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VARIETIES OF NILPOTENT GROUPS OF SMALL CLASS 

L.G. Kov~cs 

I .  Introduction 

In the dreamtime of the theory of varieties of groups, one might have hoped for 

the individual knowledge of each variety: for a classification in the strongest 

sense. The extent to which such hopes have been realized is a remarkable achievement 

of the subject. R.A. Bryce [7], [8] knows each variety of metabelian groups 'modulo 

the nilpotent case'. The classification of varieties of nilpotent groups 'of small 

class' is the subject of this report. Our knowledge in this area comes essentially 

from Graham Higman's 1965 lecture [12], given to an international conference held here, 

which dealt with varieties of nilpotent groups of prime exponent p and class less 

than p . In 1968, M.F. Newman and I presented (in a course of lectures at this 

University) an extended version of this theory, for varieties of p-power exponent and 

class less than p , and also for 'torsionfree' nilpotent varieties of arbitrary 

class. (Our treatment was clumsy, and remained unwritten, but considerable further 

work is on record in Paul Pentony's thesis [23].)' A 1971 paper [14] by A.A. Klja~ko 

(in an extremely inaccessible publication) described yet another version for the case 

of p-power exponent (and class less than p ), apparently independently of Higman's 

wor k. 

One remarkable aspect of Klja~ko's paper was the application of this method to 

derive information also about certain varieties of p-groups of class not less than 

p . Namely, he established the following 
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DISTRIBUTIVITY THEOREM. The lattice of varieties of p-power exponent and class 

at most c is distributive if and only if c ~ 3 , or c = 4 and p > 2 , or c = 5 

and p > 5 . 

In fact, it was precisely the cases of c = 4 , p = 3 and c = 5 , p = 5 

which were still outstanding then. (I must confess that I still can not handle the 

case c = 4 , p = 3 by this method: Klja~ko's paper suppressed the details. I have 

used ad hgc arguments to classify all 3-power exponent varieties of class 4 

[unpublished], and found their lattice distributive, in agreement with K!ja~ko's 

claim.) 

I refer to 'method' with good reason. The situation is so complex that only some 

qualitative aspect of it can be expressed in any single statement (for example, in the 

Distributivity Theorem above). On the other hand, while the problem of classifying 

all nilpotent varieties is theoretically solvable (in an algorithmic sense)*, the 

approach elucidated by Higman yields a significantly more efficient solution in the 

small class case, and indeed enables one to prove general statements (instead of 

having to be content with the knowledge that the proposition at~hand is 'decidable'). 

By general statement I mean not only the Distributivity Theorem, which could be 

regarded as a case where the decision algorithm fortuitously terminated before we 

ran out of time: I mean also results like A.G.R. Stewart's theorem [25] that for each 

c (at least 4 ) there exist precisely two join-irreducible center-by-metabelian 

varieties of exponent p and class c (provided p > c ), or the fact that the 

variety N of all nilpotent groups of class at most c is generated by (c-l)- 

generator groups but not by (c-2)-generator groups (Kov~cs, Newman, Pentony [16]; 

see also Levin [18]). 

The aim of these lectures is to make 'the method' more accessible. Higman's 

original [12] is terse to the point of being quite a challenge to read; as a record 

of a single lecture, it is really just an outline, virtually without proofs, attri- 

buZions, or references: also, restriction to prime exponent seems worth avoiding 

today. Nevertheless, it is so rich that I can not cover half his material: I hope 

the reader will be encouraged, and better prepared, to sample his feast further. 

Klja~ko's [14] is also on the terse side, and as far as I know can not be found in our 

libraries. 

Inevitably, this report will also fail to be self-contained, and there will be 

many a point where I will wish I had a (better) reference: still, I hope to account 

for all omissions of non-routine arguments. Instead of attempting to formalize 'the 

method', I aim to prove two results. One is the Distributivity Theorem (except for 

* Set one machine to enumerate laws and their consequences: if u is a consequence 
of V , this will be shown in a finite time. Set another to enumerate finite 
nilpotent groups and test them for laws: if u is not a consequence of v , a group 
will turn up to demonstrate this. This does it, for each nilpotent variety is 
generated by finite groups and definable by a single law. 
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the case c = 4, p = 3 ). The other is also in Klja~ko's [14]. For each prime p 

and positive integer m , let A m denote the dual of the lattice of all subgroups of 
P 

p-power index in a free abelian group of rank m . 

CLASSIFICATION THEOREM. For c < p , the lattice of all varieties of nilpotent 

groups of p-power exponent and class at most c , is a subdirect product of c 

lattices, each of which is the direct product of the lattices A l(~) where ~ runs 
P 

through a suitable index set. The index sets and the integers l(~) are independent 

of p (and will be made explicit in Section 6). 

The name 'Classification Theorem' sounds too pretentious for such a result; I 

use it to suggest that its proof is constructive and would enable us, if we wished, to 

attach convenient labels to the varieties in question, labels from which one can 

instantly read off at least some of the most important relationships between these 

varieties. Unfortunately, I must also acknowledge the incomplete nature of the 

theorem. For, the phrase 'a subdireet product' hides the first important open problem 

of small class theory: just which subdirect product is it? Thus we do not know 

precisely which of the available labels would be used. (In the equivalent language of 

subgroups of free groups: the trouble is that 'the method' only deals conclusively 

with fully invariant subgroups which lie between successive terms of the lower central 

series. ) 

I shall also prove the torsionfree analogues of the two theorems. A variety is 

called torsionfree if it is generated by its torsionfree groups; equivalently, if its 

free groups are torsionfree. With respect to partial order by set-theoretic 

inclusion, these varieties form a lattice (which is not a sublattice of 

the lattice of all varieties, for the meet is now the variety generated by the 

torsionfree groups in the intersection and so can be smaller than the intersection). 

The lattice of all torsionfree varieties of nilpotent groups of class at most c is 

distributive if and only if c ~ 5 . The Classification Theorem has the same form as 

before, with the same index sets and parameters l(~) , and without any restriction 

m of an on c ; the only change is that A~ is replaced by the subspace lattice A 0 

m-dimensional rational vector space. 

The general case may now be approached as follows. If V is any variety, it has 
= 

a well-defined torsionfree core: the variety ~ generated by the torsionfree groups 

of V . If V is nilpotent, it is the join of V¢ and certain varieties V , one 
= ==~ 

for each prime p from a finite set, each V of p-power exponent. In a sense, 
=p 

this reduces the study of nilpotent varieties to the torsionfree and prime-power- 

exponent cases. Of course, when --~0 is trivial, the V are uniquely determined by 
=p 

and the reduction is as good as one might wish. However, when ~ is nonabelian, 
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it does happen that the V are not determined by V , not even if we insist that =~ = 

they be chosen as small as possible and only primes greater than the class of V 

occur. The resolution of this difficulty is the second important open problem of 

small class theory. 

To conclude this introduction on a more cheerful note, let me draw attention to 

the unrecorded fact that the torsionfree Classification Theorem leads, via the work of 

Stewart (loc. oit), to such specific results as the following. There are precisely 

39 torsionfree varieties of class at most 5 (only one, namely the variety ~5 A ~2 

of all metabelian varieties of class at most 5 , failing to lie in, or between 

successive terms of, the sequence ~' ~' ~2' ~3' ~' ~5 : it is to establish this 

that Stewart's work is needed herel; but there exist infinitely many torsionfree 

varieties of class 6 . 

The next six sections contain the technicalities; classification first, 

distributivity last. Finally, ina postscript I comment on the earlier history of the 

key ideas. Some of those comments are based on references (included in the list at 

the end) which only came to my attention after the end of the Institute. 

2. Subdirect decompositions 

Let F be a noncyclic free group; for convenience, take it to have finite rank 

(the whole argument would remain valid m~tis mu~ndis without this restriction), and 

let Y be a free generating set of F . Write the lower central series of F as 

F : =N0(F) > F' : =N~(F) > ... > =oN (F) > ... : 

thus N (F) is the verbal subgroup of F corresponding to the variety N of aLl 
==o ==o 

nilpotent groups of class (at most) o . As is well known (of. 34.13 in Hanna 

Neumann's book [22]), if the rank of F is at least o then the lattice of sub- 

varieties of N is dual to the (modular) lattice N of fully invariant subgroups 
==o o 

of F containing N=o(F) . In this duality, torsionfree subvarieties of N 

correspond to isolated fully invariant subgroups of F (that is, subgroups U with 

F/U torsionfree). These subgroups form a lattice N O , in which meet is set 
o 

intersection and the join U V V is obtained by taking (U v V)/UV to be the sub- 

group of E/UV consisting of the elements of finite order [thus N O is not a sub- 
o 

lattice of N ° ]. It is easy to prove that N0c is modular. For a fixed prime p , 

the p-power exponent subvarieties of N correspond to fully invariant subgroups of 

p-power index in F : these form a sublattice N p of N Our subject is therefore 
o c 

the study of the N p and N O . (These lattices do vary with the rank of E when 
o o 
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that rank is small, but this dependence will not effect our arguments until the last 

moment, so for the time being we may ignore it.) 

The aim of this section is the following reduction of the problem. Let L 0 
c 

denote the sublattice {U (Nee U -< __N o_I(F)} of N °c ' and iPc the sublattice 

{U ( N c I U <_ N _l(F) and [N_~_I(F)/UI is a power of p} 

of N c (so L p o avoids ~ c except when c = i ). We shall prove that, for c > i 

N O is always a subdirect product of N O and L 0 , and N p is a subdirect product 
c c-i c c 

of N p and LP provided c < p+l . Beyond this section, our time will be devoted 
c-i c 

to the analysis of the i p and k 0 , for this reduction (and induction on c ) will 
c c 

have established that N p and N O are subdirect products of the LP and the k. 
C C 7~ 7~ 

(with i ~- i ~- c ), respectively. 

Some more comments before we embark on the proof. This reduction is in effect 

contained in Klja[ko's paper [14] for ~o and c < p provided F has sufficiently 

large rank. Our proof needs no restriction on the rank of F • For the 

Classification Theorem only the case c < p is relevant, and for that the proof we 

are about to see is really easy. The negative parts of the Distributivity Theorem 

could be reached via a much simpler version of the reduction, but I can not imagine 

3 
how the positive part for N 4 could be reached by 'the method' without the relevant 

reduction. The present version of the reduction goes just about as far as possible: 

2 2 and 2 when the rank of F is 2 , N 4 is not a subdirect product of N 3 L 4 , for the 

2 is not. (In fact, Bryce had shown, in the footnote latter are distributive but N 4 

of page 335 in [7], that ~p+2 is never distributive.] 

For the proof, let us write N for N _I(F) . The key fact is that if 

U, Y 6 N p (or N O ) then the sublattice of N p (or of N O ) generated by U, V , and 
c c c c 

N , is distributive: assume this for the moment. Then U ~-+ U v N and U ~-+ U A N 

are lattice homomorphisms of ~c (or N Oc ) onto ~o-i (or N Oc_I ] and L pc (or 

L 0 ] respectively. The only nontrivial ~rt of this claim is that ~ ÷ L p is onto. 
c' c c 

To see this, take any W in L p and consider F/W ~ this is a finitely generated 
$ 
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nilpotent group in which the elements of finite order form a finite p-group, namely 

N/W . Thus F/W is residually a finite p-group (Gruenberg [ii], Theorem 2.1 (ii)) 

and so has a normal subgroup H/W of p-power index which avoida N/W . Take U to 

be the verbal subgroup of F corresponding to the variety generated by F/H : then 

U £ N p and U A N = W . The subdirect decompositions now follow from the fact that 

U v N = V v N and U A N = V A N imply that U = V , this implication being valid in 

every distributive lattice. Instead of memorizing lots of simple results and 

scattered references, I prefer to keep handy the diagram of the free modular lattice 

on three generators from which all such claims are easily read off (or disproved): 

This picture will also start us on our way to deriving a contradiction in case 

the lattice generated by U, V , and N , is not distributive. Recall that two 

intervals (pairs of comparable elements), say, U I < U 2 and V I < V 2 , of a lattice 

are called perspective if U I = U 2 A V I and U 2 v V I = V 2 • Projectivity is then the 

smallest equivalence relation on the set of all intervals of the lattice such that 

perspective intervals are projective. If U I < U 2 and V I < V 2 are perspective in 

N c then by an isomorphism theorem U2/U I and V2/V I are (End F)-isomorphic; if 

they are perspective in N O then a finite-index subgroup of U2/U I is (End F)- 
c 

isomorphic to some finite-index subgroup of V2/V I . In these two observations the 
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conclusions are in terms of equivalence relations, hence in the hypotheses 

perspectivity may be replaced by projectivity. What we need from these comments and 

the diagram above is that if U, V, N generate a nondistributive sublattice in N 
d 

(or in N O ] then N/N (F) and F/N must have (abelian) nontrivial (End F)- 

isomorphic sections: namely, 

(UvV)AN and (UvN)A(VvN) 
(UAN)V(V~) (UAV)vN 

(which are p-grOups) if we are in 

these if we are in N O . 
o 

N , or finite-index (torsionfree) subgroups of 
o 

The next step is to 'refine' this section of F/N according to the lower central 

series of F/N . This is routine group theory and I omit the details. The conclusion 

is that, for some i (with i <_ i < c ), N/N=o(F) and N. ~(F)/N.(F) have --=~-± ==b 

nontrivial (End F)-isomorphic sections which are p-groups if we started in ~o and 

torsionfree if in N O . 
o 

At this point, elementary commutator calculus enters the argument. For each 

n positive integer n , consider the endomorphism of F which is defined by y ~-+ y 

for all y in the free generating set Y of F . Induction on j readily yields 

n j 
that this acts as w~-~ w on every element of (every section of) ~._l(F)/~j(F) . 

The result of the previous paragraph then implies that n i E n c (mod p) if we started 

in ~ , or n i o NO = n if in , for all n • In the latter case we have the desired 

contradiction; in the former, only two possibilities remain: either i = i and 

c = p , or i = 2 and c = p + i . 

To eliminate the first, consider an endomorphism of F which leaves one element 

of Y fixed and takes all others to i . This endomorphism annihilates F' and 

hence every section of N/N (F) ; on the other hand we know all fully invariant 

subgroups of F containing F' and can see that this endomorphism does not 

annihilate any nontrivial (End F)-admissible section of F/F' • 

It is much harder to deal with the second case. Let UI' U2' Yl' V2 be fully 

invariant subgroups of F such that N2(F) < U I < U 2 ~ F r and 

~+I(F) < V I < V 2 S ~(F) while U2/U I and Y2/Y I are (End F)-isomorphic 

p-groups: we may as well take these sections to have exponent p . Let G be the 

subgroup of F generated by any two elements of Y ; embed End G in End F by 

letting every endomorphism of G map all elements of Y outside G to i , and 



212 

denote by s the identity of End G . Then (U2/U1]c is (U 2 n G]U1/U 1 which is 

(End G)-isomorphic to [U 2 n G)/(U I n G) ; also (U2/UI]S is (End G)-isomorphic to 

(V2/VI]s ; so (U 2 n G]/[U I n G] and [V 2 n G]/[V I o G] are (End G)-isomorphic 

groups of exponent (dividing) p . All fully invariant subgroups of F between F r 

and N=2(F) are known: U 2 = _~(F')~2(F) and U I = B=hp(F')~2(F) for some k , and so 

U 2 n G > U 1 n G • (Reminder: B is the variety of all groups of exponent dividing 

n .) Thus G inherits all the information we need about F and we could work on in 

G • To simplify notation, we forget G and assume instead that IYI = 2 ; say, 

: {Yl' Y2} 

It is time for more commutator calculus. For each positive integer n , we 

n 
consider the endomorphism of F defined by yl ~-+ yl , y2 ~--~ y2 . On the cyclic 

quotient E'/N_2(F) , and hence also on the quotient U2/U 1 of order p , this 

endomorphism acts as u ~-+ u n , thus it must act the same way on V2/V 1 . The 

quotient N (F)/N ~(F) has a basis (as Tree abelian group) consisting of the cosets ~p =p+± 

of the basic commutators of total weight p + 1 in Yl and Y2 " On the coset b 

of a basic commutator of weight k in Yl and p + 1 - k in Y2 ' the endomorphism 

k 
acts as b~+b n If V2/V 1 were (End F)-isomorphic to some section of 

IF" n N (F)]N ~(F)/N ~(F) one could exploit the fact that the latter is generated 
=p =T+i =T+± , 

by the cosets of the non-left-normed basic commutators of weight p + i , whose weight 

k 
k in Yl satisfies 2 ~ k ~ p-i , and derive that n ~ n (mod p) for some such k 

and all n , which is clearly impossible, The alternative is that V2/V I is 

(End F)-isomorphic to a section of N (F)/[F" n N (F)]N ~(F) and therefore also to 
=2 =T =p+i 

some section, say W2/W 1 , of F"N (F)/F"% e =P +l(F) . Let p denote the exponent of 

the Sylow 

W2/W I is 

p-subgroup of the finitely generated abelian group F"N (F)/W I : =:p 

(End F)-isomorphic to a section of 

for some f with i i f_< e . 

that these quotients, for all 

(while 

then 

B=pf-1 [F"N (F)]F"N ~ (F) 

£ ~[F"N (F)]F"~ ~(F) 
pJ ~ =p ~ =p+~ 

The desired contradiction now follows from the fact 

f , are irreducible (End F)-modules of order 

W2/W 1 has order p ]. Indeed, a basis {b i I 1 <_ i <- p} is made up of the 
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¢]pf -i 
eosets of the EV2' Y~I' "'~i~' ~-~'' , and we shall find it sufficient to 

p-i 

contemplate only the action of those endomorphisms ~ of F which satisfy 

fll fl2~ f21 f22 , 

Yl ~ ~ Yl Y2 r', y2~ 6 Yl Y2 F , 

f22' i (mod p) . 

These endomorphisms of F act on this basis exactly the way the corresponding 

elements of SL(2, p) act by homogeneous linear substitutions on the monomials 

xi-ly p-i in the 2-variable (commutative) polynomial algebra over the field of p 

elements. The space of homogeneous polynomials of degree p - i is well known to be 

an irreducible SL(2, p)-module (Brauer and Nesbitt [5]), and our argument is 

complete. 

In the last step, representation theory may be replaced by commutator 

calculations of Brisley [6]. However, that is a case where 'bare-handed' commutator 

calculus is pushed near its limits, and we get a clear indication that systematic 

exploitation of connections with representation theory offers the only hope of 

further progress. That is precisely what 'the method' does, as we are about to see. 

3. Lie representations 

The upshot of the previous section is that we are to study certain fully 

invariant subgroups of a noncyclic free group F which lie between successive terms 

of the lower central series of F . This is greatly facilitated by a number of shifts 

in context. 

Consider the lower central factors of F as modules for the monoid End F of 

all endomorphisms of F : o~ task is to study their submodules. It is convenient 

to ~ite these modules additively. As is well known (see G.E. Wall's lectures [28] 

in this volume as general reference), the restricted direct sum of these modules may 

be turned into a graded Lie ring gr F by defining Lie multiplication from group 

co~utator formation, so the action of End F on gr F is compatible with this 

graded Lie ring structure. T~s we have a (monoid) homomorphism from End F to the 

monoid End(gr F) of all graded Lie ring endomorphisms of gr F , expressing the 

action of End F on gr F . Two restriction maps complete a commutative diagram 

End F + End(gr F) 

End(F/F r ) 
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where F/F t is both the commutator factor group of F and the homogeneous component 

of degree i in gr F . Since F is free, each endomorphism of F/F' is the 

restriction of some endomorphism of F , so this restriction map is onto, and 

therefore by the diagram so is the other. Because F/F' generates gr F (see 1.12 

in Wall [28]), the vertical restriction map is also one-tO-one, hence an isomorphism. 

It now follows that the horizontal arrow is also onto. The conclusion we want to 

retain is that the monoid End(F/F') acts on gr F as End(gr F) and our problem is 

the study of the End(F/F')-suhmodules of (the homogeneous components of) gr F . 

Just before we move on, a warning. As F/F' is abelian, End(F/F') is usually 

regarded as a ring; however, its action on gr F was derived from homomorphisms of 

mere m~itiplicative monoids, and it is in fact not compatible with the additive 

structure of End(F/F') , so gr F is not a module for the ring End(F/F') . As a 

reminder of the need to ignore addition in End(F/E') , one might write EndX(F/F ') 

instead, but we cannot afford to carry even the notation we have used so far, let 

alone complicate it: so we shall write simply E . 

To prepare for the next shift, let A stand for the ring of all polynomials with 

integer coefficients in a set of noncommuting indeterminates (the number of 

indeterminates being the rank of F ), and A for the additive group of homogeneous 
c 

polynomials of degree e . Now A 1 is identified with P/F' , and then E acts on 

A 1 , and hence on all of A , as the monoid of all linear homogeneous substitutions. 

Note that each such substitution is a ring endomorphism of A , mapping each A e into 

itself. Next, consider the usual Lie multiplication [a, b] = ab - ba which turns A 

into a graded Lie ring with homogeneous components A e , and denote by L the Lie 

suhring generated by the indeterminates in A ~ put L = L n A , and note 
d o 

[ 1 = A 1 = F/F' . Thus L is a graded Lie ring with homogeneous components hc , and 

it is clear that [ and each [ admit the given action of E • So far this section 
a 

has amounted to immediate observations concerning a long string of definitions; by 

contrast the next point is a deep theorem due to Magnus and Witt (see 3.14 in Wall 

[28]): the identification of I1 with F/F' may he extended to an identification of 

[ with gr F • Thus our task becomes the study of E-suhmodules of the [ (where 
c 

by now E = EndX(F/F ') = EndXAl = End×Ll I" 

In this task A will remain an important aid. Contemplate for a moment: A 
d o 

is a free ahelian group (with the finite set of all monomials of degree e as basis), 

so its endomorphism ring End A is just the full matrix ring (of appropriate size) 

over the ring Z of integers. Each element e of E acts on A as an element, 
o 

e ~ say 8 , of End A , and e ~+ is a (multiplicative) homomorphism. The set 
o 
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k c , then 2Z(p)B 

L c n77(p)B : B . 

77(p)k c then k c 

If B admits 

E ~c of all e ~c is a multiplicative submonoid of End A , and so the additive 
c 

subgroup, say E of End A generated by E qgc is a subring. As additive group, 

End A e is free abelian of finite rank, and therefore so is E , hut beware: E (9c 
c 

is just an additive generating set, not a free basis, for E (I emphasize that the 
d 

original addition in E remains forgotten, and whatever additive relations there are 

on E ~c are relations in End A c .] We are after the E -submodules of L but the c d' 

representation theory of the ring E is too complicated to approach head on and c 

classification in this generality eludes us. 

The final shift will focus on the submodules we really hope to reach: those 

which are either isolated or of p-power index. Allowing the coefficients of our 

polynomials to range over the ring ~(p) of all rational numbers with denominators 

prime to p (the localization of Z at p ), we obtain a corresponding polynomial 

algebra ~(p)A with homogeneous components Z(p)A . As the notation suggests, each 

element of ~(p)A c is a product of an element of Z(p) and an element of A c 

Clearly ~(p)A c is a free ~(p)-module with the set of monomials of degree c as 

basis, and End~ ~ )A c is also finitely generated and free as Z(p)-module, 
~p) p 

embedding End Ac so that End~p)Z(p)A c = ~(p) End Ac The Z(p)-submodule Z(p)E c 

is a Z(p)-subalgebra of End~ Z, ,A • If B is a subgroup of p-power index in 
~p) <p) c 

is a ~(p)-Submodule of finite index in Z(p)k c and 

Conversely, if C is any Z(p)-Submodule of finite index in 

n C is a subgroup of p-power index in kc and Z(p)(k c n C] = C . 

Ec then Z(p)B admits Z(p)E c , and if C admits Z(p)E c then 

k c n C admits E c Thus B ~-+Z(p)B defines a bijection from the set of all Ec- 

submodules of p-power index in L c to the set of all ~(p)Ec-submodules of finite 

index in Z(p)k c (it is a bijection because the map defined by C~-+ k c n C is a 

twosided inverse for it], and this bijection obviously respects partial order by 

inclusion. It is an elementary fact that all order-preserving bijections of lattices 

are lattice isomorphisms. So we may sum up this section: i p is isomorphic to, and 
c 

will from now on be thought of as, the lattice of all Z E -submodules of finite index pc 

in Z(p)L c . Similarly, LOc is isomorphic to, and will from naw on be thought of as, 

the lattice of all ~Ec-submodules of ~Lc ' where as usual ~ stands for the field 
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of rational numbers. The point of this last shift is that we shall be able to show 

that, for c < p , ~(p)E c is a direct sum of full matrix algebras over Z(p) , and 

for every case ~E c is a direct sum of full matrix algebras over @ , so their 

representation theory is trivial compared to that of E 
c 

4. Symmetric groups 

We have reached the point where some detailed calculation can no longer be 

avoided; please bear with me if I defer motivation for a while. Let X stand for 

the set of indeterminates in A , and C for the ordered set {i, 2, ..., c} . A 

monomial ~ of degree c is given by choosing c factors from X , in order, with 

repetitions allowed: that is, by an arbitrary map ~ : C ÷ X . For the corresponding 

monomial ~ we have ~ = (!~)(2~) ... (c~) = I ! i~ • Let M stand for the set of 
iEc c 

all mOnomials of degree c . (It is customary to index the elements of X by the 

first so many natural numbers: this loads the context with an ~rrelevant order on X 

and increases typographical complexity so I avoid it, but the reader might prefer to 

domesticate this section by translation into that traditional form. ) Realize the 

symmetric group S as the group of invertible maps 0 from C to C , written on 
c 

the right and composed accordingly. Then S also acts on M via the composition 
c c 

of maps: o~ = o~ (where o~ is ~ followed by ~ from C ro C to X ). Extend 

this action linearly to Ac (and also to Z(p)A c and @A c ), so Ac becomes a left 

module for the grOup ring •S Let us agree to write endomorphisms of A (qua 
c c 

abelian group) on the right, and to compose them accordingly: thus A is a right 
c 

(End Ac]-module. However, we are not dealing with a bimodule, because left action of 

77S and right action of End A do not commute: in other words, 
c c 

End~ A c < End Ac The aim of this section is to show that En~s Ac >_ Ec and, 
c c 

better still, En~ f > whence of (p)S (p)Ac = ZZ(p)Ec whenever p c , course 

End- S (~A c = @E c ~c 

To this end, we shall need to manipulate elements of End A A convenient 
c 

basis for End A as free abelian group consists of the 'elementary matrices': e 
c ~w 

takes ~ to ~ , and all monomials other than ~ to 0 . An element ~ k e of 

End A commutes on A with an element O of S if and only if 
c c c 
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that is, 

kaK,V~ : ~ kKv~--5 for all ~ in M c 

Comparing coefficients of ov , the last condition amounts to 

: k,v k K,~ v for all K, v in M c 

Consider therefore the action of S on the cartesian square X C × X c , namely 
C 

: (p, ~) ~-+ (074, a~) : we have that ~ kH eH~ ( En~s A c if and only if kH~ is 
C 

constant on each S -orbit in X c x X c . Yet another form of this fact is that one 
c 

basis of En~s~ A c as free abelian group consists of the "orbit sums" ~ eHw of 

elementary matrices where each sum is taken over one complete S -orbit of elementary 
c 

matrices with respect to the action ~ : e 

Consider now an element e of E : it may be described by the matrix of 

i n t e g e r s  ~x,y (x, y ( X )  such t h a t  

x~ = ~ ~x,uU , 
y EX 

@o 
and then e acts on M as the c-fold Kronecker power: 

c 

He : e~-H, • ~ 
%6C 

in other words, 

= ~ ~i~,iw e~v " 

The product I I~iv,i v does not change when (H, v) is replaced by (o!4, ~v) , for 

this amounts only to a permutation of its factors which are ordinary integers, so E ~ 

is contained in En~s A c and the easy half of the aim of this section has already 

c 

been reached. 

Towards the hard half, note that the orbit sums ~ eH~ form a basis also for 

En%(_)Sf(p)A c as free ~(p)-module. By the easy half, ~(p)E c is contained in 

this module; if it were properly contained, it would lie in some maximal submodule 

which in turn would be the kernel of a Z(p)-homomorphism onto the unique simple 
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~(p)-module ~(p)/p~p) • Thus it suffices to show that if 

: End ~ A 
~(p)S c (p) c +Z(p)/p~p) 

is a ~(p)-homomorphism such that ~ (e ~9c] = 0 for all e @c , then ~ : 0 . This is 

how we shall proceed (adapting the proof of 67.3 in Curtis and Reiner [i0]). 

The first step is to extend ~ to End-. Z, ,A by defining it to map to 0 

all but one elementary matrix e from each S -orbit: these, together with the 
B~ c 

orbit sums on which @ is already defined, form another ~(p)-free basis, so this 

definition is legitimate. Part of the assumption is that 

le@Cl = ~ ~Ie~ 1 ~ ~i~,iv = 0 
~,~ 

for all e @c , that is, for all choices of the 8 
x,y 

polynomial 

in ~ . This means that the 

~le~w I ~ zi~,iw 

in the set {Zx,y I x, y ( X 1 of commuting indeterminates vanishes at all 

substitutions from 77 + p~p)/p~p) , that is, from /7(p)/pSp) . Now of course a 

nonzero polynomial may well vanish at all substitutions from a finite field: but this 

polynomial is homogeneous of degree c , sO as long as c _< p we can conclude* that it 

must be the zero polynomial. On the other hand, even the commutative monomials 

zi~,i v are different for different Sc-Orbits of the pairs (~, W) , and for each 

orbit at most one ~(e I could be nonzero, so it follows that in fact all q~(e 1 

are 0 as required. 

Thus we have proved that En~s A c >_ E c and End S ~Ac = ~Ec for all c , while 
c kc 

End_~p)Sc ~p)Ac = ZZ(p)E c whenever c < p . We whall not really need the case 

c = p . (It is easy to see from this argument that the result is sharp, in that the 

* A nonzero polynomial of degree less than p in each indeterminate cannot vanish at 
all substitutions from the field of order p : see the proof of Theorem 12.21 in 
Lausch and N~bauer [17]. This deals with c < p • If c = p , use the fact that 

z p - z vanishes at all substitutions, so a nonzero homogeneous polynomial of degree 
p represents the same function as a nonzero polynomial of degree less than p in 

each indeterminate. (There the argument stops, for zPlz 2 - ZlZ~ vanishes 

identically. 1 
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claim fails for c > p .) 

What makes this result useful is the fact that, for c < p , the group algebra 

77(p)S c is a direct sum of full matrix algebras over Z(p) . The corresponding claim 

for ~S c is better known: but observe that in expressing the relevant elementary 

matrices as rational linear combinations of elements of S , one can get away with 
d 

denominators which divide c! and are therefore prime to p when c < p (see §5 

of Chapter IV in Boerner's text [3]). It will be convenient to exploit this in a 

separate section. 

5. Morita equivalence 

This is a pretentious heading, for we need only a very special case of Morita 

equivalence which is much older: Brauer equivalence might be a more appropriate 

appellation. For a convenient modern reference, see Chapter 6 in Anderson and Fuller 

[i]; in particular, Propositions 21.2, 21.7, and Exercises 21.6, 21.5. Let K be a 

commutative ring with i (take K = ~(p) if that is reassuring, but not if it clouds 

the issue], m a positive integer, K the algebra of m x m matrices over K . 
m 

Regard the direct sum K ~m of m copies of K first as left K right K module 
' m 

U . ("row vectors"), then as left K , right K module ~ ("column vectors"). For 
m m m 

the tensor products of these bimodules we have that Um ®K ~m ~ K and 
m 

Um ~K U ~ K . It follows that the additive functors U m ®K and Um~K - provide 
m 

an equivalence between the categories of left K -modules and (left) K-modules (that 
m 

is, the composites of the two functors are naturally equivalent to the identity 

functors on these categories). Thus two modules corresponding to each other in this 

equivalence have isomorphic endomorphism rings and isomorphic submodule lattices. 

Suppose now that K is a principal ideal domain and V is any finitely 

generated left K -module such that the product of a nonzero scalar matrix and a non- 
m 

zero element of V is never zero. Then the corresponding K-module is also finitely 

generated and "torsionfree", hence a direct sum of, say, n copies of K . It 

follows that Y is the direct sum of n copies of U m as left Km-module, and the 

endomorphism ring of Y is just K (thought of as acting on the right of V ). By 

the same argument with left and right interchanged, a finitely generated "torsionfree" 

right K -module W is a direct sum of, say, 1 copies of U as right K -module, 
n ~ n 

and the submoduie lattice of W is isomorphic to the submodule lattice of the free 

K-module of rank 1 • It is easy to see that in this lattice isomorphism submodules 

of finite index correspond to submodules of finite index. 
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It is now a tedious but perfectly elementary exercise to extend these conclusions 

to the case of direct sums of full matrix rings. Let K remain a principal ideal 

domain; for ~ ranging through some finite index set, choose positive integers m(~) 

and let ~Km(~) be the direct sum of the corresponding matrix rings. Denote by U 

the left K , right ~Km(~) bimodule obtained from Um(~) by letting all the 

and Km(~, ) with ~' # ~ annihilate it, and define <(~) similarly. [Note U 

depend on ~ , not just on the integer m(z) which may be the same for several 

distinct elements of the index set.) Let e he the identity element of K(~) , so 

e is the identity element of ~ Km(z) . Take any finitely generated left 

~ K(z)-module V which is torsionfree in the sense that Ik ~e  )v = 0 with 
k ( K , v ( V implies k : 0 or v = 0 : then V is the direct sum of the e V 

and the earlier case can be applied to describe the structure of each e V • The 

conclusion is that V = 0 ~  (Z) for suitable nonnegative integers n(~) , and the 

endomorphism ring of V (acting on the right) is G 7{n(z) with z ranging through 

those indices for which n(~) # 0 . 

At this stage we are ready to establish the structure of ~(p)E ° and ~E c . 

For we know that Z(p)S c has the form G Km(~) and ~(p)A O is finitely generated 

and torsionfree: thus ~(p)E c , which is just the endomorphism ring 

End_~p)S c~p)A c , is of the form O Kn(~) ; all this with K :Z(p) . The same gOes 

of course for ~E c , with K = ~ . However, there is more to be had from this 

approach. 

To this end, we carry on with extending the comments of the second paragraph of 

this section. Interchanging right and left, we know that a finitely generated 

torsionfree right 0 K(~) module W has the structure Q U ~l(~)~ where now the 

range of ~ may be smaller than before and the U are defined with reference to the 

n(~) rather than the m(~) • Adapting notation still further, let e denote now 

the identity element of K(z) • Every submodule W F of W is of the form ~ W'e , 

and W t has finite index in W if and only if each W'e has finite index in the 

corresponding We Thus the lattice of finite index submodules of W is the direct 

product of the lattices of finite index submodules of the We Again, each 

involves essentially just one matrix ring Kn(z) , so by the previous observation the 
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lattice of finite index submodules of 

index K-submodules of 

to the lattice A P 
l(~) 

l(~) • 

We T is isomorphic to the lattice of finite 

K ~l(z) . In case K : ~(p) , the latter is in turn isomorphic 

of subgroups of p-power index in a free abelian group of rank 

We have almost finished the proof of the qualitative part of the Classification 

Theorem stated in the Introduction. The subdirect decompositions were established in 

Section 2; we have just proved (read W = Z(p)L ° ] that LP c is the direct product of 

the AT(z) whenever c < p ; and the same argument with ~ in place of Z(p) 

counting all submodules of ~h c , gives that L0c is the direct product of the sub- 

0 
space lattices A/(~) . What remains is the explicit determination of the appropriate 

range of ~ and the integers l(~) . However, the qualitative claims made about 

these in the Introduction are already at hand. For, from the second paragraph of this 

section on, all modules and algebras considered have been free as K-modules, so the 

whole discussion remains invariant as we change K from Z(p) to ~ or even all the 

way to the complex field ¢ - neither the range of ~ nor the multiplicities l(~) 

change in the process. Thus indeed they are independent of the prime p : all they 

depend on is the class c and that long forgotten parameter, the rank of F . The 

quantitative details will be given in the next section. 

6. The multiplicity formula 

Let r denote the common rank of F and A . The quantitative details needed 

to complete the Classification Theorem have been worked out long ago, in the context 

of the representation theory of the general linear groups GL(r, C) • Put 

G = GL(r, C) : this also acts on CA , by invertible linear homogeneous 
o 

substitutions with complex coefficients, and the Kronecker powers g~ (for g E G ) 

also span End,s CA ° , that is, CEo : for a qualitative description, see §67 in 

o 

Curtis and Reiner [i0]; for a wealth of detail, I find Boerner [3] the most readable 

source. What we need here is that the complex irreducible representations of S are 
o 

traditionally indexed by the partitiuns ~ of o , so initially the set of all these 

is our range for ~ . There are formulas for the m(~) , but we don't need those 

here. The irreducibles which occur with positive multiplicity n(~) in CA ° are 

precisely those labelled with partitions into at most r parts, so the set of these 

becomes our final range for z , relevant in describing ~(p)E ° and ~E c . Again, 

there are formulas for the dimensions n(z) , but we don't need them either. The 
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character of G afforded by ~L c was, I believe, first given by Angeline Brandt [4], 

and the corresponding formula for the multiplicities l(~) follows so directly that 

it must have been known to her, though the earliest that I can find it in print is in 

Wever's paper [29]. It is 

1 d~a (oC/d) l(~) = ~ ~(d)x~ 

where ~ is the M6bius function, X~ is the irreducible character of Sc indexed 

by ~ , and ~ is the cyclic permutation (12 ... c) • There are various ways of 

r c/d~ 
evaluating X~ ] ; let me give one, just for flavour. If the parts of ~ are 

kl, ..., k s so that k I ~ k 2 _> ... >_ ks (and k I + k 2 + ... + ks = c ], then 

X~[~ c/d] is the alternating sum of the multinomial coefficients 

kl+iT-i k2+2r-2 ks+S~_~J 
{ d---' d . . . . .  

Over all permutations T of {i, 2, ..., 8} , with sign according to the parity of 

T , and subject to the convention that the multinomial coefficient is 0 unless all 

its entries are nonnegative integers. At least, this is how I read pp. 134-135 in 

Murnaghan's book [21]. 

As I said, the multiplicity formula is obtained from the character formula. 

That, in turn, may be easily derived (as in Wever [30]) from the second of 'Witt's 

formulas' (reporduced as Theorem 5.11 in Magnus, Karrass, Solitar [20], for instance), 

although Brandt preferred a different argument. The proof in Klja[ko's [14] left 

as exercise for the reader a step which seems every bit as hard as the multiplicity 

formula itself, but in a more recent paper [15] he indicates a nice proof and gives a 

fascinating interpretation - paraphrased via Frobenius reciprocity, this reads as 

follows. Take any faithful linear (complex) character of the cyclic group generated 

by ~ , and induce it to S : then l(~) is also the multiplicity of X~ in this 
o 

induced character. He deduces that, when c > 6 , the only partitions z with 

l(~) = 0 are those corresponding to the two linear characters of S (This was 

conjectured in Pentony's unpublished thesis [23].) The multiplicities for c ~ 6 are 

as follows (from Thrall [27] who used a recursive method and tabulated 1 for 

e ~ i0 ; but see Brandt's [4] for a correction in the case c = i0 itself): 
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the value of 1 is 0 i 2 3 

at the partitions i 

2 12 

3, 13 21 

4, 22 , 14 31, 212 

5, 15 41, 32, 312 , 221, 213 

6, 23 , 16 51, 42, 32 , 313 , 214 

where the usual notation for partitions has been used: 

the partition 4 + I + i of 6 . 

412 , 2212 321 

for example, 412 stands for 

7. Large class 

Having completed the Classification Theorems, there is relatively little left to 

establish the Distributivity Theorems. The fact that l(~) ~ i whenever c ~ 5 but 

l(~) > i for some ~ when c = 6 means that the torsionfree Classification Theorem 

implies the torsionfree Distributivity Theorem, and the same happens for the p-power 

exponent ease whenever p h 7 . The case of c ~ 3 has been covered by J~nsson [13] 

and Remeslennikov [24]. As I have already mentioned, Bryce [7] has demonstrated the 

nondistributivity of ~p+2 for all primes p , exploiting the breakdown of the 

subdirect reduction discussed in our Section 2. This leaves the cases N~, iq~ 

5 3 
N 5 . For N~ I need ad hoc methods which are not suitable for presentation here. 

The distributivity of N 5 follows from the Classification Theorem. What is left then 
4 

5 5 is not distributive. is N 5 ; by Section 2, it will suffice to prove that i 5 

2 
[Klja[ko [14] proves the nondistributivity of L 4 , a different route to N~ from 

5 
Bryce's. The argument is exactly analogous to that which I will present for L 5 . 

The case of N 2 4 was also dealt with by Belov [2].] 

Before embarking on the discussion of this "large class" case, some general 

comments. As observed before the final shift in Section 3, the elusive general 

problem is the analysis of the E -s~bmodules of k We have proved that ~E c is 
o o 

a direct sum of full matrix rings over Q , and observed that additively E c is free 

abelian of finite rank: so E c is a Z-order in the excellent algebra ~E ° . What 

we have done for primes with p > c may be viewed as describing the localizations of 
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E O (and k c ] at these primes, standard steps in the investigation of any ZK-order. 

The main step of Section 4 can be reinterpreted to say that E is contained in 
o 

a n o t h e r ,  more t r a c t a b l e ,  2E-order  in  t h e  same a l g e b r a ,  namely  in  End2~ A c , and t h a t  
c 

the finite index of E c in En%s A ° is divisible only by primes strictly less than 
o 

It is useful to know that 1 ° admits the action of this larger Z~-order [for o O 

h = ~ A where ~ is a suitable element of Z[S , whose introduction was 
o o o o o 

attributed to Otto Grin by Magnus in  [ 1 9 ] :  see  Theorems 5 .16 ,  5.17 in  Magnus, K a r r a s s ,  

• is a Solitar [20] For example, the lattice of (Endz~ AoJ-submodules of I c 
o 

sublattice of the lattice of E -submodules, and in aiming for a nondistributivity 
o 

it is sufficient if one can succeed in that sublattice. (This help is not result 

in dealing with [~ , for then p >_ o , but it does matter in the case of needed 

2 
L4 "] The point is that we have more information on ZS~o [and hence also on En%s Ac] 

o 
even in the context of small primes, and this can be exploited to good effect. 

As the situation is now tighter, for comfort let us assume that the rank 

r is large• Then there exist one-to-one maps U : C ÷ X , and the corresponding 

so S acts regularly on the orbit of monomials ~ have trivial stabilizers in So " o 

• has a d~ect summand namely ZSc~ , which is a such a ~ What we need is that A c 

regular ZS -module• (This makes it particularly easy to see that End E A is just 
o c ° 

in En~A ° : a potentially useful fact, but irrelevant to our the image of 2ZS 
o 

immediate purpose• ] 

To come to the point, let us take p : c : 5 _< r and U : C ÷ X one-to-one so 

77(5)$5~ is a regular direct summand of Z(5)A 5 , and recall from Section 4 that in this 

case End-zi(5)S 5A5 : Z[( 5)E5 . If W is an indecomposable direct summand of Z(5)$5~ 

(qua 77(5)S5-module], then it is also a direct summand of Z(5)A 5 ; equivalently, 

Z(5)A 5 has an idempotent 77(5)Ss-endomorphism , say f , with 77(5)Asf = W • The 

indecomposability of W means that f is primitive in Z(5)E 5 . When ~W decomposes 

as a direct sum, (~ U ~(~) say, of irreducible ~Sc-mOdules , this corresponds to f 

t(z) 
being no longer primitive in @E5 : instead, f = ~ ~ fz,i with the f~,i pair- 

i:i 

wise orthogonal idempotents primitive in ~E 5 and ~Wf~,i ~--< The way we labelled 
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the simple components of ~E 5 by partitions means, in this context, that 

f~,l ..... f~,t(z) are in the simple component labelled by ~ . In exact parallel, 

of course, ~5)E5 is an indecomposable right ideal in 2Z(5)E 5 but 

~E 5 : ~ ~ fz,i~E5 , with f~,i@E5 belonging to the isomorphism type of irreducible 

~ES-modules labelled by ~ . As W was an indecomposable direct summand of 

the regular 77(5)Ss-module Z(5)$5~ , we know that the t(z) form a column in the 

decomposition matrix [see the beginning of the proof of 83.9 in Curtis and Reiner 

[i0], including the comment in the footnote which enables one to avoid completion 

given that @ is a splitting field for S 5 ); and we are still free to choose W to 

obtain whichever column we like. (I shall not reproduce the decomposition matrix 

here; it is not hard to calculate. ) Let us choose W so we get the column 

corresponding to the 3-dimensional composition factor of the permutation 

representation of degree 5 over the field of 5 elements: then 

t(41) = t(312) : i (and t vanishes at all other partitions). Since we also have 

/(41) = /(312) : i , in this case ~E 5 is isomorphic to a submodule of @h 5 , namely 

to a submodule which is a direct sum of two irreducibles, say, of U and V • What 

we need is that ~E 5 has homomorphisms onto each of U and V , say, ~ : ~E 5 ~-~ U 

and B : f~E 5 ++ V . Now U : ~(~5)E5) = Q(U n ~5)L5] and so for some power of 

5 , say 5 a , we have 0 # 5a~[~5)E5] _< U nZZ(5)L 5 ; similarly, 

0 # 5b~[~5)E5] _< V n~(5)k 5 for some b . All we need of this is that ~5)E5 

has two disjoint nonzero homomorphic images in Z7(S)k 5 : for brevity, let us call 

these U' and Y' . The last point is that, because f is primitive in 77(5)E 5 , 

all proper submodules of ~5)E5 are contained in a unique maximal submodule. (I 

find this rather awkward to dig out of Curtis and Reiner [i0]. For a start, as ~E 5 

is a direct sum of full matrix rings over ~ , the proof of 76.29 gives that ~5)E5 

remains indecomposable after 5-adic completion, so f remains primitive; then a 

standard result on lifting idempotents, 77.10, yields that f is primitive modulo 

5 . Thus modulo 5 we get that ~5)E5 becomes a principal indeeomposable module 

for the finite image of 2Z(5)E 5 , and hence by 54.11 has a unique maximal submodule. 

The preimage of this modulo 5 will do, by Nakayama's Lemma.) This maximal 

submodule then contains the kernels of the homomorphisms onto U' and V' ; let U" 

and V" be the images of the maximal submodule in U' and V' , respectively. Now 

UI/U '' and V'/V" are both isomorphio to the unique simple homomorphic image of 
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~ 5)E5 . Recall that U ~ V was a direct summand of ~L 5 ; let C be any direct 

complement, so U O V G C = ~k 5 , and put C' = C n~(5)k5 . Then U" O V" • C' has 

finite index in Z(5)L c , and the quotient (U r Q V r Q C')/(U" G V" ~ C') is a direct 

sum of two isomorphic summands, namely, of (U' ~ V" ~ C')/(U" G V" G C') and 

(U" G V' G Cr)/(U" ~ V" ~ C') . Thus these two summands and their 'diagonal' violate 

5 is not distributive. This completes the the distributive law, proving that L 5 

proof. 

8. Postscript 

All the background for this was available by the late 1930's: the Magnus-Witt 

Theorem, and enough of Brauer's theory of modular representations (including his 

observation that results from Schur's dissertation concerning representations of 

general linear groups on tensor spaces remain valid in finite characteristic for the 

small degree case). The first mention of Grin's ~ was in a lecture [19] given by 
C 

Magnus to a week-long group theory meeting at G~ttingen in June 1939 (Crelle devoted a 

whole issue to the proceedings): Magnus drew attention to the problem of 

investigating the action of homogeneous linear substitutions on homogeneous components 

of free Lie rings, and to the relevance of this in the study of fully invariant 

subgroups. There are indications that not only Grin and Magnus but also Witt and 

Zassenhaus were using such ideas at the time, though I have found no evidence for 

HigmanTs guess [12] that Witt might have been in possession of the character formula. 

On the other side of the Atlantic, Thrall got very much closer to the developments 

reported on here. In his paper [26] (which was submitted before Crelle's GSttingen 

issue appeared), he used Lie representations systematically for determining all 

characteristic subgroups in the last term of the lower central series of free groups 

of B A N for o < p , and referred also to the p-power exponent case. 
=p =o 

Presumably with this motivation, he proceeded with a systematic study of Lie 

representations in [27], and this was carried on by Brandt in [4]. In the late 19407s 

Wever took the matter further in several papers, but his applications concerned 

specific fully invariant subgroups rather than general classification, and interest 

in Lie representations favoured one-dimensional submodules ("invariants"), perhaps on 

account of a similar emphasis in Magnus [19]. When variety theory came to life again 

in the 1950's, it seemed to have no contact with these efforts. Even after Magnus had 

drawn Hanna Neumann's attention to the relevance of Burrow's then still recent work 

[9] on 'Lie invariants' (see page 104 in [22]), we did not catch on. From our point 

of view it did not help to focus on invariants - this seems to have led to the 

incorrect conjecture expressed in Problem 14 of [22] and, by making the result 

plausible, encouraged the oversight in 35.35 of [22]. Still, we had little excuse for 
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being as stunned as we were by Graham Higman's lecture [12] which finally opened our 

eyes. 

Higman's account [12] is in terms of prime characteristic. Klja~ko [14] worked 

with p-adic completions (even to the point of starting with a free pro-p-group). 

Newman and I used localization at p (Mal'cev completions of free nilpotent groups). 

The present approach is closest to that envisaged in the closing paragraph of 

Pentony's thesis [23]; it developed in the course of writing up this paper, and (as 

well as including more detail) deviates substantially from what I actually said in 

the lectures. In allowing one to view much of the work as a study of the ~-order 

E , it may point in the direction one could proceed beyond the present boundaries. 
O 

I am indebted to several participants of the Institute for long and helpful 

discussions; particularly to P. Fitzpatrick, M.F. Newman, M.G. Schooneveldt, and G. 

E. Wall. 
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