains them. Fo r non-abelian groups
there are two possible analogues of this: the groups that are n-pure in every group
that contains them as subgroups, and the groups that are it-pure in every group that
contains them as normal s u l
-
g r o u p s .  
T h e s e  
c o n d i t i o n
s  
d e p e n
d  
o n  
t i
,  
a n
d  
b e c
o m e

more restrictive as it is made to increase. I n  fact it turns out that the first of these
possibilities leads to no interestirg groups even for i t  i .

Theorem 11.1. The only group G  that is 1-pure in every group H  that contains
it as a subgroup is the trivial group, G=E .

PROOF. Let G be 1-pure in every grcup that contains it. We first form the group

H
i  
=  
g
p
(
G
,  
a
;  
a
2  
=  
1
,  
[
a
-
l
g
a
,  
=  
1  
f
o
r  
a
l
l  
g
,  
g
'
E  
G
)
.
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This is the so-called wreath product of G and the cyclic group of order 2 generated
by a. As H,  is generated by G and one further element, there must be a projection
7
-
c
1 
o
f  
H
,  
o
n
t
o 
G
.  
P
u
t  
a
m
l
= 
g
1
.  
T
h
e
n
,  
o
n 
a
p
p
l
y
i
n
g 
7
E
1 
t
o 
[
a
-
I
g
a
,  
w
e 
o
b
t
a
i
n

[ g , 7
1
g g
1
,  
=  
1
_  
f
o
r  
a
l
l  
g
,  
g
'
E  
G
.

As g, g' range independently over G, so do g
i
F
i
g g
l  a n d  g ' ;  
h e n c e  
G  
m u s t  
b e

abelian. Next form the group

H
2  
=  
g
p
(
G
,  
b
;  
b
2  
=  
1
,  
(
b
g
)
2  
-
=  
1  
f
o
r  
a
l
l  
g
E  
G
)
.

This is the splitting extension o f G b y the involutory automorphism that inverts
all its elements. Again there must be a projection, 7 /
2  s a y ,  o f  H 2  
o n t o  G .  
P u t

b 7 /
2
= 
g
2  
a
n
d  
a
p
p
l
y  
n
2  
t
o  
b
g
:  
t
h
e
n

(g
2
g )
2  
1  
f
o
r  
a
l
l  
g
E
G
,

and as g
2
g  
r a n
g e s  
w i
t h  
g  
o
v
e
r  
a
l
l  
e
l
e
m
e
n
t
s  
o
f  
G
,  
w
e  
s
e
e  
t
h
a
t  
G  
h
a
s  
e
x
p
o
n
e
n
t  
2
.

Finally G  must be divisible in order to be 1-pure even in the abelian groups only
that contain it;  and the only divisible group of finite exponent is the trivial group.
This proves the theorem. The theorem sharpens Theorem 2 of Baer ] ,  which says
that only the trivial group is absolutely pure in all groups that contain it.

I f  we assume G only to be n-pure in all groups that contain G as a normal sub-
group, we get more interesting results.

Theorem 11.2. The group G  i s  1-pure in every group H  that  contains G  as
a normal subgroup if, and only if, (i) G has no outer automorphisms, and (ii) the centre
Z  o f  G is  divisible.

PROOF. First  assume that G  has properties (i) and (ii). Le t  G  be a normal
sul-group of H,  and let K  =gp(G, s) where scH. Then G  is normal in K ,  and
thus s  induces an automorphism o f  G. B y  (1) this is an inner automorphism:
hence there is an element g
o  E  G  s u c h  
t h a t  
f o r  
a l l  
g  
E  
G

s
-
l
g
s  
=  
g
6
-
1
g
g
0
.

Thus a =  g
o
-
ls  
c e n t r
a l i z e
s  
G
;  
a
n
d  
a
l
s
o  
K
=
g
p
(
G
,  
a
)
.  
N
e
x
t  
l
e
t  
t
h
e  
o
r
d
e
r  
o
f  
a  
m
o
d
u
l
o

G be  tn. Then a'n=zEZ. L e t  z
0
E Z  b e  
c h o s e n  
s o  
t h a t  
4
1  
T h e
n  
b = z ,
T l a

also, like a, centralizes G; and also K=gp(G,b). Now if B=gp(b), then K = G B
and B  is normal in K ;  moreover Gn B =E ,  as the order of B  is m, and this is
also the order of b modulo G. Thus K = G X B ,  and it follows that G  is 1
- p u r ein H .  Conversely, assume G  to  be 1-pure in every group H  that contains G  as
a normal sill group. Let a  be an automorphism of G and form the splitting exten-
sion of G by a cyclic group whose generator induces this automorphism:

H
i
=  
g
p
(
G
,  
a
;  
a
-
1
-
g
a  
-
=  
g
"  
f
o
r  
a
l
l  
g
E
G
)
.

Now G  is normal in H
i
,  a n d  
H ,  
i s  
g e n e r a
t e d  
b y  
G  
a n
d  
o n
e  
f u r
t h e
r  
e l e
m e
n t  
a
.

There must then be a projection 7C1 o f  H,  onto G, and transformation by a r c
i
E G
induces the same automorphism a  o f  G; hence the automorphism is inner, and
G has property (i). Next let zEZ and let n  be a positive integer. Adjoin an n-th
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root centrally to z  by forming the group

H
2  
=  
g
p
(
G
,  
b
;  
b
n  
=  
z
,  
[
b
,  
g
]  
=  
1  
f
o
r  
a
l
l  
g
E
G
)
.

This can be done by forming the generalized direct product o f  G  with  a cyclic
group B  ----gp(b) o f  order mn, where m  is  the order o f  z,  amalgamating z
with b
n
.  
A g
a i
n  
G  
i
s  
n
o
r
m
a
l  
i
n  
1
1
2
,  
a
n
d  
H
2  
i
s  
g
e
n
e
r
a
t
e
d  
b
y  
G  
a
n
d  
o
n
e  
f
u
r
t
h
e
r

element; thus there is a projection ire, say, of H2 onto G. No w bm
2 i s  a n  n - t hroot of z in  Z ;  thus, as z and n  were arbitrary, Z  must be divisible, and G has
property (ii). This completes the proof of the theorem.

All values of n 2  give one and the same result, as is seen from the following
theorem.

Theorem 11.3. The group G  is  2-pure in every group H  that contains G  as
a normal subgroup if, and only if ,  G  has no outer automorphisms and has trivial
centre. Then G  is absolutely pure, that is a direct factor, in every H  in which it  is
normal.

PROOF. Groups without outer automorphisms and with trivial centre, some-
times called "complete groups", are well known to be direct factors of every group
that contains them as normal subgroups (1-16LDER [6], Lehrsatz 1, p. 325): I f  G has
the property and is a normal subgroup o f H,  then every element o f H  induces
an inner automorphism of G, hence is congruent to an element of G modulo the
centralizer C  o f  G. I t  follows that H = G C ;  and G n  C = E, as G  has trivial
centre; finally C,  as the centralizer of a normal subgroup, is itself normal in H ,
and it follows that H = G  X C. Conversely assume that G is 2-pure in every group
H  in  which G  is  normal. F ro m Theorem 10.2 we know that G  has no outer
automorphisms, and has divisible centre. I f  z  is  an element of the centre o f G,
we form the group

H  = gp(G, a, b; [a, b] z ,  [a, g] =  [b, g] = 1 f o r  a ll gEG).

This group can be described as the generalized direct product of G and a nilpotent
group of class 2, say

A =  gp(a, b; [a, b]tm = [a, b, a] = [a, b, b] 1 ) ,

where m is the order of z, amalgamating zE G with  [a, blEA. A s  G  is normal
in H  and H  is generated by G  and two further elements, there is a projection
of H  onto G. Put in r=g
2
.  T h e n ,  
a s  
[ a ,  g
2
] = 1 ,  
w e  
g e t

z = - =  [a, b] 7E = [an, bit] = [an, =  [an, g
2
n ]  =  [ a ,  g
2
]  =  I .

As z  was an arbitrary element o f the centre of G, the centre is trivial, and the
theorem follows.

The question now arises whether Theorems 10.2 and 10.3 describe actually
different classes of groups, that is to say, whether there are groups without outer
automorphism and with divisible but non-trivial centre. We  conclude this paper
with the construction of an example of such a group.
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12. Construction of an example

Let R  denote the additive group of rational numbers. We  begin by forming
the group M  o f  triplets

m ( r ,  s, t), r ,  s, tER,

with multiplication defined by

(12.1) ( r ,  s, t)(r', s' , t') -= (r + r', s s ' ,  I  + —  r's).

The unit element is (0, 0, 0), and the inverse of m =(r, s, t) is

(12.2) m  -1 = (— r, — s, —t—rs).

M  is nilpotent of class 2; it is known also as the "free second nilpotent square"
of R.  The derived group M '  coincides with the centre Z  and consists o f  the
triplets

in' = (0, 0, t).

The mapping of M  to  M  that maps each (r,  s, t) on (—r,  —s, t) is  easily seen
to be an involutory automorphism of M.  Le t F  denote the splitting extension o f
M by this automorphism:

F = gp (M, a; a
2  =  1 ,  
( r ,  
s ,  
t )
a  
=  
—  
r
,  
—  
s
,  
t
)  
f
o
r  
a
l
l  
(
r
,  
s
,  
O
E
M
)
.

Let N  denote the subgroup of M  generated by Z  (=M' ) and all elements

b
i 
0
,  
0
)
,

c
i 
-
= 
(
0
,  
3
-
i
,  
0
)
,  
i  
= 
0
,  
1
,  
2
,

d
i 
= 
(
5 
-
i
,  
5 
-
i
,  
0
)
.

Then N  will consist of those triplets n=(r,  s, t) whose components are of the form

r =  u • 2
-
u '  +  
w  
•  5
-
'
9
'  
,

(12.3) s  o  • 3
-
v + w  •  5 ' ,

tER arbitrary,

with integers u, u', v, v', w, F i n a l l y  we examine the subgroup

G -= gp (N, a)
of F.

Theorem 12.4. The group G  has no outer automorphism, and the centre Z  o f
G i s  non-trivial and divisible.

It will follow from this that all normal subgroups o f  G  are characteristic;
we begin by exhibiting several characteristic subgroups of G.
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Lemma 12.5. Among t he  characterist ic subgroups o f  G  a r e  N ,  B, C, D,
B
o
,  
C
o
,  
D
o
,  
Z
O
,  
w
h
e
r
e

B =  gp ((r, 0, t), r  = u • 2
-
u ' ,  t E R ) ,
C =  gp ((O, s, t), s =  v • 3
-
v ' ,  t E R ) ,
D -= gp ((q, q, t), q  =  w • 5
-
w ' ,  t E R ) ,
B
o  
g
P 
(
(
i
d
,  
0
,  
t
)
,  
t
E
R
)
,

C
o  
=  
g
p  
(
(
O
,  
v
,  
t
)
,  
t
E
R
)
,

D
o  
g
p  
(
(
w
,  
w
,  
t
)
,  
t
E
R
)
,

Z
o  
=  
g
p  
(
(
O
,  
0
,  
p
)
)
,

with u ,  u', v, v', w, w', p ranging over the integers.

PROOF. As I G: N =2, and as N  is nilpotent while G is not, N  is the maximal
nilpotent normal subgroup of G, hence characteristic in G.  Next, B  is charoc-
teristic in N ,  and hence in G,  because it  consists of all those elements that are
2
1
-
t
h  
p
o
w
e
r
s  
f
o
r  
a
l
l  
i
;  
s
i
m
i
l
a
r
l
y  
C 
c
o
n
s
i
s
t
s  
o
f  
t
h
e  
3
1
-
t
h  
a
n
d  
D 
o
f  
t
h
e  
5
i
-
t
h  
p
o
w
e
r
s
.

Finally
B
o  
=  
B
C
-
)
C
D
,  
C
o  
C 
(
-
1
B
D
,  
D
o  
=  
D 
n  
B
C
,  
Z
o  
=  
[
B
0
,  
C
o
]
,

which shows that these groups are also characteristic in G.
PROOF OF THEOREM 12.4. The centre M ' = Z  o f  M  is also the centre o f N,

of F,  and of G, because a clearly commutes with all triplets (0, 0, t). I t  remains
to show that all automorphisms of G are inner. Let a  be an automorphism of G.
Then a  maps b
o  0 ,  
0 ) ,  
w h i c
h  
i s  
a  
g e n
e r a
t o r  
o
f  
B
o  
m
o d
u l
o  
Z
,  
o
n
t
o  
a  
g
e
n
e
r
-

ator o f  B
o  
m o d
u l o  
Z
,  
t h
a t  
i
s  
o
n
t
o  
a
n  
e
l
e
m
e
n
t  
o
f  
t
h
e  
f
o
r
m  
(
±  
1
,  
0
,  
k
)
.  
W
e  
m
a
y

assume without loss o f  generality, that the first component is +  I; f o r  otherwise
we replace a  by its product a '  with  the inner automorphism induced by a ;  and
a and a '  are both inner or both outer. Thus we now have

b
o
a  
-
=  
(
1
,  
0
,  
k
)
.

Similarly c
0
= ( 0 ,  
1 ,  
0 )  
i s  
m a
p p
e d  
b
y  
a  
o
n  
a
n  
e
l
e
m
e
n
t  
(
0
,  
±  
1
,  
/
)
;  
h
o
w
e
v
e
r
,  
h
e
r
e

we now must have the positive sign ; for also c l
0
-
= ( 1 ,  1 ,  0 ) =  b
o
y ,  m u s t  
b e  
m a p p e d  
o n

d
o
a  
=  
b
o
a
c
o
a  
=  
(
1
,  
+
1
,  
k
+
1
)
,

and this has to lie in D
o  a g a i n :  
h e n c e c

o
a 
= 
(
0
,  
1
,  
I
)
.

Now z
0
= ( 0 ,  
0 ,  
1 )
= -
[ b
0
,  
c
o
]
,  
a
n
d  
s
o

z
o
a  
=  
[
b
o
a
,  
c
o
a
]  
[
(
1
,  
0
,  
k
)
,  
(
0
,
1
,  
1
)
1
=  
(
0
,  
0
,
1
)  
=  
z
o
.

Next, as b
i
=  
( 2 , ,  
0 ,  
0 )  
i
s  
t
h
e  
u n
i q
u e  
2
i
-
t h  
r
o
o
t  
o
f  
b
o
,  
i
t  
m
u
s
t  
b
e  
m
a
p
p
e
d  
o
n

b =  0 ,  2
- 1  k ) ,
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which is the unique 2 i
-
t h  r o o t  
o f  b
o
a .  
S i m i l a
r l y

c
i
a  
= 
(
0
,  
3
-
i
,  
0
)
a  
= 
(
0
,

d
i
a  
=  
(
5
-
i
,  
5
-
i
,  
0
)
a  
=
(
5
_
i
,
5
'
,  
5
-
'
k
-
1
-
5
-
'
1
)
,

and finally, i f  z---(0, 0, t)EZ, then za  =z. No w the b
i
,  c
i
,  d
i
,  a n d  z  
b e t w e e n

them generate N,  so that the effect of a on n = (r,  s, t) is  now determined. One
readily verifies that it  is
(12.6) ( r ,  s, t)a ( r ,  s, kr + is + t).
We gather further information by considering the effect o f  a  o n  a .  A s  ct(iN,
the image must also be outside N,  that is to say, it must be of the form
(12.7 a a  = a (x, y, z),
where (x,  y, z)E N. As a
2  =  1 ,  
w e  
m u s t  
h a v e  
( a a )
2  
=  
1 ,  
a n
d  
t h
i s  
g i v
e s

1 =  (aa)
2 =  
a  
( x ,  
y ,  
z )
a
( x
,  
y
,  
z
)  
=  
a
2
(
—
x
,  
—  
y
,  
z
)
(
x
,  
y
,

(0, 0, 2z +xy) = (0, 0, 0).
It follows that

1
(12.8)y z  = --x2
Next we apply a  to  the equation

a (r, s, t) =  (—r, —s, t)a,
giving

aa(r, s, t)a = (—r, —s, t)aaa,

or, using (12.6) and (12.7),
a (x, y, z)(r, s, kr +Is+ t) = (—r, —s, —kr— is + t)a (x, y, z) =

= a (r, s, — kr — Is + t)(x, y, z).
This leads to

(x + r , y + s , z + k r+ ls + t — ry )= (r+ x , s + y ,  —kr —1s+t+z—xs),
and this to

(2k — y)r (2 1 + x)s O .

This must be true for all (r,  s, t)EN, and therefore implies

—2/, y  2 k .

On substituting this and (12.8), (12.7), we obtain

(12.9) a a  = a(-21, 2k, 2k1).

We now put g = (-1 ,  k, 0), and  compute the effect o f  the inner automorphism,
y say, induced by g. We note that by (12.2),

= (x, —k, kl).
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Now
ay = g
-
l a g  
=  
( 1
,  
-
k
,  
k
l
)
a  
(
-  
1
,  
k
,  
0
)  
=  
a
(
-
1
,  
k
,  
k
l
)
(
-
1
,  
k
,  
0
)  
=

= a (-21, 2k, 2k1) = ace,
by (12.9). Next, with (r,  s, t)EN, we  have

(r, s, t)y = (1, - k ,  kl)(r,  s, t)(-1, k, =
= (1+ r, -k + s ,  kl + t + kr)(-1, k, 0) =

= (r, s, Id+ t+kr +1 (-k+  s)) = (r, s, kr + ls+ =
= (r, s,

by (12.6). Thus the effect of y equals that of a on a and on the elements of N,
hence on all elements of G: tha t is, a  equals the inner automorphism y.  Th is
completes the proof of the theorem. The group G  here constructed is 1-pure in
every group in  which it  is contained as a normal sul-group; but it  is not 2-pure
in the generalized direct product H ,  say, o f  G  and an isomorphic copy of M,
amalgamating the centre Z ,  though G  is normal in H .
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