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1. Introduction

Priifer [8], [9] introduced the notion of Servanzuntergruppe, now mere commonly
called pure subgroup, into the theory of abelian groups, where it is now firmly estab-
lished as a useful tool. A modern and comprehensive account of pure subgroups
of abelian groups, together with some natural generalizations, can be found in the
monograph [3] by Fuchs; see also GAcsALYI[5]. We define here the natural extension
of the concept to not necessarily abelian groups, and answer some of the questions
that naturally present themselves. In fact the basic definitions apply to more general
algebraic systems than grcups, and some of the fundamental reults are capable
of the corresponding generalization; these results are collected together in §3,
formulated for groups but so that they can be extended without difficulty.

Given a group G, we consider systems of equations of the form

(1'1) wi(g1> 825 +-0» X1, X2, "') = 13

indexed by the elements i of some index set I, the w; being words in the coef-
ficients g;€G and variables x;. Each equation involves only a finite number of
coefficients and variables, but if the index set I is infinite, then the total number
of coefficients or of variables or of both may be infinite. We call (1.1) a system of

*) The authors started work on this paper in 1960 when the late A. Kertész visited the Uni-
versity of Manchester. It is published now, retaining the form in which it was written in 1961, to
complete the record of his mathematical work. — A. KERTEsZ died on April 3,1974. For an obit-
uary by K. Gybri, see these Publicationes, Vol. 21, pp. 159—160.
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equations over G, and we say that it has a solution hy, hs, ... ina group H contain-
ing G as asubgroup if Ay, h,, ... are elements of H which, when substituted for
the variables x,, x,, ..., turn (1.1) into a system of valid equalities:

Wi(g1s 825 --os By By, ) =1, €L

We now define the sutgroup G of the group H to be pure in H if every
system of equations over G in a finite number ot variables which has a solution
in H also has a solution in G. Note that we restrict the number of variables in-
volved in the equations, but not the number of equations themselves — if the number
of equations is restricted instead of, or in addition to, the number of variables,
one arrives at different, fruitful and interesting notions that are, however, outside
the scope of the present paper.

The restrictions on the number of variables can be varied, leading to a notion
that depends on a cardinal n and that we call n-pure. We defer the precise (and
incidentally less intuitive) definition; what we have called pure will coincide with
Rg-pure. Most of this paper is concerned with pure su' groups and with n-pure
subgroups for finite n.

In abelian groups there is no distinction between pure sutgroups and n-pure
subgroups for tinite n. In fact the sutgroup G of the abelian group H is pure
in H it (and trivially only if) every single equation over G in a single variable
has a solution in G if it has a solution in H: thus G is purein H if for all he H
and integers n,

h"e€G implies g'=h" for some gecQG.

This then could be made, and has been made (PRUFER [8]), the definition of a pure
sut group of an abelian group; for a proof of the equivalence of this with our defi-
nition, see Fucus [3]. Theorem 25.5. In non-abelian groups, as we shall see, the
position is different. ‘

2. Notation and definitions

The following notation is used throughout.

If S isaset, |S| isits cardinal. If G is a group, |G| is its order. If g is
an element of a group, its order is |g|; we make the usual convention that |g|=0
means that g generates an infinite cyclic group. If G is a sutgroup of the group H,
write G=H, and G<H if it is a normal sutgroup. The index of G in H is
|H: G|. The sutgroup of H generated by a subset SCH is gp(S), and the
su' group generated by G=H and SCH is gp (G, S). The group with generators
815 825 -.- and defining relations u,(gy, g, ...)=1, i€l, is denoted by

gp(gla 825 ++e5 ui(gla 82> °°')= 13 IEI)
Conjugates and commutators are written
X =yxy, [xyl=x"=x"xy, [x,y z2]=][x ] z]

The derived group of G is G’; the trivial group is denoted by E.

.
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An idempotent endomorphism = of a group H will be called a projection
of H (Baer [1] calls this a retraction, the image a retract). If = is a projection of
H and if Hi=G, then 7 restricted to G is the identity mapping of G. If, further,
the kernel of 7 is N, then N is a normal complement of G in H, that is to say

N<H, GN=H, GNN=E.

A normally complemented subgroup is also often called a semi-direct factor. To
every normally complemented subgroup G of H and to every ncrmal complement
N of G in H there is a projection m of H such that Hi=G and N is the
kernel of m. A normally complemented su*group is normal if and only if it is
a direct factor.

We denote by X a set of variables, and w(G, X) will denote a word in coef-
ficients geG and wvariables xcX, or, briefly, a word over G in X. A system of
equations over G in X is a family

2.1 {wi(G, X)}icx

of words indexed by the elements of a set I; strictly speaking this is a system of
left-hand sides of equations only; and in more general algebraic systems, where
there is no unit element to provide a convenient universal right-hand side, one would
instead consider families

(2.2) {(ui G, X), v(G, X ))}iEI

of pairs of words that are to be equated.
If @ is a mapping of the set X of variables into a group H containing G,
and if w(G, X) is a word over G in X, then

w(G, X0)

is obtained by substituting x0 for each x¢X and taen evaluating the resulting
word as an element of H. The system of equations (2.1) is soluble in H if there is
a mapping 0 of X into H such that

Sor all icl, w;(G, X0) = 1.

[Correspondingly, the system (2.2) is soluble in H if there is a mapping 6 of X
into H such that for all icl, u,(G, X0)=v,(G, X0).] We then call X8 a sdlution
of the system of equations.

We now make the definition that is fundamental to this paper.

Definition 2.3. The subgroup G of the group H is n-pure in H, where 1 is
a cardinal number, if every system of equations over G in X with |[X|<n+1
has a solution in G if it has a solution in H.

The condition |X|<n+1 concisely and conveniently expresses the restriction
on the number of variables, namely that it is to be =n if n is finite and <n if
n is infinite; it allows one also to stipulate “={,”, namely as “<§,,,”. Thus
“G is pure in H” means precisely the same as “G is Ro-pure in H”, and both

terms can be used interchangeably.
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Definition 2.4. The subgroup G of the group H is absolutely pure in H if
every system of equations over G, irrespective of the cardinality of the set X of
variables, has a solution in G if it has a solution in H.

3. General results

In this section we collect together some simple facts that flow from the defini-
tions; most of them are not peculiar to group theory but require only universal
algebraic concepts (exceptions are those which use the group-theoretic notion of
a normal complement). Although group-theoretic language is used throughout,
it will be obvious how the results can be generalized to other classes of algebraic
systems.

Lemma 3.1. Let G be n-pure in H and let m=n; then G is m-pure in H.
If G is absolutely pure in H, then G is n-pure in H for all n, and conversely.

We omit the (obvious) proof. The question whether conversely an m-pure
subgroup is also n-pure will be considered in the next section.

Lemma 3.2. If G=K=H and if G is n-pure (absolutely pure) in H then
G is n-pure (absolutely pure) in K.

Lemma 3.3. If G is n-pure (absolutely pure) in K and if K is n-pure (absolutely
pure) in H then G is n-pure (absolutely pure) in H; in other words, n-purity
(absolute purity) is transitive.

Again the (obvious) proofs are omitted. For countable n we also have
the following.

Lemma 3.4. Let n=R, and let H= G H, be the direct limit of a chain
n=1

G=H,=H,= ...
of groups in each of which G is n-pure. Then G is n-pure in H.

Proor. We deal with the case that n={,, that is that G is pure in each H,,
and we show that then G is pure in H. The case of finite n is similar. Let a
system of equations over G in X, where [X|<{X,, have a solution X6 in H.
As X0 is finite subset of H, there is an integer » and that X0= H,. Now G is pure
in H,, and so the given system of equations has a solution in G; thus the lemma
follows.

The following criterion is implicit in ERDELYI [2].

Theorem 3.5. The group G is n-pure in H if and only if, to every subgroup
K of H that is generated by G and a set S of cardinal |S|<n+1, there is a pro-
jection . of K onto G.

Proor. Let G have the property that to every sutgroup K=gp (G, S) of
H with |S|<n+1 there is a projection © of K onto G. Let W={w/(G, X)}c:
be a system of equations over G in X with |X|<n+1, and assume it has a solu-
tions X0 in H. Put X0=S and K=gp (G, S), and let n© be a projection of
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K onto G — such a projection exists by hypothesis. Applying = to the equations
w;(G, X0) =1, for all i€l

and noting the homomorphism property of n together with the fact that = acts
on G as the identity, we see that also

w;(G, X0rn) =1, fot all i€l

Thus XOn is a solution in G of the given system W, and it follows that every
system of equations over G in fewer than n+1 variables has a solution in G if
it has a solution in H: In other words, G is n-purein H.

Conversely, assume G is n-pure in H, and let K=gp (G, S) with |[S|<n+1.
Let X be a set of variables of the same cardinal number as S, and let 6 denote
a one-to-one mapping of X onto S. Denote by W the set of all words w(G, X)
that satisfy

w(G, X0) = 1.

Then the system W has a solution in H, namely X0, and as |[X|=|S|<n+1
and as G is, by hypothesis, n-pure in H, the system W also has a solution in G,
say Xn. We define a mapping n of K into G as follows: if k€K then k can be
written as a word

k=u(G,S)
in elements of G and of S. Put

g = u(G, S0~ 'n);

this is the element of G obtained from u by first substituting the variable
x=s0"1cX for the corresponding element s¢S and then the element xne¢G
for the variable x. Now g depends only on the element k€K, not on the particular
word u chosen to represent it; for if another representation is

k =v(G, S)

then w(G, S)=u(G, §)t(G, S)=1, and so w(G, X)=w(G, SO~V W. It follows
that w(G, Xn)=1, and therefore also

v(G, S07'n) = g.

Thus we may put g=kn, without ambiguity. One now verifies without difficulty
that m is a projection of K onto G, and the theorem follows.

Corollary 3.6. If H=gp (G, S) where |S|<n+1 and if G is n-pure in H,
then there is a projection of H onto G [that is to say, G has a normal complement
in H].

Corollary 3.7. The subgroup G of H is absolutely pure in H if, and only if,
there is a projection of H onto G [that is to say, if, and only if, G is normally
complemented in H].
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Corollary 3.8. If G is n-pure in H=gp (G, S) where |S|<n+1, then G
is absolutely pure in H.

Corollary 3.9. If H=gp(S) where |S|<n+1 then the n-pure subgroups
of H are the absolutely pure subgroups [that is the normally complemented subgroups ] ;
the pure subgroups of a finitely genrated group are absolutely pure.

4. Comparison of n-purity for different n

For abelian groups there is no difference between n-purity for different finite
values of n: If the sutgroup G of the atelian group H is l-pure in H, then it is
pure in H (see FucHs [3], Theorem 25.5); and then it is also n-pure in H for all
n between 1 and &, (see Lemma 3.1). This is no longer so for non-abelian groups,
as will be shown in this section; and to heighten the contrast to abelian' groups,
we choose our groups nilpotent of class 2. Before we define them, we prove two
simple lemmas.

Lemma 4.1. Let G be an abelian pure subgroup of the group H,; then G H' =E.

Proor. If G H #E, thén there is a sutgroup K=gp (G, ky, ..., k,) of H,
finitely generated over G, such that GNK'#E. If N<K and GN=K, then
K/N=G/GNN is abelian, hence K’=N, and GNN=E. Thus G is not a normally
complemented sutgroup of K, and by Corollary 3.6, G is not pure in K. By
Lemma 3.2 then G is not pure in H, and the lemma follows.

Lemma 4.2. Let H be a group such that H'H' is elementary abelian, and
let G be a subgroup of H such that GN\H'=E. Then G is absolutely pure in H.

Proor. In H/H’, every sutgroup is a direct factor; hence there is a subgroup
N of H, which we may take to contain H’, such that

H/H’ = GH'|H’ X N/H'.

Clearly N is normal in H, and GH'"\N=H’, whence GNN=GNH'=E;
finally GN=H, and N is seen to be a normal complement of G in H. The lemma
then follows from Corollary 3.7. — It could also have been derived from the more
general Lemma 7.3.

Let now p be an odd prime, d a positive integer, and put

(4.3) 'H:Hd:gp(hl’ h2, ceey hd; hg’:[hi, hj’ hk]= 1, i,j,k= 1, 2, ey d).

These relations ensure that H is nilpotent of class 2 and has exponent p; and
it is in fact the free d-generator group of the variety of second nilpotent groups of
exponent p. The derived group H’ coincides with the centre of H and is an

d
elementary abelian group of order p(z), and H/H’ is an elementary abelian group
of order p°.
Let a €¢H’, and write it in the form

a= H[hi’ hj]aif.

i<j
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We assign to a the dXd skew matrix 4 over GF(p) whose (i, j)-element is
a;; if i<j, 0 if i=j, and —ay; if i>j. If b is another element of H’ and if
B is the skew matrix that corresponds to b, then the matrix that corresponds to
ab is A+B. In this way an isomorphism is defined between the multiplicative
group H’ and the additive group of all skew dXd matrices over GF(p).

The isomorphism depends on the particular set of generators chosen for H.
If new generators hj, h;, ..., h; are chosen for H such that

hi = ] h(mod HY), i=1,2,...,d.
j

so that the =;; form a non-singular matrix P over GF(p), and if 4" denotes
the matrix assigned to a¢H’ in terms of the new basis 4y, k3, ..., h;, then

A= PTA’P.

Hence A and A’ have the same rank, and this rank is, therefore, an invariant of
the element «; we shall call it simply the rank of a. As the rank of a skew matrix
it is necessarily an even number.

Lemma 4.4. [f the rank of acH’ is r then there is a subgroup of H with
r generators, but no subgroup with fewer than r generators, in whose derived group
a is contained.

ProOOF. Let acK’ where K=H is generated by 6 elements kq,...k;
which we may assume independent modulo H’, as H’, being central, does not
affect the derived group of K. We complete the tasis of K to a basis &y, ..., k;,
Ksi1, ..., kg of H. The skew matrix that corresponds to a has non-zero entries
only in the first 6 rows and columns, hence has rank at most &, and it follows
that r=0: that is to say, no sutgroup with fewer than r generators contains
a in its derived group. On the other hand, we can choose a basis Aj, ..., s, of
H in terms of which the matrix corresponding to @ becomes

where J :( 0 1). The number of terms J is ir, and in terms of this new basis
of H, —10 2
a= [h]’.9 hé] [h;—la h;]'

Hence a€K’ where K=gp(hi, h;, ..., h]) is an r-generator subgroup of H; and
the lemma follows.

Corollary 4.5. If the number d of generators of H=H, (given by 4.3) is even,
then the element ‘
g = [hy, hollhs, hyl ... [ha—1, hl€H’

does not lie in the derived group of any proper subgroup of H.
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The rank of ‘g is d, and if K is a proper sutgroup of H, then K can be
generated by fewer than d elements modulo its centre; hence g¢ K’

Corollary 4.6. With H and g as in Corollary 4.5, G=gp (g) is (d—1)-pure
in H but not d-pure.

As an abelian sutgroup that intersects the derived group non-trivially, G is
not pure in H, nor then d-pure, as H has d generators (Lemma 4.1; Corollary
3.9); but as G lies in the Frattini su+group of H, all groups generated by G and
at most d—1 further elements are proper sutgroups of H, and in such a sutgroup
G is absolutely pure (Corollary 4.5; Lemma 4.2). Hence G is (d—1)-pure in H.

Corollary 4.7. With H as in Corollary 4.5, with d=4, and with g as in
Corollary 4.5, G,=gp (hy, g) is (d—2)-pure in H but not (d—1)-pure.

As an abelian sutgroup that intersects the derived group non-trivially, G,
is not pure in H, nor then (d—1)-pure, as H=gp (G, h,, ..., h;) has d—1
generators in addition to G, (Lemma 4.1; Corollary 3.8); tut all groups K gen-
erated by G, and at most d—2 further elements are proper sutgroups of H, and
then G,NK’=E; hence G, is absolutely pure in all such K, and thus (d—2)-pure
in H (Corollary 4.5; Lemma 4.2; Corollary 3.7; Theorem 3.5).

Thus we can distinguish between n-purity and (n+ 1)-purity for all finite values
of n, and we can do it within the variety of nilpotent groups of class 2 and odd
prime exponent p. By an obvious modification of our construction we can even
do it within a single group

H., = H,.
d

Theorem 4.8. Let p be an odd prime and put

H.=gp(hy, hyy...; WP =[hi,h;, b ]1=1,1i,j k=12, ).
Put further
g = [hy, hollhs, hy] ... [he_y, hal,
and
Gy = 8p(8), Gav1=gP(h1, 841), =12, ...

Then, for every n=2,3, ..., the group G, is (n—1)-pure in H. but not n-pure.

We omit the proof. It may be remarked that a similar construction, with the
same result, can be carried out in the variety of nilpotent groups of class 2 and

exponent 4.

It will be noticed that the even-indexed subgroups G, are central and there-
fore normal in H... One can further modify the example so as to produce also
normal subgroups that are (n—1)-pure but not n-pure for odd n.

Theorem 4.9. Let p be an odd prime and put
H: = gp(ho, h19 h2’ e h(”ﬂ = h]I:’ = th == [hia hja hk] = 13 iaj: kz = Oa 1, 2: )

Put further
g;k = h(‘)’[hls h2][h3, h4] [h2t-—1, h‘at]’



Pure subgroups of non-abelian groups 9

and
G;t+1 = gp(g:‘)s t= 1, 2a see e

Then for every odd n=3,5, ..., the group G} is central and (n—1)-pure in HJ
but not n-pure.

The proof is not difficult, and we omit it. It can be based on the fact — also
easily proved — that @ subgroup G of prime order is normally complemented in
a nilpotent group H if, and only if, it is not contained in the Frattini subgroup of H.

The exponent of HY is p?; we do not know whether there are similar examples
of exponent p.

5. Normal n-pure subgroups

A normal subgroup G of H is a direct factor if (and only if) it has a normal
complement in H. Thus we may expect a normal n-pure subgroup of H to be in
some sense “nearly” a direct factor of H. In fact we immediately deduce from
Theorem 3.5 and its corollaries a criterion for our present case:

Lemma 5.1. The normal subgroup G of H is n-pure in H if, and only if,
G is a direct factor of every subgroup K=gp (G, S) of H with |S|<n+1. The
normal subgroup G is absolutely pure in H if, and only if, it is a direct factor of H.
The normal n-pure subgroups of a group with fewer than n+1 generators are its direct
factors.

We now look at the particular case n=1.

Lemma 5.2. Let G be a normal 1-pure subgroup of H, and let C denote the
centralizer of G in H. Then H=GC. Thus H is the generalized direct product
of G and C, amalgamating the centre of G.

Proor. Let h€H, and consider the system {w,(G, x)},c¢ of equations over
G, indexed by G itself, in the single variable x, where

w,(G, x) = g*g™"

— noting that g~*=h~1g~1 is an element of G, as G is normal in H. This
system has a solution in H, namely #4; hence it has a solution, say k, in G. It
follows that k1 commutes with all ge¢G, whence k~'he¢C, and heGC as
required.

Corollary 5.3. A normal 1-pure subgroup G of H with trivial centre is a direct
factor of H, hence absolutely pure in H.

Corollary 5.4. An abelian normal 1-pure subgroup is central.

The following criterion generalizes a theorem of PRUFER [8] (see FucHs [3],
Theorem 25.1).

Theorem 5.5. Let G be a normal subgroup of H. For G to be l-pure in H
it is necessary and sufficient that every coset of G in H contains an element that
centralizes G and whose order equals the order of the coset modulo G.
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PrOOF. Assume that G is 1-pure in H, and consider the coset Gs of G.
Now K=gp(G,s) is a direct product, K=GXB (Lemma 5.1), hence we can
write s in the form s=gxb with g€G and beB. Clearly beGs and b centralizes
G. Also, if the order of Gs modulo G is ¢, then s7=g?Xb%¢G, whence bi=1;
and conversely, if g is the order of b, then (Gs)?=(Gb)?=G. This proves the
necessity. For the sufficiency, assume every coset Gs of G contains an element b,
say, which centralizes G and whose order equals the order of Gs modulo G.
Let K=gp(G,s); then also K=gp(G,b), with the b chosen as above. As
b centralizes G, it generates a normal sutgroup B=gp(b) of K. Moreover
b1¢G implies b?=1, so that GNB=E. Thus K=GXB; and it now follows from
Lemma 5.1 that G is l-purein H, asrequired.

This criterion is of limited usefulness, as its conditions are in general not easy
to verify; it is included only as a formal generalization of Priifer’s theorem. The
following theorem provides a more natural criterion.

Theorem 5.6. Let G be a normal subgroup of H; denote by C the centralizer
of G in H and by Z (=CNG) the centre of G. Then G is n-pure in H if, and
only if, H=GC and Z is n-pure in C.

PROOF. Assume that H=GC and that Z is n-pure in C. Let K=gp (G, S)
where |S|<n+1. By our assumption every s¢S can be written in the form

s=gc, g€G; c€eC.

We may then replace s by ¢, and thus assume, without loss of generality, that SS C.
Put L=gp(Z, S). Then L=C and as Z is assumed n-pure in C and [S|<n+1,
there is a subgroup B of C such that

L=ZXB
(Lemma 5.1); now
BNG=BNCNG=BNZ=E,

and B centralizes G and thusisnormalin gp (G, B)=K. It follows that K=G X B,
and by Lemma 5.1 again G is n-pure in H.

Conversely, let G be n-pure in H. Then G is l-pure in H (Lemma 3.1),
hence H=GC (Lemma 5.2). Next let SSC and |S|<n+1. and consider
L=gp(Z,S) and K=gp (G, S). By the assumption on G and by Lemma 5.1,
K=GXB with a suitable subgroup B of H. But B clearly centralizes G and
so is a subgroup of C. Hence also L=ZXB, and an application of Lemma 5.1
again shows Z to be n-pure in C, as required.

Corollary 5.7. With the notation of Theorem 5.6, G is a direct factor of H if,
and only if, Z is a direct factor of C.

The theorem reduces the investigation of normal n-pure sutgroups to that of
central n-pure subgroups. We remark that our examples of normal subgroups
that are (n—1)-pure but not n-pure (see Theorems 4.8, 4.9) are in fact made with
central sutgroups.

Our results enable us to demonstrate some further points of divergence between
the abelian and the non-abelian cases. Let G;=G,=G,=... be an ascending
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chain of direct factors of the group H, and put G= O G;. If H is abelian, then
1

G is pure (=8¢ pure) in H (see Fucss [3], p. 77), but if H is non-abelian, then
G need not even be l-pure in H. To show this, we form the cartesian product
H of an infinite sequence of strictly non-abelian groups A4,, 4,, As, ... and consider
the direct product G of the same family as a sutgroup of H. Then G=UG,
where

G, = A; X A;X... XA,

is a direct factor of H (a complementary factor being the cartesian product of
Apyys Apys, ...). Now G is normal in H, and the centralizer C of G in H is
the cartesian product of the centres Z(4,), Z(4y), ... of the component groups.
As GC#H — no element of H whose components in all 4; are outside the centre
can belong to GC — we can apply Lemma 5.2 to deduce that G is not even 1-pure
in H.

If we take all the A; isomorphic to the non-atelian group of order p® and
exponent p, where p is an odd prime, or as one of the non-abelian groups of order
8, then H will be nilpotent of class 2 and of odd prime exponent or exponent 4,
respectively: Note that by contrast in an abelian group of exponent p every sub-
group is absolutely pure. Again, with the same choice of A;, the direct product
G is countable, but it is not contained in any countable 1-pure sutgroup of H;
we omit the proof, which is not difficult. This again contrasts with atelian groups,
because every countable sutgroup of an abelian group is contained in a countable
pure subgroup; see FucHs [3], p. 8.

6. The case of infinite n

The case n=4{x,, that is the case of normal pure subgroups, deserves closer
study because of its importance for abelian groups. We shall also extend the results
to n>X,. We first deal with central sutgroups, in order then to apply Theorem 5.6.

Lemma 6.1. Let Z be a subgroup of the centre of the group C. Then Z is pure in

C if, and only if, (1) ZNC’=E, and (ii)) ZC’|C’ is pure in C/C’, or, as we shall say,
Z is pure in C modulo C’.

Proof. Assume firstly that Z(NC’=E and that Z is pure in C modulo C’. If

y denotes the canonic epimorphism of C on to C/C’, then Zy is pure in Cy. Let S

be a finite subset of C, and let K=gp(Z,S). Then Zy is a direct factor of Ky=

=gp(Zy, Sy); thus there is a subgroup By of Ky such that Ky=Zy X By.

Here we can take B as a subgroup of K containing the kernel KN C’ of the

restriction of y to K. This ensures that K=ZB; for every kcK is of the form

k = zbc" with z€Z, beB, ’cC’'NK;
and bc’eB, too. Moreover, B is clearly normal in K. Finally
ZNB=ZNKNC'=ZNC =E,

as ZyNBy=Ey. Hence K=ZXB, showing Z to be pure in C. (This is a special
case of Lemma 7.3.)
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Conversely, assume Z to be pure in C. Then ZNC’=E by Lemma 4.1.
Next, if (cy)?=zy for some c€C, z€Z, and integer g, where again y is the canonic
epimorphism of C onto C/C’, then c¢?=zc¢’ with ¢’eC’. We choose a finite
set S so that ceS and that ¢’¢(gp(S)), and put K=gp(Z, S). Then Z is
a direct factor of K, thatis K=2ZXB with a suitable su~group B. Now ¢’¢K’'=B’,
and if c=zb with z,¢Z, bcB, then z§=z. Thus (zpy)?=zy. It follows — as
Cy is abelian — that Zy is purein Cy, in other words, Z is purein C modulo C’,
and the lemma follows.

The extension of this lemma to uncountable n requires a more elaborate
argument.

Lemma 6.2. Let Z be a subgroup of the centre of the group C. Then Z is
n-pure in C, where n=>R,, if, and only if, i) ZNC'=E, and (ii) Z is n-pure in
C modulo C’.

Proor. The sufficiency of the pair of conditions (i), (ii) is proved as before,
with the set S now being only required to have cardinal |S|<n+1. To prove the
necessity, we assume that Z is n-pure in C. Then ZNC’=E by Lemma 4.1.
It remains to prove that Z is n-pure in C modulo C’. Let T be a subset of Cy
with |T|<n+1. We may assume that T is infinite. Thus

R =|T|=m <n.

Let S, be a subset of C such that Syy=T and |S,|=m, and put K,=gp (Z, S).
Let K,NC’=D,. Then |D,J=m, because |K,:Z|=m and ZNC’=E. Each
deD, can be written in the form
d = [cla C?J[cas C4] eee [cr—la Cr]s

with finitely many ¢ €C. Thus there is a subset S; of C such that (i) So& Si,
(i) Do=(gp(Sy))> (iii) |Sy) =m. We put K;=gp(Z, Sy), and then continue to define,
inductively, D,=K,NC’; then S,,;<C so that (i) S,ES,+1, (i) D,=(ep(Ss+1)»
and (iii) |S,4:|=m; finally K,.,=gp(Z, S,+,). Observe that if |S,/=m, then
|K,: Z|=m, and thenas ZNC’=E, also |D,|=|K, N C’| =m; this makes it possible
to choose S,4; so that again |S,,|=m, and so the inductive definition proceeds. It

is so arranged that
K,NC’' =K,

for all n. If now we put K=JK,, then
6.21) KNC’ =K',

for obviously K'=KNC’; and if k€KNC’, then there is an integer n such that
keK,NC’, and then k€K, ,=K’, sothatalso KNC'=K". Also K=gp(Z,S,),

and
|U S,| = m.

It follows — as Z is n-pure in C and m<n — that Z is a direct factor of K,
say K=ZXxB. From (6.21) and the fact that Z is abelian, we see that

(6.22) KNC’ = B".
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From this again we deduce that
(6.23) BC'NZ = E;

for if zeBC'NZ, say z=bc’ where bcB and ¢’€C’, then ¢’=b"'z¢K, and so
¢’eB’ by (6.22); but then also z¢B, and so z=1. Now K,=ZXB, where

B,=K,NB; and
Koy = gp(Zy, Soy) = gp(Zy, T) = Zy Byy.

ZyNBy =ZyNBy =E

By (6.23)

so we finally have A
gp(Zy, T) = Zy X Byy.

As this is true for evrey subset T of C, with |T'|<n+1, we see that Zy is n-pure
in Cy, and the lemma follows.
As a corollary we now have the following criterion.

Theorem 6.3. Let G be a normal subgroup of H; denote by C the centralizer
of G in H and by Z(=CNG) the centre of G. Then G is n-pure in H, where
n is an infinite cardinal, if, and only if, (i) H=GC, (ii) GNC’'=E, and (i) Z is
n-pure in C modulo C’.

This follows at once from Lemmas 6.1, 6.2 and Theorem 5.6. The following
corollary could also have been proved directly, and much more simply than
Lemma 6.2.

Corollary 6.4. With the same notation, G is a direct factor of H if, and only if,
Z is a direct factor of C modulo C’ (that is to say, ZC’/C’ is a direct factor

of C/C’).

This follows by choosing n so large that n-pure becomes absolutely pure
and noting that a normal absolutely pure subgroup is a direct factor (Lemma 5.1).

Theorem 6.3 and Corollary 6.4 allow us to translate the splitting theorems for
pure subgroups of abelian groups to analogous theorems for non-abelian groups.
The following are examples.

Theorem 6.5. Let G be a normal subgroup of H, let C be the centralizer
of G in H, and Z the centre of G. If Z is the direct product of cyclic groups of
(fixed) finite order n, then the following three propositions are equivalent.

(i) G is a direct factor of H. -

(i) G is purein H.

(iii) H=GC and GNC"C’=E, where C" is the group generated by the n-th
powers in C.

This follows from a theorem of SzeLe [10]; see Fucss [3], Theorem 24.1.

Theorem 6.6. A pure normal subgroup whose centre has finite exponent is a direct
Jactor.

This follows from a theorem of KuLikov [7]; see FucHs [3], Theorem 24.5.

Theorem 6.7. If G is a pure normal subgroup of H and if H/GH’ is a
direct product of cyclic groups, then G is a direct factor of H.
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Proor. We note first that, with the notation of Lemma 6.1 and its proof,
H|GH’ =~ (H|G)/(H|GY = (C|Z)[(C|Z) = Cy/Zy.

By a theorem of KuLKov [7] (see Fucts [3], Theorem 25.2) then Zy is a direct
factor of Cy, and the theorem now follows from Corollary 6.4. Similarly we have:

Theorem 6.8. Let G be an n-pure normal subgroup of H, where n is an infinite
cardinal, and let H|/GH’ be a direct product of groups of orders less than n. Then
G is a direct factor of H.

PrROOF. By Theorem 6.3, Z is n-pure in C modulo C’, hence a direct factor
of C modulo C’ by Proposition G, p. 88, of Fuchs [3]; application of Corollary
6.4 completes the proof.

7. Homomorphisms and n-purity

The proofs of Lemmas 6.1, 6.2 indicate that preservation of n-purity under
a homomorphism is not in general a simple matter. It is easy to show by examples that
if G is an n-pure subgroup of H and if v is a homomorphism of H, then Gv
need not be n-pure in Hv; in fact one can take H abelian, G as a direct factor
(hence absolutely pure) in H, and yet have Gv not even l-pure in Hv. Let H be
the abelian group of order 8 generated by an element g of order 2 and an element
h of order 4. Then G=gp (g) is a direct factor. If v is the projection of H onto
the complementary direct factor gp (4) which is defined by

gv=~h% hv=h,

then gv has a square root in Hv but not in Gv: thus Gv is not 1-pure in Hv.
Note that the kernel N of v has the property

NNG =E,;

this corresponds to the situation met with in Lemmas 6.1, 6.2.

One is thus led to look for necessary and sufficient conditions for a homo-
morphism to preserve n-purity; but we have unable to find such conditions, and can
present some partial results only.

Lemma 7.1. Let G be an n-pure subgroup of the group H, and let v be a homo-
morphism of H with kernel N. Then Gv is n-pure in Hv if to every subgroup
K=gp (G, S) with |S|<n+1 there is a projection = of K onto G whose kernel
P satisfies the condition

(7.11) NNK =(NNG)(NNP).
Proor. Under the assumptions, we first see that
(7.12) if k,k’¢K and if kv=Kk'v then kmnv=Kk'ny;

for then k’=kn with ne NN K, hence by (7.11) n=gp with ge NNG and peNNP:
thus
nnv = (gp)nv = gv =1,
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and (7.12) follows. If now we define w; by
kvr, = knv,

then (7.12) ensures that 7, is a mapping of Kv. It is evidently a homomorphism
of Kv into Gv, and easily seen to be an epimorphism; in fact it is a projection,
as (on K)

Vi = nvm,, = M2V = TV = V7,

hence (on Kv) m; is idempotent.

Now if L=gp (Gv, T) is a subgroup of Hv generated by Gv and a subset
TS H of cardinal |T|<n+1, then we can choose a subset SE H such that Sv=T
and |S|=|T|. Then L=Kv where K=gp (G, S); and there is then, as we have
shown, a projection m, of L onto Gv. By Theorem 3.5 then Gv is n-pure in Hv,
and the lemma follows. The assumption that G is n-pure in H is seen to be super-
fluous, as this is ensured by the existence of the projections 7.

Corollary 7.2. If G is n-pure in H and if the normal subgroup N of H is
contained in G, then G/N is n-pure in HIN.

We now consider conditions that ensure conversely that n-purity of Gv in
Hv implies n-purity of G in H. The following simple lemma is a natural generali-
zation of the easier part of Lemmas 6.1, 6.2.

Lemma 7.3. Let G be a subgroup of the group H and v a homomorphism of
H such that Gv is n-pure in Hv. If v restricted to G is a monomorphism or
equivalently, if
(7.31) NNG =E,

where N is the kernel of v, then G is n-pure in H.

Proor. Let K=gp (G, S) where SCH and |S|<n+1. Then there is a pro-
jection 7;, of Kv=gp (Gv Sv) onto Gv. Now denote the restriction of v to G
which by assumption is a monomorphism, by v,; then this has an inverse v
and we can define a homomorphism © of K into G by

= vym; L

This is in fact an epimorphism, because vr;, is an epimorphism (on K to Gv)
and v{! is even an isomorphism (on Gv to G). Moreover n is idempotent,
because

72 = vy vy vmvpt = vadvit = vyl = 7L

Thus =7 is a projection of K onto G, and the lemma now follows by an applica-
tion of Theorem 3.5.
A certain duality may be noted: If

(7.31) NNG = E,

then n-purity of Gv in Hv entails n-purity of G in H, but not in general con-
versely; if
(7.32) N =G,
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then n-purity of G in H entails n-purity of Gv in Hv, but again, as we shall
now see, the converse is not generally true. For a simple counter-example we take
H to be the quaternion group, with G a sutgroup of order 4 and N the sutgroup
of order 2 (which is the derived group and the centre of H). Then G/N is a direct
factor of H/N, but G is not even 1-pure in H — a generator of G is transformed
into its inverse by an element of H outside G, but not by any element of G
(alternatively, Corollary 5.4 may be applied).

Again we have no necessary and sufficient criteria, but only sufficient conditions,
and examples to show that these conditions cannot be relaxed very far. The first
result, a partial converse of Corollary 7.2 for abelian groups, is due to Fucss [3].

Theorem 7.4. If H is abelian, if N is a subgroup of the subgroup G of H,
if N is n-pure in H and if G/N is nw-pure in H|N, then G is n-pure in H. '

For a proof, the reader is referred to Fucss [3], p. 88. If H is non-abelian,
we add the assumptions that G and N are normal and N is also 2-pure in H:
the first of these assumptions is trivially satisfied in abelian groups, and the second
is then implied by the n-purity of N. The theorem of Fuchs is, therefore, a special
case of the theorem which follows.

Theorem 7.5. Let G be a normal subgroup of the group H and let v be a homo-
morphism of H with kernel N; further let Gv be n-pure in Hv. If (i) N=aG,
and (i) N is m-pure in H, where m=max (2, n), then G is n-pure in H.

PrOOF. Let K=gp (G, S) where SCH and |S|<n+1. Then — as Gv is
normal and normally complemented in Kv — there is a direct decomposition

Kv = GvX My

of Kv. Here we can take M to be a normal subgroup of K containing the kernel

N of v. Then
GM =K, GNM=N.

Now every scS can be written in the form s=gs; with g€G and s,€M,
and the set S, of second components s; then generates M modulo N, that is
M=gp(N, S). As |S;|=|S|<n+1=m+1, and as N is a normal m-pure sub-
group of H, there is a direct decomposition

M = NXUP.

It remains to show that P is the kernel of a projection of K onto G. Clearly K=GP
and GNP =E, and we only have to prove that P is normalin K or, equivalently,
that G and P centralize each other. Let g€G and pcP be arbitrary, and consider

(7.51) [g. Pl =n,

say. Then — as [g, p] must belong to the normal sutgroups G and M that
contain g and p, respectively, — we have neN. Now the set of “equations”
over N

(7.52) {n —l[xla x2]’ [n,’ xz]}n’ EN>
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where n is fixed by (7.51) but n’ ranges over all elements of N, has a solution
0 in H given by x,0=g, x,0=p, as peP clearly centralizes N. Now N is
(at least) 2-pure in H, and (7.52) must then also have a solution, say x;n=n,,
Xoj=ng, in N. But then [ny,n]=1 as[n’,n]=1 for all n’¢N, and finally n=1
because n~n,, n,]=n"'=1. We see then from (7.51) that g and p commute,
and as they were arbitrary elements of G and P, respectively, G and P centralize
each other; and the theorem now follows by an application of Theorem 3.5.

To see that it is not sufficient to assume N to be 1-pure even when only 1-purity
is to be deduced, one considers the non-atelian group H of exponent 3 and order 27,
and takes N to he the centre of H and G an arbitrary su* group of order 9. Then
N is l-pure in H because all groups generated by N and one further element are
elementary abelian and so contain N as a direct factor; and G/N is atsolutely
purein H/'N, as this is also an elementary atelian group; tut G is not even 1-pure
in H, by Lemma 5.2, because G is its own centralizer in H.

If we drop the assumption that G is normal in H, then again the conclusion
of Theorem 7.5 need not remain valid. We take H to te the group H. of Theo-
rem 4.8, G as the sutgroup Gy, and N as Gy,q) in the notation of that
theorem. Then N is central in H, hence normal, and N=G. Moreover, G/N
is atsolutely pure in H N, because it is a su' group of prime order not contained
in the Frattini su*group of the nilpotent group H N; also N is (2¢t+1)-pure
in H tut G isnot (2t+1)-pure in H, by Theorem 4.8.

Hence, to deal with the case of non-normal G, we have to strengthen the
assumptions on N. If we assume N to be atsolutely pure in H, we ottain an
almost obvious lemma.

Lemma 7.6. Let G be a subgroup of H and let v be a homomorphism of
H with kernel N. If () N=G, and (ii) N is absolutely pure in H, that is a direct
factor of H, then G isn-purein H if, and only if, Gv is n-purein Hv.

ProoF. We may assume that v is the projection of H onto a complementary
direct factor of N. Thus H=NXHv and G=NXGv. If K=gp(G, S) with
|S|<n+1, then K=NXKv, and Kv=gp (Gv, Sv); then, assuming Gv to be
n-purein Hv, there is a projection, say m;, of Kv onto Gv. From this one obtains
a projection = of K onto G by defining = to act as the identity on N and as
m; on Kv:

kn = k(kv)"* X kvn, for all kcK.

It follows that G is n-pure in H. The converse is a trivial consequence of Corol-
lary 7.2.
More generally we can prove the following theorem.

Theorem 7.7. Let G be a subgroup of H and let v be a homomorphism of
H with kernel N=G. If () G=gp (N, R) with |R|<m+1, and (i) N is (m+n)-
pure in H, then G is n-pure in H if, and only if, Gv is n-pure in Hyv.

PrROOF. Assume that Gv is n-pure in Hv. Let K=gp (G, S) where [S|<
<n+1. Then K=gp(N,RUS) and |RUS|<m+n+1; thus N, as a normal
(m+n)-pure sutgroup of H and thus of K (Lemma 3.2) is atsolutely pure in K

2
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(Corollary 3.8). Then, as similarly Gv is atsolutely pure in Kv, Lemma 7.6 shows
G to be absolutely pure in K, and it follows that G is n-pure in H. The converse
is again a trivial consequence of Corollary 7.2.

8. Cartesian products, direct products, and n-purity

If H is the cartesian product of a family {H;};c; of groups, and if G is the
cartesian product of a family {G}; of su~groups, G;=H,, then one would expect ¢
to be n-pure in H if eads G; is n-purein H;. Thisisindeed the case, and the converse
is also true. We formulate the proof, which is not deep, so that it can be easily
generalized to other algebraic systems.

Theorem 8.1. Let H be the cartesian product of the family {H.};cr of groups,
let G=H, andlet G be the cartesian product of the family {G;}ic;- Then G is
n-pure in H if, and only if, each G; is n-pure in H;.

ProoF. It is convenient for the sake of the proof (and for the sake of generaliza-
tions not here presented) to characterize the cartesian product H by a family
{ni}icx of epimorphisms

n:: H—~H,;

with the property that to every family {h;};c; of elements /¢ H; there is one and
only one element h¢H such that hn=h; for all icl. Similarly to every family
{g)ic; of g€G; there is one and only one element gcG such that gn,=g; for
all iel.

Now assume that each G; is n-pure in H;. Let K=gp(G, S) where SCH
and |S|<n+1. Then Ku;=gp (Gn;, Sn;), and as |Sn;|=|S]|, there is a projection,
say m;, of Kn; onto Gn;=G;. We define a mapping n: K—~G by

T = M.

This is legitimate, as there is to given k€K precisely one ge€G such that gn,=
=kn;n;; and then kn=g. One easily verifies that n is a projection of K onto G.
This shows, by Theorem 3.5, that G is n-pure in H.

Conversely, assume that G is n-pure in H. Let jeI be fixed, and let K;=
=gp(G;, S;) where S;SH; and |S;|]<n+1. Let K be the cartesian product
of the family defined by Kn;=G;, (i#j), Knj=K;. Then K=gp (G, S) where
S consists of all s¢ H for which sy;=1 (i#)), sn;€S;. Hence |S|=|S;|, and there
is a projection = of K onto G. Then 7; defined by

N;m; = Th;

is a well-defined mapping; for if k, k’€K and kn;=k"n;, then (k*k")n;=1€G;; now
(k7%)n;€G; also for all i>j, and so k~%’e¢G and (k~'k")n=k~'k’: hence
(k=%k")nn;=(k~k")n;=1, and finally knn;=Kk'nn;. It is easy to verify that =; is
an epimorphism of Kn; onto G;, and as

2 — 22 — —
N = ;T = TN = ;= NT,
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it is idempotent. Thus =; is a projection of K; onto G;, and application of
Theorem 3.5 now completes the proot of the theorem.

In the case of groups we also have the direct product H* of the family
{H }ic; available, and one would expect also the direct product G* of {Gi}ic;s
to be n-pure in H if each G; is n-pure in H,, and conversely. This is in fact
true, and can be proved by adaptlng the proof ot Theorem 8.1.

Theorem 8.2. Let H* be th> direct product of the family {H};c; of groups,
let G=H, and let G* be the direct product of the family {G};c;. Then G* is
n-pure in H* if, and only if, each G; is n-pure in H,.

ProoF. The direct product H* consists of those elements #*¢cH, the carte-
sian product, whose support

o(h*) = {ieI | h*n; = 1}

is finite. Now the proof proceeds as that of Theorem 8.1, noting that in the direct
part again the projection n is well defined by

;= ;s

because to a given kcK=gp (G*, S) there is precisely one g*¢G* such that
g*ni=kn;m;, as c(k) must be finite. In the converse part of the proof, we use
again that an element K~k lies in G* it (k~'%")n;€G; for all i — again because
o(k—k’) is finite.

It should be noted that in general the direct product G* will not te n-pure
in the cartesian product H — an example was given at the end of §35.

9. Groups in which certain subgroups are n-pure

In this and the following section we examine groups in which all su"groups
of a given kind are n-pure, tor some n. Thus we mught ask for those grcups in
which all su-groups are atsolutely pure: it is not difficult to see that such groups
are simply the elementary atelian groups, that is the direct products of groups of
prime orders; in fact, as we shall see, much less is sufficient for the same conclusion.
In an abelian group it suffices to assume that all its cychc su*grcups are 1-pure in it:
then it must be elementary, so that then all its su’ grcups are direct factors of it
(see FucHs, KerTEsz, SzeLE [4], Theorem 4). In non-atelian groups the position is
less simple. Our first goal is the following characterization o1 grcups in which all
cyclic sutgroups are 1-pure.

Theorem 9.1. The group H has the property (¥) that all its cyclic subgroups
are 1-pure in it if, and only if, it is the direct product of groups P with the following
two properties: '

() P has prime exponent, say p;

(0) if K=P is generated by two elements but not by one, then |K : K'|=p?

The proof requires several lemmas. We first show that a p-group has property
(*) if, and only if, it has properties (:) and (11); then that a direct product of such

2%
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p-groups also has property (*); and finally that a group H that has property (*) is
a direct product of its Sylow subgroups.

Lemma 9.2. The p-group P has the property (*) that every cyclic subgroup
is 1-pure in it if, and only if, (i) P has exponent p, and (u) if K=P is generated
by two elements but not by one, then |K: K'|=p2.

ProoOF. Let P have properties (i), (i)). If G=gp(g) is a cyclic sutgroup,
and if

K=2gp(G,h)=gp(g, h) =G,

then M =gp (K’, h) is clearly a normal complement of G in K; hence, by Theo-
rem 3.5, G is l-pure in P. Conversely, let P be a p-group with property (*).
If geP is an element of order p then g has no p-th root in gp (g) and therefore
can have no p-th root in P: thus P contains no elements of order p2, and must
have exponent p. Next, let K=gp (g, #) be a non-cyclic two-generator sutgroup
of P; then gp (g) must have a normal complement, say M, in K. The p elements
h, gh, g°h, ..., g?~h are mutually incongruent modulo M, hence one of them, say
h’ =g™h, must belong to M. As K=gp (g, #’) also, gp (#") has a normal comple-
ment, say N, in K. Both M and N contain K’ and have index p in K; more-
over M#N, as WeM but W¢N. Thus |[K: MNN|=p?® and |K:K'|=p?
as K is generated by two elements of order p, also |K: K’|=p? and the lemma
follows.

Corollary 9.3. If P is a group of exponent p in which all 2-generator subgroups
are finite, then all cyclic subgroups of P are l-pure in P. In particular, the cyclic
subgroups of a locally finite group of prime exponent are 1-pure in it.

It is known that there are groups of prime exponent which are not locally
finite; but it appears to be unknown whether a group must be locally finite if all
its 2-generator subgroups are finite, or even boundedly finite. We draw attention
to the following “‘hyper-Burnside’ problem.

PROBLEM 9.4. Is there a positive integer d* such that a group is locally finite
if all its d*-generator subgroups are finite? Is there a positive integer d, such that
a group is locally finite if all its d, -generator subgroups have orders dividing a fixed
integer n? Is there a bound b=>b(d, d,, n) for the orders of all finite d-generator groups
whose d,-generator subgroups have orders dividing n?

We advance no conjectures beyond the guess that these problems are difficult.

Lemma 9.5. If {P;};c; is a family of p-groups, for fixed p, each of which has
the property (*) that its cyclic subgroups are l-pure in it, thzn both the cartesian
product P and the direct product P* of the family have property (*).

Proor. Clearly P has exponent p, like all the P;. Let {n;};c; be the family
of epimorphisms

’7:‘: P—’Pi.

If K=gp (g, h) is a non-cyclic subgroup of P, then either there is an i¢I such that
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Kn; is non-cyclic, in which case
p* = |Kn;: (Kn)'| = |K: K'| = p%;
or else there are i, jeI and an integer m such that

gni#1, @mn=1 (g"hn;#1,

and then, if #=n;Xn; denotes the epimorphism of P onto P;XP;, we similarly
have
p*=|Kn: (Kn)'| = |K: K’| = p*

Thus P has property (*), by Lemma 9.2. As property (*) is evidently inherited by
subtgroups, P* also has it, and the lemma follows.
We are now ready to prove the sufficiency part of Theorem 9.1.

Proor oF THEOREM 9.1. FIRST PART. Let H be the direct product of groups
P with the properties (i), (ii) of the theorem. Those factors that have the same
prime exponent p can be combined to a single group with the same properties,
by Lemma 9.2, 9.5; thus we lose no generality if we assume that H is the direct
product of its Sylow p-su-groups P, for varying p, and that these Sylow sub-
groups all have property (*). Then a cyclic subgroup of H is the direct product
of its intersections with these Sylow subgroups P, and as each such intersection
is cyclic and thus 1-pure in P, the given cyclic sutgroup is 1-pure in H, by Theo-
rem 8.2. Thus H has property (*).

To prove the converse, we require another lemma.

Lemma 9.6. Let the group H have the property (*) that all its cyclic subgroups
are l-pure in it. Then H is periodic, and if g, h are two elements of H, then the
order |gh| of their product divides the product |g||h| of their orders.

PrOOF. As property (*) is inherited by su*groups, and as the infinite cyclic
group does not possess it, H must be periodic. Put K=gp(g, #). Then also
K=gp(gh, h), and so the cyclic surgroup gp(gh) has a normal complement,
say N, in K. As K/N iscyclic, K’=N; and as |K:N|=|gh|, we see that |gh|
divides |K:K’|. Now |K:K’| divides |g||h|, as g and k generate K. Thus
|gh| divides |g||#|, and the lemma follows.

We can now prove the necessity part of Theorem 9.1.

PrOOF OF THEOREM 9.1. SECOND PART. We assume that H has property (*).
By Lemma 9.6 then H is periodic, and the elements whose orders are powers of
a fixed prime p form a subgroup P, say, of H. This is clearly characteristic in
H, and the Sylow p-subgroup of H. Different such Sylow subgroups have trivial
intersection; their product is H, as H is periodic, and the product is clearly
direct. Each P inherits property (*) from H, and by Lemma 9.2 has properties
(i), (ii). This completes the proof of the theorem.

Corollary 9.7. If {H};c; is a family of groups each of which has the property
(*) that its cyclic subgroups are 1-pure in it, then the direct product of the family also
has property (*).

The same is not true for the cartesian product, as it is in general not even periodic,
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Theorem 9.8. If every cyclic subgroup of a group H is 2-pure in H, then H is
elementary abelian, that is to say, a direct product of groups of prime order. Thus
every subgroup of H is then a direct factor.

ProoF. Theorem 9.1 shows that it suffices to show that H is abelian. If g, A
are two arbitrary elements of H, the cyclic su* group generated by their commutator
[g, ] must be 2-pure in K=gp(g, #), and so [g, 2] must also be the commutator
of two elements in the cyclic group gp([g, #]); it follows that [g, A]=1, and as
g, h were arbitrary, H is abelian, and the theorem follows.

Theorem 9.9. If every two-generator subgroup of a group H is 1-pure in H,
then H is elementary abelian, and thus every subgroup is a direct factor of H.

PrOOF. Again it suffices, by Theorem 9.1, to prove that H is abelian; and, still
by Theorem 9.1, we need only show that the elements of prime order p commute.
Let then g,h.H and |g|=|h|=p, and put G=gp(g,[g,h]) and K=gp(G, h)=
=gp(g, h). As a 2-generator group, G is l-pure in H, hence, by Theorem 3.5,
there is a projection # of K onto G. Now

(091 [g, h=[g, hn=[gn, hr]=[g, hn]€G’,

as hncG. Hence |G: G’| divides p, and Lemma 9.2 (with G here taking the place
of K there) shows that G must be cyclic. Thus G’=E, and then from (9.91)
we deduce [g, /]=1; and the theorem follows.

Thus we see that though the non-abelian groups in which all cyclic sutgroups
are 1-pure form a wider class than the corresponding abelian groups, strengthening
the assumption to 2-purity of cyclic su*groups instead of 1-purity, or to l-purity of
2-generator su*groups instead of cyclic sutgrcups, leaves us with only the same
groups as in the abelian case, and with the narrowest class of groups that can occur
in this context.

10. Groups whose normal subgroups are n-pure

A different way of generalizing the theorem of Fuchs, KerTEsz, and SzeLE ([4],
Theorem 4) referred to and extended in the preceding section restricts the assumption
of purity to normal sutgroups. If all normal sutgroups are atsolutely pure, and
thus direct factors, a simple description of the groups is available.

Theorem 10.1 (WIEGOLD). The normal subgroups of the group H are absolutely
pure in H if, and only if, H is a direct product of simple groups.

For the proof we refer the reader to WIEGOLD [11]. We shall again find that the
conditions of the theorem can be relaxed. The main criterion we establisch here is
as follows.

Theorem 10.2. Let H be a group with centre Z. Then all normal subgroups of
H are n-purein H if,and only if, () Z isn-purein H; (ii) Z is elementary abelian;
and (iii) H/Z is a direct product of non-abelian simple groups.

It is to be understood that Z or H/Z may be trivial. Throughout the proof
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we shall denote by ¢ the canonic epimorphism of H onto H/Z. We require two
lemmas, of which the first makes no reference to n-purity.

Lemma 10.3. Let H be a group such that HE is a direct product of non-abelian
simple groups. If G is a normal subgroup of H, then the centralizer C of G in
H is the unique subgroup with the properties (i) Z=C, and (i) HE=GEXCE.

PROOF. As a normal subgroup of the direct product H¢ of non-abelian simple
groups, G¢& is the direct product of some of the simple direct factors of H¢, and
the remaining factors combine to form the unique complementary direct factor of
G¢ in HE; the inverse image under ¢ of this complementary direct factor is then
the unique subgroup C,, say, such that Z=C, and HE¢=GE¢XC. Clearly
C =C,, and it remains to prove that Co=C, that is that all elements of C, central-
ize G. Now [G, C)]=2Z, and it follows that if g, g’€G and c€C,, then

[gg’, c] =g, cllg’, c].
Thus for fixed ccC, the mapping y defined by
gy =1lg ¢l

maps G homomorphically into Z. The kernel of y clearly contains G’, as Gy
is abelian, and also GNZ. But G'(GNZ)=G, because

G'¢ = (GY) = G,

this being a direct product of non-abelian simple groups. Hence the kernel of y
is G, and [g,c]=1 for all gcG and c€C,. This shows that C, centralizes G,
and the lemma follows.

Corollary 10.4. Under the assumptions and with the notation of the lemma,
H=GC.

Lemma 10.5. If all normal subgroups that contain the centre Z of the group
H are 1-pure in H, then the centre of HE is trivial or, differently put, Z is the hyper-
centre of H.

Proor. If % is an element of the second centre of H, that is if A& is central
in HE, then K=gp(Z,h) is an abelian normal subgroup of H; by Corollary 5.4
then K=Z, and h¢Z; and the lemma follows.

ProoF OF THEOREM 10.2. First assume that H has properties (i)—(iii) of
the theorem. We remark that then every sutgroup Z, of Z is n-pure in H;
for Z, is absolutely pure in Z and Z is n-pure in H, so that Lemmas 3.1, 3.2
are applicable. Now let G be a normal subgroup of H, and let C be its centralizer.
Then H=GC, by Corollary 10.4. Moreover, if GNC=Z, is the centre of G,
then Z, is, as we have just remarked, n-pure in H and thus also in C. It now
follows from Theorem 5.6 that G is n-pure in H, proving the sufficiency of the
stated conditions.

Conversely assume that every normal sutgroup of H is n-pure in H. Then in
particular Z is n-pure in H; also every sutgroup of Z must be at least 1-pure
in Z, and so Z must be elementary abelian; thus (i) and (ii) are established. Now
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let G¢ be an arbitrary normal sutgroup of H¢; we may take G as a normal
su-group of H contaming Z. Then G is n-pure in H by hypothesis, and G¢
is n-pure in H¢ by Corollary 7.2. Moreover the centre of G¢ is trivial, as by
Lemma 5.2 it is contained in the centre of H¢, and this latter is trivial by Lemma
10.5. We apply Corollary 5.3 and see that G¢ is a direct factor of HE. As this is
true for every normal su*group G¢ of HE, Wiegold’s Theorem 10.1 shows HE
to be a direct product of simple groups. Finally, as by Lemma 10.5 the centre of
HE is trivial, these simple groups must be non-abelian. Thus (iii) also follows,
completing the proof of the theorem. ’
If n={,, we can say more.

Theorem 10.6. The normal subgroups of the group H are pure in H if, and
only if, H is a direct product of simple groups; thus the normal subgroups are then
absolutely pure in H.

Proor. If H is a direct product of simple groups, then all its normal sutgroups
are direct factors, hence atsolutely pure, hence pure in H; see also Theorem 10.1.
Conversely, assume that all normal sucgroups ot H are pure in H. From condi-
tion (ii1) of Theorem 10.2 we see that (H'¢)=(H,)=H¢, hence H <=H'Z. By
Lemma 6.1, with H here for C there, H'NZ=E. It follows that H=H XZ.
Now H’=H¢ is a direct product of (non-atehian) simple groups, and also Z is
a direct product ot (abelian) simple groups, toth by Theorem 10.2. Thus H is a
direct product of simple groups, and the theorem follows.

We do not know whether in this situation purity can be distinguished from
n-purity for finite n. It is conceivable that H must necessarily be a direct product
of simple groups even if the normal subgroups are only assumed to be 1-pure in H.
This would be the case if the conditions of Theorem 10.2 imply that Z is a direct
factor of H, and this is so if and only if H'NZ=E; see the proof of Theorem 10.6.
The answer depends on the solution to the following protlem.

PrOBLEM 10.7. Does there exist a group H whose centre Z is 1-pure in H,
non-trivial elementary abelian, and contained in the derived group H’, and such that
H/Z is a non-trivial simple group?

11. Groups that are n-pure as subgroups

The divisible atelian groups have the property that they are 1-pure, and indeed
absolutely pure, in every abelian group that contains them. For non-abelian groups
there are two possible analcgues of this: the groups that are n-pure in every group
that contains them as subgroups, and the groups that are n-pure in every group that
contains them as normal surgroups. These conditions depend on n, and become
more restrictive as n is made to increase. In fact it turns out that the first of these
possibilities leads to no interesting groups even for n=1.

Theorem 11.1. The only group G that is 1-pure in every group H that contains
it as a subgroup is the trivial group, G=E.

PrOOF. Let G be 1-pure in every grcup that contains it. We first form the group
H, =gp(G,a;a*=1, [a7'ga,g'l=1 forall g, g€q).
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This is the so-called wreath product of G and the cyclic group of order 2 generated
by a. As H, is generated by G and one further element, there must be a projection
n, of H, onto G. Put an,=g;. Then, on applying =, to [¢~'ga, g’], we obtain

[gr'ggi, g1=1 for all g, g’cG.

As g, g range independently over G, so do gilgg, and g’; hence G must be
abelian. Next form the group

H,=gp(G,b;b2=1, (bg)?=1 for all gcG).

This is the splitting extension of G by the involutory automorphism that inverts
all its elements. Again there must be a projection, n, say, of H, onto G. Put
brn,=g, and apply =m, to bg: then

(g22)*=1 for all g€gG,

and as g,g ranges with g over all elements of G, we see that G has exponent 2.
Finally G must be divisible in order to be 1-pure even in the abelian groups only
that contain it; and the only divisible group of finite exponent is the trivial group.
This proves the theorem. The theorem sharpens Theorem 2 of Baer [1], which says
that only the trivial group is absolutely pure in all groups that contain it.

If we assume G only to be n-pure in all groups that contain G as a normal sub-
group, we get more interesting resulis.

Theorem 11.2. The group G is 1-pure in every group H that contains G as
a normal subgroup if, and only if, (i) G has no outer automorphisms, and (ii) the centre
Z of G is divisible.

Proor. First assume that G has properties (i) and (ii). Let G be a normal
sutgroup of H, and let K=gp(G, s) where se¢H. Then G is normalin K, and
thus s induces an automorphism of G. By (1) this is an inner automorphism:
hence there is an element g,€G such that for all geG

sTlgs = g5 'g8,-

Thus a=g;'s centralizes G; and also K=gp(G, a). Next let the order of @ modulo
G be m. Then a"=zc¢Z. Let z,c¢Z be chosen so that z'=z. Then b=z;'a
also, like a, centralizes G; and also K=gp(G, b). Now if B=gp(b), then K=GB
and B is normal in K; moreover G(NB=E, as the order of B is m, and this is
also the order of » modulo G. Thus K=GXB, and it follows that G is 1-pure
in H. Conversely, assume G to be 1-pure in every group H that contains G as
a normal sutgroup. Let a be an automorphism of G and form the splitting exten-
sion of G by a cyclic group whose generator induces this automorphism:

H, =gp(G,a; a~'ga=g* for all g<G).

Now G is normal in H;, and H, is generated by G and one further element a.
There must then be a projection n, of H; onto G, and transformation by an,€G
induces the same automorphism « of G; hence the automorphism is inner, and
G has property (i). Nextlet zeZ and let n be a positive integer. Adjoin an n-th
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root centrally to z by forming the group
H,=gp(G,b;b"=12 [b,gl=1 forall gcG).

This can be done by forming the generalized direct product of G with a cyclic
group B=gp(b) of order mn, where m is the order of z, amalgamating z
with b". Again G is normal in H,, and H, is generated by G and one further
element; thus there is a projection 7,, say, of H, onto G. Now bm, is an n-th
root of z in Z; thus, as z and n were arbitrary, Z must be divisible, and G has
property (ii). Th1s completes the proof of the theorem.

All values of n=2 give one and the same result, as is seen from the following
theorem.

Theorem 11.3. The group G is 2-pure in every group H that contains G as
a normal subgroup if, and only if, G has no outer automorphisms and has trivial
centre. Then G is absolutely pure, that is a direct factor, in every H in which it is
normal.

Proor. Groups without outer automorphisms and with trivial centre, some-
times called ‘“‘complete groups”, are well known to be direct factors of every group
that contains them as normal subgroups (HOLDER [6], Lehrsatz I, p. 325): If G has
the property and is a normal subgroup of H, then every element of H induces
an inner automorphism of G, hence is congruent to an element of G modulo the
centralizer C of G. It follows that H=GC; and GNC=E, as G has trivial
centre; finally C, as the centralizer of a normal sutgroup, is itself normal in H,
and it follows that H=GXC. Conversely assume that G is 2-pure in every group
H in which G is normal. From Theorem 10.2 we know that G has no outer
automorphisms, and has divisible centre. If z is an element of the centre of G,
we form the group

H=2gp(G,a,b; [a,b]l =2z [a,g]l=[b,g]l=1 for all gcG).

This group can be described as the generalized direct product of G and a nilpotent
group of class 2, say

A =gp(a, b; [a, b]" =[a, b, a] =[a, b, b] = 1),

where m is the order of z, amalgamating z¢G with [a, b]€4. As G is normal
in H and H is generated by G and two further elements, there is a projection
of H onto G. Put bn=g,. Then, as [a, g,]=1, we get

zZ=2zIn = [as b]TC = [aTE, bTC] = [arc, gz] = [an', 827'5] = [a’ gz]” =1

As z was an arbitrary element of the centre of G, the centre is trivial, and the
theorem follows.

The question now arises whether Theorems 10.2 and 10.3 describe actually
different classes of groups, that is to say, whether there are groups without outer
automorphism and with divisible but non-trivial centre. We conclude this paper
with the construction of an example of such a group.
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12. Construction of an example

Let R denote the additive group of rational numbers. We begin by forming
the group M of triplets
m=(r,s,1), rs,tER,

with multiplication defined by

(12.1) s, )@, 8, )= (r+7, s+, t+t'—71's).
The unit element is (0, 0, 0), and the inverse of m=(r, s, t) is
(12.2) m=t=(-r, —s, —t—rs).

M is nilpotent of class 2; it is known also as the “free second nilpotent square™
of R. The derived group M’ coincides with the centre Z and consists of the
triplets

m’ = (0, 0, ?).

‘The mapping of M to M that maps each (r,s,¢) on (—r, —s,¢) is easily seen
to be an involutory automorphism of M. Let F denote the splitting extension of
M by this automorphism:

F=gp(M,a; a®*=1, (r,5,0°=(=r, —s,0) for all (r,s, NEM).
Let N denote the subgroup of M generated by Z (=M’) and all elements
bi = (2_i’ 09 0)’

Ci =(O’ 3_i30)» l=0, 1, 2,
di = (S—is S—ia 0)-

Then N will consist of those triplets n=(r, s, t) whose components are of the form
r=u-2""4w-57",

(12.3) s=0v-3""4w-57",
t€R arbitrary,

with integers u, v/, v, v’, w, w’. Finally we examine the subgroup

G=gp(W,a)
of F.

Theorem 12.4. The group G has no outer automorphism, and the centre Z of
G is non-trivial and divisible.

It will follow from this that all normal sutgroups of G are characteristic;
we begin by exhibiting several characteristic subgroups of G.
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Lemma 12.5. Among the characteristic subgroups of G are N,B,C,D,
BO: C(n Do, Zo, where

B =gp((r,0,0), r=u-27", t€R),
C =gp((0,s,0), s=v-37", t€R),
D =gp((¢,9, 0, g=w-57", ER),
B, = gp((u, 0, 1), t€R),
Co = gp((0, v, 1), t€R),
Dy = gp((w, w, 1), 1€R),
Z, = gp ((0, 0, p)),

with u, ', v,v’, w,w’, p ranging over the integers.

PROOF. As |G: N|=2, and as N isnilpotent while G isnot, N is the maximal
nilpotent normal subgroup of G, hence characteristic in G. Next, B is charec-
teristic in N, and hence in G, because it consists of all those elements that are
2i-th powers for all i; similarly C consists of the 3'-th and D of the 5-th powers.

Finally
B,=BNCD, Cy=CNBD, D,=DNBC, Z,=[B,y,Cy,

which shows that these groups are also characteristic in G.

PROOF OF THEOREM 12.4. The centre M’=Z of M is also the centre of N,
of F, and of G, because a clearly commutes with all triplets (0, 0, 7). It remains

b

to show that all automorphisms of G are inner. Let o be an automorphism of G.
Then a maps b,=(1,0,0), which is a generator of B, modulo Z, onto a gener-
ator of B, modulo Z, that is onto an element of the form (1,0, k). We may
assume without loss of generality, that the first component is +1; for otherwise
we replace a by its product o’ with the inner automorphism induced by a; and
o and o are both inner or both outer. Thus we now have

boo = (1, 0, k).

Similarly ¢,=(0, 1, 0) is mapped by « on an element (0, £1,/); however, here
we now must have the positive sign; for also dy=(1, 1, 0)=b,c, must be mapped on

doo = byacea = (1, &1, k+1),
and this has to lie in D, again: hence
coo = (0, 1, ).
Now z,=(0, 0, 1)=[by, ¢;], and so
zo0 = [byat, coa] = [(1, 0, k), (0,1, D] = (0, 0, 1) = z,.
Next, as b;=(27% 0, 0) is the unique 2*-th root of b,, it must be mapped on
b;a = (2740, 27%k),
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which is the unique 2’-th root of byx. Similarly
c;o0 = (0,37%, 0)a = (0, 37, 371)),
dia = (57, 5, 0)o = (571, 5% 5~k +5-11),

and finally, if z=(0,0,¢)cZ, then za=z. Now the b;,c¢;,d;, and z between
them generate N, so that the effect of « on n=(r, s, t) is now determined. One
readily verifies that it is

(12.6) (r,s, Yo = (1, s, kr+1Is+1).

We gather further information by considering the effect of « on a. As a¢N,
the image must also be outside N, that is to say, it must be of the form

(12.7 ao = a(x, y, 2),
where (x, y,2z)€N. As a*=1, we must have (ax)?=1, and this gives
1= (aa)2 = a(x’ Y, Z)a(x’ Ys Z) = a2('_x, =Y, Z)(x9 Vs Z) =

= (0,0, 2z+xy) = (0, 0, 0).
It follows that

(12.8) z=—5X).
Next we apply « to the equation
a(r,s, ) = (—r, —s, Ha,
giving
ao(r, s, yoo = (—r, —s, Haaa,
or, using (12.6) and (12.7),
a(x,y, 2)(r, s, kr+is+1t) = (—r, —s, —kr—Is+ta(x, y, 2) =

=a(r,s, —kr—Is+0)(x, y, 2).
This leads to

(x+r, y+s, z+kr+iIs+t—ry)=(r+x,s+y, —kr — Is+t+z—xs),

and this to
QRk—y)r+Q2Il+x)s = 0.

This must be true for all (r, s, t)eN, and therefore implies
x==2l, y=2k.

On substituting this and (12.8), (12.7), we obtain

(12.9) ao = a(—21I, 2k, 2kl).

We now put g=(—/, k,0), and compute the effect of the inner automorphism,
7y say, induced by g. We note that by (12.2),

g_l = (Xs —k’ k1)°
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Now
ay=glag=(, -k, kD)a(—1L k,0)=a(-1, k, kI)(—1,k,0) =

= a(—2l, 2k, 2kl) = ao,
by (12.9). Next, with (r, s, t)€N, we have
r,s,)y=(U —k, kI)(r, s, D(—1, k, 0) =
=(+r, —k+s, ki+t+kr)(—1 k, 0) =
=(r, s, kI+t+kr+1(—k+5)) = (r, s, kr+Is+1) =
=(r,s, Da,

by (12.6). Thus the effect of y equals that of « on a and on the elements of N,
hence on all elements of G: that is, a equals the inner automorphism 7. This
completes the proof of the theorem. The group G here constructed is 1-pure in
every group in which it is contained as a normal sutgroup; but it is not 2-pure
in the generalized direct product H, say, of G and an isomorphic copy of M,
amalgamating the centre Z, though G is normal in H.
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