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Maximal Frattini extensions 

By 

Jom~ Coss~.r, O. H. KEGEL and L. G. Kov~,cs 

Professor WOLFGAlCG G~Cm2TZ zum 60. Geburtstag gewidmet 

1. Motivation. At the recent Santa Cruz conference on finite groups, several par- 
ticipants asked variants of the following question. Given a finite group G, how large 
a finite group A can be extended by G so tha t  A falls into the Fratt ini  subgroup of 
the extension ? (Of course, as Frat t ini  subgroups of finite groups are nilpotent, 
only nilpotent A come into consideration.) A moment ' s  thought shows tha t  when G 
has prime order, there are such A of arbitrarily large order, and it is easy to see tha t  
the same is true in general (provided only that  G is not trivial). So the real question 
is to identify just what  measure of the size of A is relevant here. The answer: the 
cardinalities of the minimal generating sets of the Sylow subgroups, and nothing else. 
A related question was investigated by  Gasehiitz over twenty-five years ago, and 
this work was inspired by his results. 

2. Discussion. To have a convenient language, let t 'rattini extension mean a sur- 
jective group homomorphism whose kernel is contained in the Frat t ini  subgroup of 
its domain. The first step is to observe the following simple fact. 

2.1. I / y  : H -> G is a •rattini extension o]/inite groups with G o/order n, say, then 
the kernel A o/ 7 can be generated by n 2 --  n ~- 1 elements. 

(Proofs of all displayed statements are deferred to later sections.) Since A is nil- 
potent, all Sylow subgroups of A can also be generated by n 2 - -  n + 1 elements. 
For each prime p, let ~ (G, p) denote the maximum of the cardinalities of the minimal 
generating sets of the Sylow p-subgroups of all such A. The second half of the answer 
claims tha t  A can be arbitrarily large subject only to the restriction expressed by 
the ~ (G, p). One way to make this precise is to take an arbi trary var iety !~ of locally 
finite groups, write ~ for the var iety consisting of the p-groups in ~,  and consider 
all Fratt ini  extensions ~: H --> G with kernel A in ~ and G fixed. By 2.1, the orders 
of  these A are bounded by the (finite) order of the ~-free group of rank n 2 - -  n + 1, 
so it is possible to choose y ~-maximal  in the sense that,  for G fixed, the order of H 
is maximal subject to A ~ ~ .  



Vol. 35, 1980 Maxima] Frattini extensions 211 

2.2. I1 7,: H -> G is U-maximal, then the Sylow p-subgroup o/i ts  kernd A is ~v-/ree 
o/rank ~5(G, lo). 

In  addition to providing an answer to the Santa Cruz question, these extensions 
have even more interesting properties. 

2.3. / ]  7,: H - >  G /s ~-maxima/,  :r G - > D  is a surjective homomorphism, and 
(~ : C -> D is any Frattini extension with kernel in !~, then there exist sur]ective fl : H ---> C 
such that fl ~ = 7'~. 

In  particular, take D ---- G, let a be the identi ty automorphism t of G, and 5 also 
~-maximal .  Then 2.3 can also be applied with the roles of 7, and 5 interchanged; 
hence C and H have the same order, and so the surjeetive fl of 2.3 must  be isomorph- 
isms. In  this rather strong sense, the U-maximal 7, is determined by G (and ~)  up to 
isomorphism. 

Still with D ---- G and a ----- t, one might paraphrase this special case of 2.3 as 
follows: the Fratt ini  extensions of U-groups by  G are precisely the quotients of 7,. 

With ~ -~ 7, one gets tha t  each automorphism a of G lifts to an automorphism fl 
of H. Here, however, a warning is called for: in general, one cannot choose one fl 
for each ~ in a coherent, functorial manner;  tha t  is, so tha t  a = a1~2 would imply 
fl ----- fll f12- (For instance, let G be a noncyclic group of order p2 and ~ the variety 
Up of all elementary abe]jan p-groups. Then the largest abe]Jan quotient H/H" of H 
is the direct product of two cyclic groups, each of order p2. Restriction provides 
a homomorphism of the automorphism group of H/H'  onto tha t  of G, but  when 
p > 3 the proof of 4.2.2 in Wall [9] is readily adaptable to show tha t  this homo- 
morphism does not split. 

The uniqueness of 9~p-maximal Fratt ini  extensions was established long ago by 
Gaschiitz [2]. In  tha t  case, of course, the relatively free nature of the kernels is not 
an issue. I f  7, : H --> G is such an extension with kernel A, one may  view A as a G- 
module over the field [:~ o fp  elements; by 2.2, the dimension of A is g} (G, p). Gaschiitz 
[2] gave two characterizations of A as BC~G-module; these are still the only means 
available for actually calculating ~ (G, p). First, if G = FIR  with F free of finite 
rank, and the largest elementary abelian p-quotient  R/R'  Rv of R is regarded as an 
I:vG-module in the natural  way, then the quotient of R/R '  R~ modulo any  maximal 
0:pG-projective submodule is isomorphic to A. Second, if  

. . . .  > P2 -+ P1 --> 0=p --> 0 

is any minimal projective resolution (in the category of D=v G-modules) of the trivial 
module 0=v, then the kernel of P2 -> P1 is isomorphic to A. Consequently, r (G, p) ---- 0 
if and only if p does not divide the order of G. 

Further properties of this kernel were discussed recently by  Griess and Schmid 
in [3]. In  particular, they showed tha t  the centralizer of A in G is precisely (the 
largest normal p'-subgroup) 0v,(G), unless G is p-soluble with non-trivial cyclic 
Sylow p-subgroups in which case A is isomorphic to each chief p-factor of G. Thus 
r  p) = 1 precisely in this exceptional case. 

14" 
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(When qS(G,p)> 1 and U is any ~=~G-module on which 0p,(G) acts trivially, 
an easy application of the results of Bryant  and Kovs [1] shows that  93 can be 
chosen large enough to ensure that  the centre of the kernel of a 93-maximal Frattini  ex. 
tension by G contain a G-isomorphic copy of U. At least in this weak sense, the kernels 
can be chosen "arbitrarily large" not only as abstract groups but  also in terms 
of the "action" of G). 

The proofs of 2.1--2.3 are elementary, almost every step being a familiar piece 
of general nonsense (though we shall not present them in their abstract setting). 
Still, they did not all come to mind when the questions were raised at  Santa Cruz. 
Initial responses relied on repeated application of the Gaschiitz results on 9~p- 
maximal Yrattini extensions, and the key step from that  argument may retain 
some interest. Let  y:  H--> G and z: K--> H be 9~p-maximal Frattini  extensions, 
with kernels A and B, respectively; write C for the kernel of gy ,  and let Y., : C --> A 
be the restriction of z. .4xgue that  ~ y restricted to the factor group of K modulo 
the Frattini  subgroup of C is still a Fratt ini  extension, so by the 92p-maximality 
of y the Frattini subgroup of C must be precisely B. Thus ~.  is a Fratt ini  extension. 
For any subgroup A of H, the fact that  projective H-modules restricted to A remain 
projective, together u-ith either Gaschiitz characterization above, implies that  the 
kernel of the ~gp-maximal Frattini extension by A must be a direct, summand of B. 
Hence z .  is 9~a0-maximal; and as A is elementary abelian, one can now readily 
identify C as a free group of the product variety 92p 9~r. I t  is routine to extend 
this to a proof of 2.2, but the process uses more additional general nonsense than 
the whole of the proof we give in Section 3 (based on an idea of P. Hall). 

The arguments can be made even shorter, and the results more pleasing, if one 
is prepared to use the power of the much more sophisticated context, of profimte 
groups. There one may consider Frattini extensions which are continuous homo- 
morphisms of profmite groups, the appropriate definition of Frattini subgroup being 
the intersection of the maximal open subgroups: see Grnenberg [4]. a, Frattini 
extension of profinite groups will be called projective if its domain is projective 
(with respect to surjective maps in the concrete category of profinite groups and 
continuous homomorphisms). With "93-maximal" replaced by "projective", the 
analogues of 2.3 and of its consequences may be proved simply by adapting the 
short proof of Proposition 2 of Gruenberg [4]. The only issue is the existence of 
enough projective Frattini extensions. 

2.4. To each pro/inite group G, there exists a Frattini extension ~: P--> G with 
projective P. 

(When G is finite, the 93-maximal y : H --> G is obtained from this g modulo the 
93-verbal subgroup of ker g.) The proof of 2.4 rests on the following result, which 
is implicit in Gruenberg [4] (compare Corollaire 3 on page 1-37 of Serre [8]). 

2.5. Closed subgroups o] projective pro/inite groups are projective. 

By Theorem 2 of Gruenberg [4], projective pro-p-groups are restricted free pro-p- 
groups. Thus 2.4 and 2.5 yield also that  the Sylow p-subgroup A~ of the (pro-nil- 



Vol. 35, 1980 Maximal Frattini extensions 213 

potent) kernel of .~ is a restricted free pro-p-group. The Sylow p-subgroups of any 
projective profinite group P are restricted free pro-p-groups, hence P is torsion-free 
as an abstract  group. Though it can be done, there is little point in elaborating an 
a priori definition of ~b (G, p) for general profinite G. However, to see tha t  we really 
have a generalization of 2.2, we must  note that  when G is finite the restricted free 
rank of Ap is actually r  as defined before. 

Gruenberg's Theorem 2 is a direct consequence of his simple Proposition 2, W e n  
tha t  duality provides a profmite version of the fact tha t  all discrete elementary 
abelian p-groups are restricted direct powers of the group of order p. :By contrast, 
2.5 lies deeper: it appears to depend on Gruenberg's characterization of projectives 
as groups ~dth cohomological dimension a t  most 1. In  the last section of this paper 
we show tha t  2.5 may  also be derived directly, by elementary ~,Teath product 
techniques instead of cohomology. 

(For finite G, the profinite results were originally derived also by repeated use 
of 92wmaximal Fratt ini  extensions. In  tha t  argument,  we needed an observation 
which may  be of independent interest: if 7: H - >  G is an 2r -maximal  Fratt ini  
extension of finite groups, then all elements of order p in H lie in the kernel of 7-) 

We are indebted to Professor Gruenberg for long and enlightening discussions. 

3. The finite case. Three familiar facts about finite Frat t ini  extensions ~411 be used 
repeatedly. 

3.1. I /q ) :  L --> H is a surjective homomorphism of finite groups and M is minimal  
among the subgroups of L with Mop ~ H,  then the restriction q)M : M -+ H is a Frattini 
extension. 

For if a maximal  subgroup of M failed to contain ker ~M, it would supplement 
ker ~M in M and hence also ker ~ in L, contrary to the minimality of  M. 

3.2. I / y  : H -+ G is a finite .Frattini extension and q~ : F ---> H is a homomorphism 
such that q)~ is surjective, then r is also sur]ective. 

For F ~ supplements the kernel of  7 and hence also Fra t  H,  but Fratt ini  subgroups 
of finite groups have no proper supplements. 

3.3. Composites o/.Frattini extensions are Frattini extensions. 

Let/~ : M -> H and ~,: H -+ G be Fratt ini  extensions. As ker ~ < Fra t  M, we have 
(Frat  M)/~ =- Fra t  H :  thus Fra t  M is the complete inverse image (Frat  H ) #  -1. Now 
ker ~t~, ---- (ker y)/z -1 __< (Frat H)/~ - I  ~ Fra t  M as required. 

P r o o f  o f  2.1. Let  ~o be a homomorphism of a free group F of rank n onto G. By 
the projective property of free groups, there is a r F- ->  H with ~ y  ---- ~. Now 3.2 
shows that  F~0----H and so (ker Q)~ ~ ker 7. According to Schreier's Theorem, 
the kernel ker o is a free group of rank 1 -4- n (n - -  1). �9 
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3.4. I] ~ : H ---> G is a ~.maximal Frattini extension, then its kernel A is ~-projec- 
tire. 

By this we mean tha t  A is projective ~dth respect to surjective maps in the con- 
crete category whose objects are the ~ o u p s  of ~ and whose maps are the homo- 
morphisms between these ~oups .  This is essentially the terminology of Hanna  
Neumann 's  [6], which the reader may  wish to consult for all basic facts involving 
varieties. (Originally, P. Hall [5] used the term "splitting g-coups in ~" .  l~'ote tha t  
in [6] "epimorphism" means "surjeetive homomorphism".  I f  epimorphisms are 
defined by the now usual cancellation property,  ~-projectives with respect to epi- 
morphisms will, for some 0~, form a smaller class than ~-projectives with respect 
to surjectives, but  this never happens for soluble ~ :  see Peter $I. Neumann [7]. 
In  the present context we could, of course, restrict at tention even to nilpotent 
without any real loss.) Standard arguments yield that  all ~-free groups are ~3-pro- 
jective, and tha t  all retracts (that is, subgroups with normal complements) of ~- 
projectives are ~-projective. 

P r o o f  o f  3.4. Choose ~o and ~ as in the proof of 2.1; put  ker ~ = R and ker ~ ---- S. 
Now R/S  ~-~ A e ~, so S contains the verbal subgroup V of R corresponding to ~.  
Since R is free, R / V  is ~-free. Choose a sub~oup  M / V  in F / V  minimal with respect 
to M ~  ---- H. _4~ in 3.1, t.he restriction q;MIV: M/V--~  H of ~ is a Fratt ini  extension. 
By 3.3, q;M/Vy: M/V--->G is also a Fratt ini  extension; its kernel is, of course, 
(R c~ M)/V.  However, (R c~ M) /V  ~ R / V e  ~ and 7 is ~-maximaI,  so the kernel 
(S ~ M) /V  of ~M/V must  be trivial. In  other words S n M---- V, and therefore 
A ~--- R /S  ~--- (R c~ M) /V  shows tha t  A is isomorphic to a retract  of R/V.  �9 

P r o o f  of  2.2. I t  follows from 3.4 that  the Sylow p-subgroup A~ of A is also ~- 
projective, being a retract  of the (nilpotent) ~-projective A. Let P be a ~p-free 
g-roup whose rank is the cardinality of a minimal generating set of A~. Then Ap 
and P have isomorphic Fratt ini  quotients, so the ~p-projective properby of P )delds 
a Fratt ini  extension P -+ AT. Since A~ is ~-projective, this must be an isomorphism : 
thus Ap is ..~p-free. (This is essentially how Hall showed in [5] tha t  ~ - p r o j e c t i v e s  
are ~ - f r e e ;  the argument is reproduced here because it fits well into the present 
context but is embedded in more complex material  both in Hall 's  [5] and in Hanna  
,Neumann's text  [6].) In  view of 2.3, what  remains is to show tha t  the ~p-free rank 
of A~ is independent of '~. When ~ contains no nontrivial T-groups, this is merely 
a mat ter  of interpretation: in tha t  case, all free groups of ~p  are trivial. Otherwise 
~p  contains 9~,  so by  2.3 (applied twice) the largest 9/p-quotient of A is the kernel 
of an 9~-maximal  Frat t ini  extension by G, and of course tha t  quotient is isomorphic 
to the k"rattini factor group of AT. �9 

P r o o f  of  2.3. Consider the subdirect product L consisting of the elements (h, c) 
of the direct product H • C such that  h y a  ~ c~, and the homomorphisms ~: L --> H 
and ~o: L - +  C defined by  (h, c)~0 = h, (h, c)~ = c, so 97~r y~. Check tha t  
and ~o are surjective. Choose ~ subgroup M in L minimal with respect to M 9  = H:  
by 3.1, the restriction ~0M is a Fratt ini  extension and therefore, by  3.3, so is 9MY- 
I f  (h, c) e ker 9My then hy  = 1 so c6 ~- h7x  ----- 1 : thus ker ~M~ lies in the direct 
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product of A and ker 5 and hence ker r e ~- The ~-maximal i ty  of 7 now implies 
tha t  9M is an isomorphism. Put /~ = (~MI~PM : as ~Py2 = ~(~, we have that /~5 = ~:r 
and then the surjectivity of/5 follows by 3.2. �9 

4. The proflnite case. In  this section we consider only profinite groups and con- 
tinuous homomorphisms; the reader is reminded tha t  Frat t ini  subgroups are now 
taken to be the intersections of the maximal open subgroups. 

4.1. /7] ~: F--~-G is a continuous, surjective homomorphism o/pro/ ini te  groups, 
then there exists a closed subgroup P in F such that the restriction ~p: P--> G is a 
Frattini extension. 

In  view of the profinite analogue of 3.1 (for its proof, use Corollary 1 of Lemma 3 
in Gruenberg [4], noting that  all subgroups considered must  be closed now), it is 
sufficient to establish tha t  the set 5 f of those closed subgroups P of F which satis~" 
P ~  ---- G, has a minimal element. Zorn's Lemma gives this, provided N g e 5f for 
every chain g in 5 f.  Suppose g is a chain in ~ with ('l g ~  5f:  then for some 
element g of G the complete inverse image g ~ - I  of g avoids CI g .  As G is compact, 
it follows tha t  g ~ - i  (~ (N g0) = 0 for some finite subset g0 of g .  However, as 
is a chain, we have ('l g0 e g C cj,  so g e (('l g0)~- This contradiction completes 
the proof of 4.1. 

P r o o f  o f  2.4. Let  G be any profmite group. An unrestricted free profinite group 
of sufficiently large rank has a continuous homomorphism ~ onto G. By 4.1, the 
restriction of ~ to a suitable closed subgroup P of F is a Fratt ini  extension. The 
projectivity of P will follow from 2.5. �9 

P r o o f  o f  2.5. By  Theorem 4 of Gruenberg [4], projectivity is equivalent to having 
cohomological dimension at most 1. The profinite version of the Shapiro Lemma 
(see Proposition 10 on page 1-12 of Serre [8]) shows that  the cohomological dimension 
of a closed subgroup cannot exceed tha t  of the whole group. �9 

5. Another proot of 2.5. Some readers may like to see how 2.5 may be derived 
without cohomology. I t  seems tha t  the role of cohomology in the proof above is 
merely to facilitate the use of induced modules. For, we show here tha t  the con- 
struction of wreath products, which hes behind induced modules in any case, can 
also be exploited directly. 

To start  with, we need to recall some familiar facts in the contex~b of abstract  
(rather than profinite) groups. I f  S is a permutat ion group on a set 27 and A is any 
group, the (unrestricted, permutational) ~Teath product A Wr S is constructed as 
the split extension by S of the group A Z of all maps from 27 to A, ~,ith the usual 
action. I f  B _--< A and R =< S, then B Wr _R ~dll be regarded a subgroup of A Wr S. 
Note tha t  the "diagonal" embedding (5: A -+ A Z (where a5 maps all of 27 to the 
singleton {a}) has the property tha t  its image A 5 avoids, and lies in the centralizer 
of, S in A V(r S, so the direct product (A 6) X S is a subgroup of A Wr S. To each 
homomorphism ~: A --> B there is a homomorphism :r Wr S: A Wr S -+ B Wr S, 
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which is surjective whenever ~ is surjective (cf. 22.11 in Hanna Neumann's [6]). 
A less familiar but equally obvious observation is that  if S has a fixed point in 27 
and one denotes by S1 the restriction of S to the set obtained from X by deleting 
that  fixed point, then each A W r S  has a natural direct decomposition as 
A • (A Wr S1). ~iore specifically, we shall make use of the corresponding projections 
rCA: A W r S - - + A  (with kernel A ~ ' r  S1), which are such that ~A~----(0~WrS)~B 
for every ~: A --> B. 

The central result about x~Teath products is the Embedding Theorem, which goes 
back to the construction of monomial and induced representations by Frobenius. 
I f  H --_< G, choose 27 as the set of right cosets of H in G, and denote by a the obvious 
homomorphism from G into the symmetric group on X. The theorem asserts that  
there exist embeddings ~: G - +  H Wr G a. Perhaps the most convenient way to 
describe ~ is the follow-ing. Clearly, g ~-> (gS)(ga) defines an embedding of G into 
the direct product (G6) • (Ga) and hence also into G Wr Ga which, as noted above, 
contains this direct product. Choose a set of representatives of the right cosets of H 
in G: this may be regarded a map from 2: to G (taking each coset to its representa- 
tive), and hence as an element t of G Wr Ga. Follow the embedding G --> G Wr Ga, 
g ~-> (g6)(g~) by the inverse of the inner automorphism of G Wr Ga induced by t. 
Check that  the image of G under the composite map lies in the subgroup H Wr Ga 
of G Wr G a (this is a single line of formal calculation, once a convenient notation 
is established). One can now obtain T just by restricting the codomain of this compo- 
site map. 

Of course, r depends on the choice of t. For the sequel, choose t so that  it repre- 
sents the trivial coset by a central element of H. I t  is clear that  H ~  lies in H Wr Ha.  
The permutation ~OTOUp H a leaves the trivial coset fixed, so we have the correspond- 
ing projection ZH : H Wr H a -> H at our disposal. The point of choosing a central 
representative for the trivial coset is to ensure that  the restriction V, : H -+ H Wr H a  
of 9 followed by 71; H is the identity map on H (this may also be verified in a single 
line). 

The calculations we suppressed are irrelevant for checking that  if 27 is finite and 
all our data come from the category of profinite groups and continuous homo- 
morphisms (note this means that  for the Embedding Theorem H must be an open 
subgroup of G), all this can be carried out within that category. That done, one 
can readily see that  if G is projective so is H. Indeed, take ~: A --> B and y : H -+ B 
in that  category, with cr surjective. The projectivity of G ensures the existence of 
a~: G - + A W r G a  with ~ ( a W r G a ) - - - - ~ ( ) , W r G a ) .  For the restrictions ~ , :  
H --+ H Wr H a  and ~;, : H --> A Wr Ha,  this yields ~ ,  (x Wr Ha)  ---- ~ ,  (}, Wr Ha).  
Now use the projections gA, mS, rtH associated with the obvious fixed point of the 
permutation group Ha ,  to obtain that  

Thus Z : H --~ A defined as V, tea is such that Z~r = 7. 
Suppose now that  P is any closed subgroup of a projective profinite group G. 

To prove P projective, we have to show that  to each ct: A -+ B and ~t: P --> B, 
with = surjective, there is a ~: P -> A such that  ~= = z.  By Proposition 1 of Gruen- 
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berg [4], we m a y  assume t h a t  B is finite. Then ker  ~t is open in P ,  so M n P < ke r  
for some open subgToup M of  G. W r i t e  N for the  in tersec t ion  of  the  conjuga tes  
o f  M in G, and  p u t  N P  -~ H .  As N r P ~ ker  ~, there  is a 7:  H --~ B (~-ith kerne l  
N ke r  ~) whose res t r ic t ion  to  P is ~r. Since H is open, b y  the  a r g u m e n t  above  there  
exis ts  a X : H --> A wi th  Z~r ---- F. The  rcs t r ic t ion  of  7. will do as the  requi red  ~. This  
completes  the  d i rec t  p roof  of  2.5. �9 
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