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1. Introduction

The starting point of this investigation was a question put to us by Martin
B. Powell: If the prime number p divides the order of the finite group G, must
there be a minimal set of generators of G that contains an element whose order
is divisible by pi A set of generators of G is minimal if no set with fewer elements
generates G. A minimal set of generators is clearly irredundant, in the sense that
no proper subset of it generates G; an irredundant set of generators, however,
need not be minimal, as is easily seen from the example of a cyclic group of com-
posite (or infinite) order. Powell's question can be asked for irredundant instead
of minimal sets of generators; it turns out that the answer is not the same in
these two cases. A different formulation, together with some notation, may make
the situation clearer.

Let G be a group; we denote by Kn(G) the set of those elements g of G that
are not omissible from some family i of n generators of G. Thus g e Kn(G) if,
and only if, there are elements g2, • • •, gn that jointly with g generate G, but by
themselves generate a proper subgroup of G. Then

Kn(G) E Kn + 1(G)

for all n. If n is less than the minimal number, say d = d{G), of generators of G,
then Kn(G) is empty. We shall call d the 'rank' of G, for brevity, and assume
throughout that it is finite; and presently we shall confine attention to finite groups
G. Clearly Kd(G) is not empty, but consists of all members of minimal generating
sets of G. If G is finite and n large, say n ^ |G|, the order of G, then

Kn(G) = G-HG),

where <j)(G) denotes the Frattini subgroup; for, by a well-known theorem of Frat-
tini [2], 4>(G) consists of those elements of G that belong to no irredundant
generating set of G. We shall show that in fact already

1 In a family an element may occur repeatedly.
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(1) Kd + 1(G) = G-<j>{G).

Differently put, this says that an element belongs to the Frattini subgroup of a
group G if, and only if, it can be omitted from every family ofd+1 generators of G,
where d is the rank of G.

Now it is known that for a finite group G a prime p divides \G/(f){G)\ if p
divides \G\; this is an immediate consequence of Huppert [6] III, Satz 3.8. It
follows that if p divides \G\ then p divides the order of some element outside <j>(G);
and again, by (1), that if p divides \G\ then p divides the order of some element of
Ki + 1(G). This answers Powell's question, not for minimal generating families,
but for irredundant generating families: Every prime that divides the order of a
finite group also divides the order of some element of some irredundant set of
generators.

By contrast, not every prime that divides \G\ need divide the order of some
element of Kd{G). Let us call the prime p a 'hidden prime' of G if it divides \G\
but does not divide the order of any element of Kd(G). We answer Powell's original
question about minimal sets of generators by showing that groups with hidden
primes do indeed exist. The smallest example is a certain splitting extension G of
an elementary abslian group A of order 9 by a quaternion group B. If A is
generated by u, v and B by a, b, then the action of B on A is given by

u" = v, v
a = u2,

ub = uv, vb = uv2.

The group has order \G\ = 23 • 32, and it can be generated by (minimally) two
generators, for example by a and bu; and every member of a pair of generators
has order 4. Thus 3 is a hidden prime of G. These facts will readily follow from
later, more general results.

As the title indicates, the major part of this paper concerns groups with hidden
primes. All the examples we know resemble the one above in that they are split
extensions of a group A by a group B with the hidden primes dividing \A\ but not
\B\. One of our main aims is a study of the groups that can here occur as the 'top'
group B. In particular, we construct to every prime p an infinite sequence of
/7-groups of this kind: these are then, in a sense, generalizations of the quaternion
group.

2. Notation

We summarize the notation we use.

\S\ = cardinal of the set S;
\G\ = order of the group G;
\g\ = order of the element g;
\G : S\ = index of the subgroup S in G;
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S c T means S is a subset of T;
S ^ G means S is a subgroup of G;
9P{9i ,02,--% ffn), ffP(S), gp(S, T) = (sub-)group generated by glt g2, • • -, gn,

by S, by S and T;
d = d(G) = rank or minimal number of generators of G;
g* = h-igh;gl+h+-+k = ggh---gk;

[g,h] = g~1+h = g-'h-'gh-

C(G) = centre of G;
5(G) = derived group of G;
4>(G) = Frattini subgroup of G;
ij/(G) = G — Kd(G) = set of elements contained in no minimal generating set of G.

3. Some general results

We begin by proving the result summarized in formula (1). We have to show
that if the element he G can be omitted from every set of d+1 generators of G,
then h can be omitted from every set of generators of G.

Let then he G — Kd+l(G), and let gt, g2, • • •, gd form a (necessarily minimal)
set of generators of G. Then

G = gp(gi,g2, • • ; gd) = gp(h, g1,g2, • • •, gd)

,g2,-- ; ffd) = gp{gyh, gz,---, g d ) .

By repeated application, preceded and followed by a rearrangement of the
generators, we see that also

ffP(ffihi,g2h2,- • \gdhi) = G,

where hl,h2,- • -,hde G — Kd + 1(G); and then further

,- •;gikd) = G,

where kltk2, • • •, kdegp(G — Kd+1(G)) = K, say. We note that K is clearly a
characteristic subgroup of G.

Now let k G K be arbitrary, and assume that

gp(k,fi,f2,---) = G,

with finitely or infinitely many/}. Let glt g2, • • •, gdbe a (fixed, minimal) set of
generators of G. Then we can express each gx as a word in k and the/}:

gi = Ui(k,fi,f2, • • •),

and thus, as K is normal in G, also in the form

91 = Vi(fi,f2>--')kJ1,
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where kt e K. But then, as g^k^, g2k2, • • •, gdkd also, by what we have just seen,
generate G, we have

g p ( f i , f 2 , • • • ) = &

Thus k is omissible from every generating family of G, that is to say, k e (j>{G).
It follows that

K ^ 4>{G).

But evidently
4>{G) <= G-Kd+l(G) E K,

and (1) follows.
An epimorphism 9 : G -> 7/ will be called ra«A: preserving if the rank of /f

equals that of G, that is if
d(GG) = 4 G ) .

The following fact is almost obvious.

LEMMA 3.1. If 9 is a rank preserving epimorphism, then

\I/(G9) <= tl/(G)9.

PROOF. We establish the equivalent inclusion

Kd(G)9 S Kd(G9).

If g e Kd{G), then there are elements g2, • • •, gdeG such that

i,- • ;ffd) = G,

and thus
gP(g9,g29,--;gd9) = G9.

As the rank of G9 is d,
gP(g29,--;gd9)*G9,

whence gd e Kd(G9), as required.
The example of the dihedral group of order 12,

G = gp(a, b; a6 = b2 = (ab)2 = 1),

and the epimorphism 9 of G onto the four-group, with a3 e •/'(G) but a30 £ 4*(G9),
shows that the inclusion can be proper. The example of the direct product G of a
cyclic group C of order 6 by a cyclic group of order 2, together with any epi-
morphism 9 of G onto C shows that the assumption that 9 is rank preserving can-
not be omitted, because if c is a generator of C, then c3 e >p(G9) but c3 $ \j/{G)9.

By contrast the Frattini subgroup has the property that

4>{G)9 s 4>(G9),

where the homomorphism 9 need not even be rank preserving (see for example
Gaschiitz [3], Satz 3).



[5] On finite groups with 'hidden' primes 291

If G is a group of prime power order then ij/(G) = (f>(G), as every element
outside the Frattini subgroup can be embedded in a basis modulo the Frattini
subgroup, and this is necessarily a generating family of G with d(G) elements. In
general, however, ij/(G) need not even be a subgroup, as is seen by considering
the cyclic group of order 6. Here ij/ is the set union of all kernels of rank preserving
epimorphisms of the group. This set union must always be contained in ij/(G):

LEMMA 3.2. If N is the kernel of a rank preserving epimorphism 6 of G, then

N £

The proof is easy and omitted.
One might then guess that ij/(G) is always the set union of all kernels of rank

preserving epimorphisms of G. This is indeed the case if G is supersoluble, but not
in general. We shall not prove these facts; but we gratefully acknowledge that
Professor Gaschutz has found for us the following example of a group G in which
i//(G) is not the set union of any normal subgroups:

G = gp(ai ,a2,a3,aA,b,c; a2 = (at atf = b2 = c3 = (be)2 = 1,

a\= a2, ab
3 = a 4 , a\ = a2, ac

2 = axa2, a% = a 4 , a 4 = a3a4).

This group can be described as the central factor group of the (non-standard)
wreath product of a four-group by the symmetric group of degree 3. It is soluble
of length 3, has order 96, and is generated by 2 elements, for example by bax and
ca3; no pair of generators includes b, whence b e \j/(G); but the normal closure
of b is the whole of G.

We also require a converse of Lemma 3.2.

LEMMA 3.3. If N is a finite normal subgroup of G such that d(G[N) < d(G),
then N is not contained in ^(G); equivalently, if N is a finite normal subgroup of G
contained in >//{G), then the natural epimorphism with kernel N is rank preserving.

PROOF. Assume d(G[N) < d(G) = d. Let ht, • • -,hd^i be so chosen that
/zt N, • • -,hd-lN generate GfN. By a theorem of Gaschutz [4] there exist elements
«!,•••,«,!_!,«,, of N such that h1n1,---, /ZJ - JH, , - ! , nd generate G. Thus
nd e Kd(G), and the lemma follows.

4. The construction of examples

We know of only one method of making groups G with 'hidden' primes,
namely to construct G as an extension of a group A by a group B, with d(B) =
d(G): this ensures that A £ ij/(G), by Lemma 3.2. If all elements of G whose
orders are divisible by the prime p are made to lie in A, then p is hidden in G.

The example described in the introduction is of this kind, with A elementary
abelian and B nilpotent. We shall study such extensions of elementary abelian by
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nilpotent groups in greater detail in the next sections. In this section we present
examples to show that neither A nor B need be soluble.

To show that A can be chosen insoluble, we construct G as the twisted wreath
product [7] of an alternating group Ap of prime degree p ^ 5 by a quaternion
group B; the central involution in B is to do the 'twisting' by inducing the auto-
morphism T of Ap which is induced by transformation by the transposition of two
permuted symbols. A transversal of the centre of B then does the wreathing, and
A is the fourth direct power of Ap. If B is generated by a, b and if u e A has a full
cycle of order p as its component in one of the four direct factors of A and the
identity permutation in the other three, then G can be generated by a and bu:
we omit the verification. Thus d{G) = 2. Now if g is a member of a pair of gener-
ators of G, then g is modulo A one of the generators, of order 4, of B. Thus its
square is of the form

92 = a2f
where/e A. Hence

9* =fi*f,

where x* is the automorphism of A obtained by applying T to all four direct
factors Ap simultaneously. The components offx*f in each direct factor are then
of the forms vxv, possibly different permutations v in the four copies of Ap. Now
vxv cannot have order p, because in the splitting extension of Ap by x, namely the
symmetric group Sp, the element vxv is the square of the odd permutation tv,
where / is the transposition which induces T; and a full cycle in Ap (or Sp for that
matter) cannot be the square of an odd permutation. Thus the order of vxv, and
also the order of g, is not divisible by p, and p is a hidden prime in G.

In this construction the quaternion group can be replaced by an insoluble
group, namely as follows.

Let B denote the generalized direct product of 19 copies of the binary icosa-
hedral group, amalgamating all their centres: thus B is an extension of a cyclic
group C of order 2 by the direct product of 19 icosahedral groups. The significance
of the number 19 is that a product of that many, but not more, icosahedral or
binary icosahedral groups can be generated by two elements (Hall [5], Gaschutz
[4], Satz 3; see also Neumann and Neumann [8]). If B is generated by two ele-
ments a, b, say, then they generate the direct product of the 19 icosahedral groups
modulo C in the only way in which two elements can generate this direct product,
namely so that their projections on the 19 direct factors are mutually inequivalent
(in the sense of Hall [5]). Then it can be verified, either by using one of Hall's
enumeration procedures (especially 3.2 of [5]) or by running one's eye down the
list 10.1 in [8], that there are just 3 projections of a (and, of course, also 3 different
projections of b) of order 2. In the binary icosahedral groups, before the centres
are amalgamated, these 3 elements then have order 4, and because there are an
odd number of them, the order of a (and of b) remains a multiple of 4 also after
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the amalgamation of the centres. It follows that a has order 60, and a30 is the
generating element of the centre C. To sum up:

LEMMA 4.1. Every member of a pair of generating elements of B, the generalized
direct product of 19 binary icosahedral groups with all centres amalgamated to
form a cyclic centre C of order 2, that is every element of K2{B), has a non-trivial
power in C.

This is the same situation as in the quaternion group, and we use it in the
same way. Thus we construct G as the twisted wreath product of an alternating
group Ap of prime degree p ^ 7 by our present group B, with the central involu-
tion, that is the generator of C, doing the 'twisting' in the same way as described
above. One has to verify again that d(G) = 2, and we again omit the verification.
Then it follows as before that p is a hidden prime in G; the reason why here one
chooses p 2: 7 is that 2, 3, and 5 necessarily divide the order of an element of K2(B),

so that these small primes cannot be hidden in this type of group.
Instead of using the alternating group Ap in this construction, one can take

a cyclic group of order p, and make the central involution simply invert all ele-
ments of the (now abelian) group A: thus one mixes two procedures, the one just
sketched and the other described in the introduction, and the resulting group will
be an extension of an abelian group by an insoluble group and hiding an arbitrary
prime/? ^ 7.

The order of G constructed in this way is

\G\ = (ipl)^ . | B |
or

\G\ = />*'«' • |£ |

in the cases of insoluble or soluble A, respectively, where

\B\ = 2.6019.

The smallest value of p, namely 7, gives groups whose orders are, very roughly,
IQ20.1033

 a n ( j JQS.IO" ^ye ] c n o w of n o w a y of making smaller examples with

insoluble A and B, but the smallest example with abelian A and insoluble B has
order 14,520 only. We now describe it, not because it has any intrinsic interest,
but for later reference.

We take B as the binary icosahedral group and A as the elementary abelian
group of order I I 2 ; and we make B act on A without non-trivial fixed points.
Specifically, if A is generated by u, v with defining relations

u11 = v11 = [u,v] = 1

and B by a, b with defining relations

a5 = b3 = (abf,

we define the action of B on A by
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u" = u2, Va = V6,

ub = wV, vb = w V ;

and G is, as before, the splitting extension of A by B. It is not difficult to see that
G is generated by two elements, for example by a and bu. Now if g e G is written
in the form

g = yx with y e B, x e A

and if y =£ 1, then the order of g equals the order of y; this follows from a very
simple remark:

LEMMA 4.2. Let y be an element of finite order n> 1 in a group, let x be another
element of the group, and denote by X the subgroup generated by x and its conjugates
under powers ofy. IfXis abelian andy acts without fixed points on X—{\}, then the
order ofyx is n.

PROOF. Put (yx)" = z. Then z e X, as y" = 1. Also, trivially, zyx = z. Hence

zy = z*-1 = z ,

as X is abelian; and z = 1, as y has no other fixed point in X. This proves the
lemma. Its assumptions could be weakened, but in their present form they are
easily verified where we require the lemma.

To conclude the discussion of the example, we remark that a member of a
pair of generators of G must be of the form g — yx with y e B — {1} and x e A,
and by the lemma its order is then that of y, that is 3,4, 5, 6, or 10; and G 'hides' 11.

5. Extensions of abelian groups

We now restrict attention to the case that A is abelian, as in the example of
§ 1 and the last example of § 4; and we shall in fact assume, without significant
loss of generality, that A is an elementary abelian p-group, where p is the prime
to be 'hidden'. We look for conditions on B that allow us to 'hide'/> in a splitting
extension G of A by B.

THEOREM 5.1. Let the finite group G be a splitting extension of an elementary
abelian p-group A by a group B; put d = d{G). Then the following three conditions
are jointly necessary and sufficient for p to be ''hidden' in G:

(5.11) d(B) = d,

(5.12) p does not divide the order of any element b of Kd(B);

(5.13) no element ofKd(B) commutes with any element # 1 of A; or, differently put:
elements of B outside ty(B) transform A without (non-trivial) fixed points.

PROOF. First assume/* to be hidden in G. Then A ^ yj/(G), and (5.11) follows
from Lemma 3.3. Let b e Kd(B); there are then b2, • • •, bd such that b, b2, • • •, bd
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generate B. By the theorem of Gaschiitz [4] already quoted, there are elements
a 1 ; a2, • • •, ad in A such that g1 = bax, g2 = b2a2, • • -,gd = bdad generate G;

as they generate minimally, their orders are not divisible by p, and it follows that
the order of b is not divisible by p, confirming (5.12). Finally, if a e A commutes
with b, then a also commutes with g1, and as the orders of gt and a are co-prime,
gt is a power of gta, a n d ^ a , g2, • • •, gd also generate G. Hencep does not divide
the order of gta; but this is the product of the orders of gv and of a, and the latter
is p if it is not 1: thus a = 1, and (5.13) follows.

Conversely, assume (5.11-5.13), and let g e G be an element outside i//(G):
we have to show that p does not divide the order of g. We write g = ba with
be B,ae A. There are elements g2 = b2 a2, • • •, gd = bdad such that g, g2, • • •, gd

generate G. Then b, b2, • • •, bd generate B, and by (5.11) minimally. Thus b etcd(B).
Denote the order of b by n, and consider

say. Now a* commutes with b, because

(a*)" = fli+*-'+-+» = fl*-" +

as A is abelian. By (5.13) then a* = 1, and g has the same order as b. By (5.12)
this is not divisible by p, and the theorem follows.

Theorem 5.1 answers our question as to what finite groups B can be used to
hide a given prime p. We now ask more generally for an intrinsic condition on B
which ensures that B can bs used to 'hide' some prime. Let us call such a group B
'secretive': thus B is secretive if there exists a prime p and a splitting extension G
of an elementary abelian />-group by B such that/? is 'hidden' in G. We derive from
Theorem 5.1 an intrinsic condition for a group to be secretive.

THEOREM 5.2. Let B be a finite group of rank d = d(B) ^ 2. If B has a
representation over the field of complex numbers such that no element outside il/(B)
has an eigenvalue 1, then B is secretive.

PROOF. Let p be a prime that does not divide the order of B. We derive from
the given representation of B a representation modulo/? by the standard procedure:
first we find an associated representation over a Galois field of characteristic p,
as described in Curtis and Reiner [1, § 82], and then consider this as a representa-
tion over GF(p), of suitably enhanced degree. Now the eigenvalues of an element
b e Kd(B), of order n, say, were certain «-th roots of unity other than 1; and as p
does not divide n, they are still different from 1 in the representation modulo p.

Thus we have B acting, with the elements outside $(B) fixed-point-free, on a
vector space over GF(p), that is an elementary abelian /vgroup. We may choose
this abelian group minimal, that is to say so that B acts irreducibly on it; and we
then denote it by A and form the splitting extension G of A by B. It is clear that
conditions (5.12) and (5.13) are satisfied (even without the assumed minimality
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of A). To be able to apply Theorem 5.1 we have to establish also (5.11); this will
be done in several steps.

(5.21) Let beKd(B) and aeA. If b" e B then a = 1; for then [b, a] e B;
but also [b, a] e A, as A is normal: hence [b, a] = 1, and by (5.13), already estab-
lished, a = 1.

(5.22) Let B' be a complement, other than B, of A in G. Then

B n B' = 4/(B)n

For by the Zassenhaus conjugacy theorem (see e.g. Scott [9], Theorem 9.3.9 and
the remark following its proof), B and B' are conjugate in G, and the element
transforming B into B' can be chosen in A, say B" = B'. Clearly then also
4i(B)a = il/(B'). Thus if b' <=BnB', then b' = b" for some beB; and if b' $ i>{B'),
then b$\j/{B), and (5.21) implies that a = 1. This is impossible, as B and B'
were assumed distinct. It follows that B n B' <= il/(B'), and by symmetry
B n B' ^ 4>(B) n \ji{B'). The reverse inclusion is obvious, and the result follows.

(5.23) Let b1,b2,- • -,bd generate B, and choose a 6 4̂ —{1}. Denote by H
the group generated by bl a, b2, • • •, bd; then His mapped onto B by the retraction
of G onto B. If H intersects A trivially, then H is isomorphic to B and a comple-
ment, distinct from B, of A in G; but d ^ 2 by assumption, and thus there is an
element, namely b2, in B n H but not in \ji(B). This is contrary to (5.22), and it
follows that H intersects A non-trivially. As A is minimal normal and H covers
G/A, we deduce that H = G. Thus G has been shown to have rank d(G) ^ d =
d(B). But */(.#) ^ d((j) is obvious, and (5.11) is established. Application of
Theorem 5.1 now completes the proof of Theorem 5.2.

COROLLARY 5.3. Let B be a subdirect product of groups B1, B2, • • •, Br that
satisfy the conditions of Theorem 5.2, and thus are secretive. If

d(B) = d(B,) = d(B2) = • • • = d(Br),

then B also satisfies the conditions of Theorem 5.2, and thus is also secretive.
The condition on the ranks ensures that if b e Kd{B) then the projection of

B onto Bt maps b on an element bt e Kd(Bi). If B is made to act on the direct sum
of spaces, one for each Bt, as Bt acts on its space, that is so that bt e /cd(5,) acts
without non-trivial fixed points, then every b e Kd(B) acts also without fixed points,
and the corollary follows. The corollary provides a method of making secretive
groups that act reducibly; this is, in fact, the only way in which such groups can
be made, but we omit the proof of this assertion.

It is then reasonable to restrict attention to groups B that have irreducible,
faithful representations of the kind assumed in Theorem 5.2. Such a group must
have cyclic centre; for the fixed-point space of the centre is invariant under the
whole group, hence trivial because of irreducibility and faithfulness; but an
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abslian group with fixed-point free representation is cyclic. There is also a partial
converse to this:

COROLLARY 5.4. Let B be a finite group of rank d = d(B) ^ 2. If the centre
(,{B) is cyclic and if every element of Kd(B) has a non-trivial power in C(B), then B
is secretive.

PROOF. The cyclic centre ( (5) has a representation without non-trivial fixed
points. The induced representation of B (see e.g. Curtis and Reiner [1 ], Chapter
VIII) then evidently satisfies the conditions of Theorem 5.2.

The binary icosahedral group, which is secretive (as shown in § 4) but does
not satisfy the last condition of Corollary 5.4, shows that its conditions are suf-
cient only, not necessary. The corollary will be applied especially to /»-groups.

There are some improvements of Theorem 5.2 that we shall not need to use
and do not prove. If B is secretive and no primes are hidden in B, then B has a
representation as assumed in Theorem 5.2; and the only restrictions on the primes
that can then be hidden 'under' B are the obvious ones: they must not divide the
order of B. If 6 is a secretive />-group, so that ty(B) = 4>(B), then in a representa-
tion as assumed in Theorem 5.2 the elements outside <j>(B) have their /?-th powers
still acting without fixed points; and the elements of order/? all lie in <j>{B).

6. A class of secretive p-groups

Among the secretive groups are the groups, studied and almost completely
determined by Zassenhaus [10], which have a representation in which every
element ^ 1, whether in \j/ or not, acts without fixed points. The examples we
have presented in § 1 and § 4 are of this kind, or derived from such groups. We
now use Corollary 5.4 to show that there are other secretive groups.

The groups we construct will be/?-groups where p is an arbitrary prime; and
they depend on three further parameters q, r, s subject to

(6.1) 0 ^ r < s | q + r.

We use the following abbreviations:

and note that the restraints (6.1) imply that

(6.2) p\Q,pR\S,S\QR.

We begin by defining an abelian group:

H = gp(h1 ,h2,---, hpR,z; \ht, hj] = 1 for 1 ^ i < j g pR;

(6.3) fc? = fcf = ••• = h% = z , z" = l ; M I M . ! ^ ! • • • * ( ,
1> ' ' ' "Rh2Rh3R • • • hpR = 1).
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The generator z can, of course, be eliminated; and so can the R generators
//(p_1)R + 1 , fyp-i)R + 2 , ' ' •> hpR, using the last R relations. The elements

(ft A\ h k — h~lh h- — h~ih • • • k — h~ h
yo.'i) nx,K2 — n1 n2, K3 — n2 n3, , ^(P-I)R — " (p- i )R- i "(p-i)R
are then easily seen to form a basis of H. The first of them has order pQ, the others
have order Q, and the order of H is

The symmetry of (6.3) in the generators ht, h2, • • •, hpR shows that H has
an automorphism P, say, which permutes these generators cyclically and thus has
order pR. The action of p on the basis (6.4) is more complicated (especially the
action on the last basis element), but nevertheless it is not difficult, though some-
what laborious, to verify that the only elements of H fixed by p are the powers
of z. We omit the computations.

We now form a group B by adjoining to H an element b that induces P on H,
and that further satisfies bs = z. This is legitimate, as (6.2) ensures that the order
pR of P divides S. The order of b is then pS, and B is presented in the form

(6.5) B = gp(H, b ; h \ = h 2 , hb
2 = h 3 , - - ; h b

p R = h l , b s = z ) .

The order of B is

\B\ = pQ(p'1)RS.

A presentation of B in terms of two generators a = hv and b is given by

B = gp(a, b;aQ = as, [a , a6 '] = 1 for 1 ^ i ^ S,
1 +bR + b2R+ ••• + 6 ( P - i ) K i\

Some of the commutativity relations in (6.6) are redundant. We omit the verifica-
tion of the equivalence of (6.6) and (6.5).

It is now easy to see that the centre C(B) is cyclic; for if we write an element
of B in the form hbm where he H, and ask for this to be in the centre, we have at
once that h must be in the centre, and thus, by what has been said about the
elements fixed by /?, it is a power of z; and this in turn is a power of b. Thus £(B)

is a subgroup of the cyclic group generated by b. In fact the least positive power
of b that induces the identity automorphism on H is bpR, so (,{B) is generated
by bpR.

Next we need to show that the elements of K2(B), that is - as B is a/j-group -
the elements outside 4>{B), have a non-trivial power in (,(B). To this end we write
an element of B in the form x = kamb" where k is an element of the subgroup
generated by k2, k3, • • •, kip_1)R; as these kt are conjugates of [a, ab] and thus in
the derived group S(B), they are in <t>(B), and in order that x be outside <j>(B),
m or n or both must be prime to p.
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We assume first that n is not divisible by any higher power of p than R.
Then there is a power of x of the form

x' = k'am'bR.
Now

x'p _ (k'am')1 +bR+h2R+-+bip-1'IRt)p
R - OPR-

for the last relation of (6.6) together with the fact that k'am is a product of con-
jugates of a, all of which commute, implies that

As 1 # bpR e ((-8), we see that x has a non-trivial power in (,{B).
If, on the other hand, n is divisible by a higher power of p than /?, that is to

say, if b" is a power of bpR, then b" is in the centre; and p does not divide m. Now

XQ = fc<VeZ>"Q = zm,

as A:2 = 1, ae = z, and bpRQ = 1; this last equation follows from (6.2) and the
fact that b has order pS. Thus we see that every element of K2{B) has a non-trivial
power in C(B); and this combines with the fact, already shown, that ((2?) is cyclic,
and with Corollary 5.4, to show:

THEOREM 6.7. The groups B defined by (6.6), with Q, R, S powers of the prime
p and subject to the restraints (6.2), are secretive.

Denote B by B(p; q, r, s) to indicate its dependence on these parameters. It
is not difficult to see, by considering the orders of B, d(B), and (,{B), that the values
of p, q, r, s are uniquely determined by B: thus B(p; q, r, s) is isomorphic to
B(p'; q', r', s') only if p = p', q = q', r = r',s = s'. The groups B{2; q, 0, 1) are

generalized quaternion groups of order 2q + 2. The groups B(2; 2,0,2) and
B(2; 1, 1, 2) are the smallest groups of our kind which are not generalised quater-
nion groups; both of them have order 32. All groups B(p; 1,0, 1) are groups of
maximal class of order pp+i which are not isomorphic to the Sylow /7-subgroups
of the symmetric groups of degree p2. All groups B(p; q, r, s) are metabelian and
of rank 2. All these facts are either immediate consequences of our construction
and discussion, or easy to verify: we omit the verification.

We owe to Dr. I. D. Macdonald the knowledge of a secretive 2-group of
rank 3; we do not, however, know of any secretive /^-groups of rank 3 or higher
for primes p > 2, nor of secretive 2-groups of higher rank than 3.

References

[1] Charles W. Curtis, Irving Reiner, Representation theory of finite groups and associative
algebras (Interscience, New York, London, Sydney, 1962).

[2] G. Frattini, 'Intorno alia generazione dei gruppi di operazioni', Atti R. Accad. dei Lincei,
Rendiconti (IV) 1 (1885), 281-285.



300 L. G. Kovacs, J. Neubuser, B. H. Neumann [14]

[3] Wolfgang Gaschiitz, 'liber die <P-Untergruppe endlicher Gruppen', Math. Zeitschr. 58
(1953), 160-170.

[4] Wolfgang Gaschiitz, 'Zu einem von B. H. und H. Neumann gestellten Problem', Math.
Nachr. 14 (1956), 249-252.

[5] P. Hall, 'The Eulerian functions of a group', Quart. J. Math. (Oxford) 7 (1936), 134-151.
[6] B. Huppert, Endliche Gruppen I (Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[7] B. H. Neumann, 'Twisted wreath products of groups', Arch. Math. 14 (1963), 1—6.
[8] Bernhard H. Neumann und Hanna Neumann, 'Zwei Klassen charakteristischer Unter-

gruppen und ihre Faktorgruppen', Math. Nachr. 4 (1951), 106—125.
[9] W. R. Scott, Group theory (Prentice-Hall, Englewood Cliffs, 1964).

[10] Hans Zassenhaus, '(Jber endliche Fastkorper', Abh. math. Sem. Hansisch. Univ. 11 (1936),
187-220.

Australian National University, Canberra
Rheinisch-Westfalische Technische Hochschule, Aachen
Australian National University, Canberra


