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The theory of discrete, abstract groups, as presented in current texts,
consists of investigations of various special classes of groups: it has very
few completely general results. For some classes (say, for finite groups)
the investigations have been extensive and successful; in a few cases (say,
for finitely generated abelian groups) they have even reached a sense of
completeness. The choice of some of these classes was dictated by the needs
of other branches of mathematics. Many more were introduced with the
view of extending the scope of certain powerful but special results, and a
large part of the literature is taken up by elaborate counterexamples which
mark the limits of these generalizations. In so far as one is looking for some
kind of classification theory, it is immediately evident that the classes
investigated were chosen by historical accident rather than by any master
plan, and so far do not appear to form the initial part of a pattern which
could be enlarged and completed in the future.

Into this unsatisfactory picture of the classification problem of group
theory, varieties bring a ray of hope. These are classes of groups selected
by a single principle. Their study offers a reasonably balanced approach:
this classification is fine enough not to become trivial even if one thinks
only of finite groups, and yet there are not so many classes as to escape a
manageable, although again non-trivial, pattern. While not all formerly
considered classes are varieties, many of the important ones can at least be
approximated by varieties. The successes of this young theory leave little
doubt that there is a great deal more to come.

The theory is young. It started exactly 30 years ago, with a paper of
B. H. Neumann [12]. It has grown spectacularly during the last 15 years,
and its present state has been summed up in Hanna Neumann's monograph
[15] published three months ago.2 The occasion seems right to give some of
our attention to the achievements and to ponder possible directions of
progress.

1 This is an expanded version of an invited address given on 2nd June, 1967, at the
Annual Meeting of the Australian Mathematical Society, at Canberra.

2 There are also two survey papers about to appear: one by Hanna Neumann [14] and
one by B. H. Neuman [13].
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We need at least a little technical detail. If g, h are elements of a group
G and

(1) g^hgth-ig-1 = 1,

one says that g, h satisfy the relation (1). This common phrase indicates
that it is possible to conceive of the relation independent of g, h, and that
another pair g', h' of elements of G may or may not satisfy it. Formally,
this can be put as follows. The relation, or rather the relator corresponding
to its left hand side, is to be an element of a free group X freely generated
by (infinitely many) 'variables' xx, x2> • • •; in this case, we may take

(2) x^x^x^x^1.

The claim that g, h satisfy (1) means that the image of (2) is the identity
element 1 of G under every homomorphism of X to G which maps xx to g
and x2 to h. If every pair of elements of G satisfies (1), then (2) is called an
identical relator, or law, of G. Thus

n {ker<£|<£ : X -> G}

is the set of all laws of G. This set is an isomorphism-invariant of G, and
it certainly contains a lot of essential information about G; to mention an
extreme case, if two finite simple groups have precisely the same laws, they
must be isomorphic.3

A variety can be defined from an arbitrary subset L of X as the class
of those groups in which every element of I- is a law. It is obvious that a
variety contains all subgroups, all homomorphic images, and all cartesian
products of its members. Conversely, it can be shown that every class of
groups which has this closure property is a variety. Different subsets of X
can define the same variety, but there is a unique largest subset defining
any given variety (namely, the subset consisting of all common laws of
the groups in the variety). These subsets are precisely the fully invariant
subgroups of X: the subgroups which are mapped into themselves by every
endomorphism of X. Thus there is a one-to-one correspondence between
varieties and fully invariant subgroups of X. It can, therefore, be stated
that the number of varieties is some cardinal between J$o and 2R»
(inclusive); the precise number is one of the great unknowns. It would,
of course, be J$o if every variety could be defined from a finite subset of X,
but no-one knows whether this is the case: we have arrived at the so-called
finite basis problem. Partial solutions have been given, perhaps the deepest
by Sheila Oates (now Mrs I. D. Macdonald) and M. B. Powell. They proved

3 I am not sure who was the first to observe this (non-trivial) fact; it occurs as item
53.35 in Hanna Neumann's book [15]. In the rest of this lecture, I shall not give detailed
references for results which can be found in [15].
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that if G is any finite group, then the variety defined by the laws of G can
in fact be defined by a finite subset of X.

I said that varieties provide a classification which does not reduce to
a triviality for the case of finite groups and yet all varieties fit into a reason-
ably manageable pattern. What is this pattern? First of all, of course, set-
theoretic inclusion gives a complete, modular lattice order on the set of
varieties, with the variety £> of all groups as maximal element and the
variety @ of one-element groups as minimal element. The fact that this
lattice is not distributive does not seem to have been recognized until 1965.
The lattice does not satisfy the maximum condition; whether it satisfies
the minimum condition is equivalent to the finite basis problem. There is
a fairly natural binary operation, called multiplication, on the set of varie-
ties: the product U3S of the varieties II, 23 is the class of all extension of
groups in U by groups in 23:

U23 = {G\3N^G. N e U & G/N e23}.

Multiplication is compatible with the lattice order; D behaves like zero,
and @ is the identity element. A deep and obviously fundamental theorem
states that this multiplication turns the set of varieties into a free semi-
group (with zero and identity); it was proved, simultaneously and in-
dependently, by the three Neumanns (Bernhard, Hanna, and their eldest
son Peter) on the one hand and by A. L. Smel'kin on the other.

A few words about methods. As laws are elements of a free group,
it is only natural that applications of the theory of free groups (in particular,
of commutator calculus) permeate the literature on varieties. The second
fundamental tool, to which the theory owes much of its recent flourish, is
provided by various wreath products. This construction was the basic idea
(of Frobenius) behind monomial and, more generally, induced representa-
tions (without which there could be hardly any representation theory), and
it has had a most remarkable renaissance since the war, since its applica-
bility to infinite situations has been realized. While outside variety theory
many of its products were negative, namely ingenious counterexamples,
in our context it produced positive results, including the Neumanns-
Smel'kin Theorem I just mentioned.

To make a point at the welcome risk of provoking some controversy,
I venture to draw a distinction between variety theory and the rest of group
theory. Such a dividing line is always hard to draw and impossible to keep
rigid; in this case, at least the theory of free groups must be considered a
demarkation zone. Beyond that, let us say that variety theory deals with
laws and with classes of groups defined with reference to laws, while the
rest of group theory deals with arithmetic properties, subgroup structure,
various group-theoretic constructions, representations and characters, etc.,
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and with classes of groups defined in terms of these concepts. In the sequel,
'group theory' and 'grouptheoretic' will refer only to 'the rest'.

Nobody would dispute that contacts between the two divisions are
vitally important both for the internal development of variety theory and
for extending its applicability. I would go further, and say that the establish-
ment of a new contact is potentially more valuable than the solution of
one or another major problem. For example, the Oxford school of Professor
Graham Higman has done a great deal to open up an interplay between
variety theory and the very rich theory of finite groups. The fact that they
have made some of the powerful methods of finite group theory usable in
variety theory, seems to me even more important than the striking results
they have obtained so far. Towards the end I shall mention the one occasion
when benefits went the other way, in that varietal methods contributed
to an impressive result in finite group theory.

I turn now to some explicit problems and results. They are selected
for illustration, and the selection reflects my interests rather than any
value-judgement. Most of them involve finite groups and are, at this stage,
unpublished.

The work of Cross, Oates, and Powell, which culminated in the finite
basis theorem I mentioned, started with the new concept of critical group.
A finite group G is called critical if there exists a variety which contains all
proper subgroups and proper factor groups of G, but not G itself. A critical
group is necessarily monolithic (in the sense that it has only one minimal
normal subgroup), but not every monolithic group is critical. One of the
cornerstones of the Oates-Powell proof is a much deeper necessary (group-
theoretic) condition for the criticality of a finite group. M. F. Newman and
I later gave a series of sufficient conditions. Even earlier, critical ^-groups
were extensively investigated by P. M. Weichsel. However desirable it
would be to have a precise translation of this varietal concept into ordinary
grouptheoretic terms, a necessary and sufficient condition of this kind is
still lacking. All the same, even the existing results have proved useful far
beyond the finite basis context.

Every locally finite variety (that is, a variety consisting of locally
finite groups) is completely determined by the critical groups it contains.
Given two locally finite varieties and their critical groups, the join (in the
lattice of varieties) of the two varieties is again locally finite, but the deter-
mination of the critical groups of the join from the critical groups of the
two varieties is usually a very elusive problem. The good extreme is the case
of varieties of s2l-groups (that is, varieties which consist of locally finite
groups whose Sylow subgroups are all abelian). P. J. Cossey has proved,
essentially in his thesis [1], that the set of critical groups of the join of two
such varieties is simply the (set-theoretic) join of the sets of critical groups
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of the component varieties. This result rests partly on the fact that a finite
s9I-group is critical if and only if it is monolithic; it led Cossey to the follow-
ing attractive theory. Let © be the set of critical s2l-groups (considered up
to isomorphism). A partial order -< is introduced in © by defining G -< H
if G is a homomorphic image of a subgroup of H. A subset £ of (£ is an ideal
if G -< H e 2 implies G e S . An ideal is small if it contains only finitely
many cyclic groups. Set-theoretic joins and intersections of (finitely many)
small ideals are obviously small ideals; thus the small ideals of & form a
lattice y. Since this is a sublattice of the lattice of all subsets of (£, it has
many desirable properties, for instance, it is distributive. Now the full set
of critical groups of a variety of s9t-groups is a small ideal in 6, and every
small ideal occurs precisely once as such. This one-one correspondence
between varieties of s9l-groups and elements of =S? is a lattice isomorphism;
hence the varieties of s2l-groups from a lattice .§?* with all the properties
of JiP. In particular, JS?* is distributive. To express another good property,
call a variety a Cross-variety if it can be defined by the laws of a single
finite group. A variety of s5t-groups is Cross if and only if the corresponding
small ideal of (£ is finite. Therefore each Cross variety of s9t-groups can be
written in precisely one irredundant way as the join of join-irreducible
varieties: namely, as the join of its maximal join-irreducible sub varieties.
The strength of this theory is best offset by the contrast of other cases which
one might expect to be well-behaved: say, take the case of varieties con-
sisting of nilpotent groups of class at most 6 and exponent dividing 7. For
these, no such results can hold: while there are only finitely many of them
and they are all Cross-varieties, their lattice is non-distributive, and some
of them can be written in more than one irredundant way as joins of join-
irreducible varieties (Graham Higman [5]).

Let us look at locally finite varieties in general. For a start, I have to
mention some extreme examples. Kostrikin's famous theorem on the
restricted Burnside problem is equivalent to the following statement: for any
prime p, the class &v of all locally finite groups of exponent dividing p is
a variety. In this statement p can be replaced by any square-free integer e:
for, it follows from a series of results the latest of which have recently been
announced by J. H. Walter [16], [17], that to each such integer there are
only finitely many finite simple groups of exponent e, and so the Hall-
Higman reduction theorems [3] apply. On the other hand, the negative
solution of the unrestricted Burnside problem (Novikov, Adyan, Britton)
means that ®e is rarely equal to the variety S'1' defined by the one-variable
laws of $e. Let $£l

e
n) denote the variety defined by the (at most) n-variable

laws of ®e. If it could be shown that there is a square-free e such that
®^n) =j£ ®e for every choice of n, we would, of course, have a negative solution
of the finite basis problem. The complexity of the arguments for n = 1
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makes one doubt the feasibility of this approach, but it would be desirable
to have the opinion of someone who is really familiar with the difficulties
involved.

If U(n> is the variety defined by the n-variable laws of a locally finite
variety It, then U(n) can certainly be defined from a finite subset of X;
hence the finite basis problem for U is in fact equivalent to the question
whether U{n) = U for some n. For locally finite tt in general (although
not for It = $e), one is less ambitious in asking whether tt(n) is locally
finite for some value of n. If a case were found when the answer is affirma-
tive (as it is whenever U is soluble) but U itself cannot be defined from a
finite subset of X, we would still have the answer to the question of what
the number of varieties is: namely, in this case already tt(K) would have 2"°
distinct subvarieties [8].

One road to the finite basis result of Oates and Powell can be described
as follows. Let It be the variety defined by the laws of a finite group G.
For positive integers e, m, c, consider the class 93 of those groups which have
(i) exponent dividing e, (ii) no chief factor of order greater than m, and
(iii) no nilpotent factor (that is, factor group of a subgroup) of class greater
than c. If e, m, c are suitably chosen, then It Q 93. In any case, 93 can be
shown to be a locally finite variety defined from a finite subset L of X and
containing only finitely many (isomorphism classes of) critical groups. All
that remains is to choose, to each critical group H which lies in 93 but not
in It, a law of G not satisfied by H; the finite set obtained by adjoining
these laws to L will define It.

Could one do something like this for other locally finite varieties U?
As a first step, one looks for locally finite varieties 93 which contain II and
which can be defined by conditions like (i—iii) above. To formulate a result
in this direction, let us say that a group is simply monolithic if the inter-
section of its non-trivial normal subgroups is a non-abelian simple group.
The class 93 of those groups whose nilpotent factors and finitely generated
simply monolithic factors all lie in U is always a locally finite variety
(containing It) [7]. (The proof of this rests on the argument behind the
Hall-Higman reduction theorems [3]. It follows from the results of Walter
and others mentioned before, that to each positive integer e'one can
choose a locally finite variety It such that the corresponding variety
93 is just the class of all s2I-groups of exponent dividing e.) One can
play a different variation if it is assumed that 11 contains only finitely
many finite simple groups. (In fact, a somewhat weaker condition is suffi-
cient; but even this does not appear too stringent a restriction if one notes
that no locally finite variety can contain infinitely many of the finite simple
groups which are known at this stage.) Under this assumption, the class 28
of those groups which have no nilpotent factor outside It, and have a com-
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position system (in the sense of Kurosh [11]) whose factors all lie in U,
is a locally finite variety (containing 11). However, the question remains:
what further restriction must be imposed on U to make it provable that S3,
or some variant of it, can be defined by a finite set of laws? As I mentioned,
all is well if II is soluble; what happens if U is only assumed locally soluble?
This condition is too weak to exclude the unmanageable case U = ®j,, for
SB is even locally nilpotent. In any case, the locally nilpotent groups in
U form a subvariety VILN; the best I have been able to do so far is to show
that if ULN can be defined from a finite set of laws (and It is locally soluble),
then so can SS. (The proofs of these results will be sketched in Appendix 1
at the end of this paper.)

We have passed close to an intriguing problem: can locally finite
varieties contain infinite simple groups? All the locally finite, infinite
simple groups I know are excluded on the obvious ground that they do not
have finite exponent. (They are the finitary alternating groups on infinite
sets, and similar 'finitary but infinite' analogues of other known finite
simple groups.) Moreover, each of these groups has arbitrarily large finite
factors isomorphic to known non-abelian simple groups and so, by a result
of Hermann Heineken and Peter M. Neumann ([4], p. 45) none of them can
lie in any variety smaller that £5. According to a sharpened form of a theorem
of M. I. Kargapolov [6] (see Appendix 2 at the end of this paper), the
general situation resembles this at least to the extent that if G is a locally
finite, infinite simple group, and A jB is any finite simple factor of G, then
G has a larger finite simple factor which has a (proper) factor isomorphic
to AjB. There are some classical, but so far intractable, conjectures on finite
simple groups, any one of which would imply that no locally finite variety
can contain infinitely many finite simple groups, and hence that the answer
to the question is negative.

Finally, let us turn to the one result which I would class as being
undisputably an application of varietal methods to a non-varietal problem.
It is an old conjecture that every finite simple group can be generated by
two elements, but so far the only evidence for it is empirical: there is no
grouptheoretic argument which would give anything like this. However,
M. B. Powell showed recently, by a very short and ingenious varietal
argument, that each of a large class of finite simple groups can be generated
by three elements. A finite simple group G belongs to Powell's class if the
set of prime divisors of the order of G can be partitioned into two (non-
empty) parts such that the order of each proper simple factor of G has all
its prime divisors in one or the other part. This class does not include all
known finite simple groups, but there is no reason to believe that it is
contained in the class of known finite simple groups (unless one believes
that all finite simple groups are already known).
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The incredibly powerful current investigations on finite simple groups
impress, among other things, by the fact that they use all of finite group
theory, including all available information about the detailed structure
and representation theory of the known finite simple groups. However,
virtually no varietal information is available on these groups. One is led
to wonder whether a detailed investigation of the laws of the known finite
simple groups might not result in variety theory becoming an additional
weapon in this arsenal, perhaps the new weapon needed to simplify some of
the marathon proofs and to get past points where present methods fail.

Appendix 1

For notation, terminology, and standard results, refer to Hanna
Neumann's book [15].

Let II be a locally finite variety. Recall from pp 6, 7 the definitions:
MLN is the variety consisting of the locally nilpotent groups in U. The class
of those groups which have no nilpotent or finitely generated simply
monolithic factors outside U, is denoted by 25. The class 28 consists of the
groups which have no nilpotent factors outside II and have at least one
composition system whose factors are all in U. Define two further classes:
2BX is to be the class of those groups whose nilpotent factors and simple
factors all belong to II, and 282 the class of those groups whose nilpotent
factors and finitely generated simple factors all belong to II.

The proofs of the following results will be sketched:

(a) S5 is a locally finite variety contained in some power of tl.
(b) If U contains only finitely many finite simple groups, then 28X is

a locally finite variety contained in some power of U, and 28X = 282 = 28.
(c) If U is locally soluble and, for some (finite) m, the variety ULN

im) is
locally nilpotent, then, for some n, the variety 23<re) is locally soluble and hence
also locally finite. (Since tl(n) ^ 3S(n), the same conclusions hold for U(n), too.)

(d) / / II is locally soluble and VLLN can be defined by a finite set of laws,
then 25 is locally soluble and can be defined by a finite set of laws.

The essential part of (a) was announced in [7]; its proof rests on the
arguments behind the Hall-Higman reduction theorems [3]. The relevant
steps of that argument are recalled below, in a suitably adapted terminology.

A class 36 of groups is said to have the Burnside property if X consists
of finite groups and, for each positive integer k, 3£ contains only finitely
many (isomorphism classes of) ^-generator groups.

(1) If •£ has the Burnside property, so does the class of all finitely generated
subdirect products of groups from 3£; if, moreover, H = s3t, then the latter class
is just SD3£.
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This is a slightly stronger form of Lemma 4.2.3 of [3]. Its proof runs
as follows: Let x(k) denote the order of the largest ^-generator groups in X,
and let G be a ^-generator group with a family 31 of normal subgroups N
such that n 31 = 1 and GIN e X whenever N e3t. As is well known, G has
at most b subgroups of index at most x(k), where b is a bound depending
only on k and x{k), and hence only on k and X (see e.g. M. Hall, Jr. [2]).
Since |G/2V| ^ x(k) whenever N e 31, the class 31 cannot contain more than
b distinct elements. Thus \G\ = \G : n 3t\ ^ x(k)b; and G is a subgroup
of a finite direct product of groups from X.

Next, define the product of two classes of groups exactly as this was
done for varieties on p. 3. Note that the product of two SD-closed classes
of finite groups is always an SD-closed class of finite groups, and that, while
multiplication of classes is, in general, not associative, it is associative if
all the classes involved are SD-closed classes of finite groups: the proof of
these claims is straightforward. Lemma 4.2.2 of [3] asserts:

(2) / / X and ?) have the Burnside property, so does X?).

Finally, the following statement will suffice here, although it does not
quite express the full force of the Hall-Higman reduction arguments (cf.
[7]):

(3) If an s-closed class X has the Burnside property and )̂ is the class
of those finite groups whose nilpotent factors and simply monolithic factors
all belong to X, then 3) is s-closed and contained in some {finite) power of SDX;
in particular, (1) and (2) imply that ?) has the Burnside property.

Only an outline of the proof is reproduced here. First, note that
QS?) = 3); since the cyclic groups in D all belong to X and X contains only
finitely many cyclic groups, there exists a positive integer e such that every
group in 3) has exponent at most e. Put 2)d = {G\G e 3), exp G fS d}; then
$! Q SDX, and ^ Q St)2 Q • • • Q S[)e = ?). The proof consists in showing,
by induction on d, that SE)d Q (SDX)"(<J) for suitable integers n(d). The
initial step has already been noted, with n{\) = 1. For the inductive step,
let G e 3)d+1 and let S be the greatest soluble normal subgroup of G. It
follows from Theorem A of [3] that S has a chain of normal subgroups with
nilpotent factors, the length of the chain, say /, being dependent only on e:
thus 5 e (SDX)!. NOW G/S is a subdirect product of monolithic groups, say
Hit with nonabelian monoliths. Each Ht is the extension of a subdirect
power of a simply monolithic group by a group whose exponent is smaller
than that of H, (cf. the proof of 4.4.1 in [3]): thus H{ e (SD£) £)„ Q (sDX)1+n(d).
It follows now that G/Se (sDX)1+n(d), and so G e (sDX)!+1+n(d): thus the
inductive step is established, with n(d+l) = l-\-\-\-n(d).

The next lemma will provide the bridge to varietal arguments. If X
is any class of groups, Xo denotes the class of all finitely generated subgroups
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of the groups in X. Obviously, var X = var Xo. Further, let £N denote the
class of nilpotent groups in •£„•

(4) If Xo has the Burnside property, then var X is locally finite,
(var X)o = QSDX0, (var X)jy = QSDXJV, and the finite simple groups in var X

are all in QX0 . Conversely, if var X is locally finite, then Xo has the Burnside
property.

The proof of the first two statements, and of the converse, is just the
proof of 15.74 in [15], except that 15.73 has to be used in place of 15.72.
Having established this much, one can argue that if G is any />-group in
QSDX0, then G belongs to the QSD-closure of the class of Sylow ^-subgroups
of the groups in Xo. The non-trivial part of the remainder follows from
Theorem 4 of [10].

Now, to the PROOF of (a). The first step is to show that SS0 has the
Burnside property. Note that SB = QsSS D 23O = QSS0. Put X = Uo; then X
is s-closed and, according to the converse part of (4), has the Burnside
property. If G e 23O, then every finite factor group of G lies in the class 3)
defined from X in (3). By (3) and (1), SD?) consists of finite groups and is
closed with respect to the formation of finitely generated subdirect products.
It follows that if H is the intersection of all normal subgroups of finite index
in G, then GjH is in SDS). Consequently, GjH is finite, and so Schreier's
Theorem guarantees that H is finitely generated. Thus, unless H = 1,
H has at least one maximal normal subgroup N, say. Then HJN is a finitely
generated simple factor of G, so it lies in U and is, therefore, finite. As N
has finite index in G, the intersection of its conjugates is a normal sugroup
of finite index in G, contrary to the choice of H. This proves that H = 1.
It follows that SS0 Q SD?) and so SS0 has the Burnside property.

For the second step of the proof of (a), consider AxB with A, B e SS0.
It will be shown that A X B e S3; then, of course, A X B e S30. First, check
that every ^-factor of A X B is in II. Every ^-factor of a finite group is a
factor of a Sylow />-subgroup of the group, and every Sylow ^-subgroup of
A X B is a direct product of Sylow /"-subgroups of A and B; the latter are
in II, hence so is every />-factor oi AxB. Every nilpotent factor of A X B
is a direct product of ^-factors; therefore all these are also in U. Next,
let HjK be a simply monolithic factor of AxB, with monolith MjK. If
(H n A )K ^ M and (HnB)K^M, then M' ̂  [(HnA)K, (HnB)K] £K
would follow, and so MjK would be abelian. Thus it can be assumed that,
say, (H n A)K ^ M; then (H n A)K = K, for every non-trivial normal
subgroup of HjK contains MjK. Note that (H n A)K = H n AK, and
conclude that HjK = H/(H n AK) ~ AHjAK, where, of course, AHjAK
is isomorphic to a factor of B. Consequently, every simply monolithic factor
of A x B is isomorphic to a factor of A or B, and hence lies in II. This
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completes the proof of the claim that A X B e 93O.
The third step begins with the observation that, on account of the

second step, D930 = 93O. By (4), the first step implies that (var 93)O = QSD930 ;
hence (var 93)O = Qs930 Q QS93 = 93. Since a group belongs to 93 if and
only if all its finitely generated subgroups do, this proves that var 93 Q 93.
The converse inclusion is trivial; also, var 93 is locally finite, again by (4)
and the first step of this proof.

It remains to note that 93 lies in a power of It: for, according to the
first step, 93O Q SDS) and, according to (3), "2) lies in a power of it. This
completes the proof of (a).

PROOF OF (b).

It is now assumed that U contains only finitely many finite simple
groups. The first thing to note is that, because of Theorem 6 of Kargapolov
[6] (see also Appendix 2), all simple groups in U are finite. Let Wl be the
class of all those simply monolithic groups which belong to some power of
U and whose nilpotent factors all lie in U. If G e SJR, the monolith of G is
one of the simple groups in U, and G is a subgroup of the automorphism
group of that simple group. Thus 9tt is the union of finitely many isomor-
phism classes of finite groups; and it follows that W is contained in some
power of It, and therefore so is the variety Ux generated by U and 3JJ.
According to (4), Ut is locally finite; all the nilpotent or finite simple groups
of U-! belong to U; so that, again by Kargapolov's Theorem, all the simple
groups of Hx are finite (and belong to U). Let 93X be defined from Ux as 93
was from U. According to (a), 93X is a locally finite variety contained in
some power of 1^ and hence also in some power of It. In particular, all the
nilpotent or simple groups of 93i belong to Ux and hence to U: thus
93XC SSSi- Observe that QsSSi = SB^ If G is a simply monolithic group in
3B1( its monolith belongs to It and is therefore finite; consequently, G is
finite. Since all simple factors of G belong to U, it follows that G belongs
to some power of It; by the definition of SB1( the nilpotent factors of G
all belong to It: thus GeWQ^. This proves that 3BX = 93X.

Next, note that 3BX Q SB2 = QS3B2 and SÊ  C SB = s2B, and that the
finite groups of 3B2, as well as those of SB, all belong to SBX. It suffices to
show that the finitely generated groups G which lie in SB2 or in SB, all
belong to SBX. Let N be the verbal subgroup of G corresponding to the
variety SBj. Then G/N is finite and so, by Schreier's Theorem, N is finitely
generated. If N = 1, there is nothing to prove. If N ^ 1 and G e SS2,
let K be any maximal normal subgroup oi N. If N ^ 1 and G e SB, let ©
be a composition system of G with all factors in It: this system must have
a jump C < C* such that C ^N ^ C*; put K — C n N. In the first case,
NjK belongs to It because it is finitely generated and simple; in the second
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case, NjK belongs to U because NjK ~ NCjC < C*jC e U. In either case,
NjK is a finitely generated group in It and is, therefore, finite. As K is now
known to have finite index in G, it has only finitely many conjugates in G:
the intersection D of these is a normal subgroup of finite index in G. Thus
if G e SB2 then GjD is a finite group in 3B2 and hence in SBX: contrary to
the fact that D is properly contained in the verbal subgroup N. If G e SB,
then G/D e SB follows from the choice of N, K, and D, which ensure that
GjD belongs to some power of U; as in the first case, a contradiction results.
The only alternative is, in either case, that N = 1, that is, G e SB^ This
completes the proof of (b).

PROOF OF (C).

It is now assumed that U is locally soluble. In this case, S3 coincides
with the variety similarly defined from VlLN in place of U: hence one can,
without loss of generality, make the stronger assumption that II is locally
nilpotent; that is, U ^ = tt. It follows from (a) that 23 is contained in some
power of U; as tl is now in a product of locally finite varieties of prime-power
exponent, SS ^ IT(^i I * = * = )̂> say> w n e r e the 83,- are suitable, not neces-
sarily distinct, prime-power-exponent subvarieties of U. Put

so that
» x = It, ^ U, S3, = SS,

and
SSfc+1 ^ Uj_ft3Sfc whenever 1 ^ k < I.

Now take up the assumption that U(m), and hence SS|m), is locally nilpotent.
The point is to show, by induction on k, that SSj.™4"*"1' is locally soluble.
The initial step is already available; the inductive step will make use of
an idea from the (unpublished) proof of Powell's Theorem. Let 1 ^ k < I,
let e be the exponent of U^SSfc; let p be the unique prime divisor of the
exponent of IXI_&, and q the highest power of p which divides e. Assume
that SSi"14"*-1' is locally soluble, and let SS* be the variety defined by the set

of laws: note that 33* = SS^*'. Moreover, U,_fcSSfc ^ SS*: for, the 33*-
subgroup of a group G in Uj_j.S3fc is a normal ^-subgroup P, and any value
of x^.k in G is an element of ̂ -power order, so that P and this value together
still generate a ^-subgroup, that is, a subgroup of exponent dividing q:
therefore, the defining laws of S3* have no non-trivial value in G. This
proves that SS4+1 ^ U,.*®,. ^ SS*, and so ^ ^ ^ ^*+k) = ** • L e t H

be any group in SSi^&). The SS^*-1' -subgroup K of H consists of products
vt • • • vf of values vx, • • •, vt of elements of SS^-X^^-i): the next step is
to show, by induction on t, that each such product has order dividing q.
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If t = 1, this is an immediate consequence of the fact that H e33*. If
t > 1 and »! • • • £,_! has order dividing q, then v1 • • • vt_1 is a value of
x^*.j., and so H e S3* again implies that vx- • • vt has order dividing q. Thus
2? has exponent dividing q. Now the m-generator subgroups of K belong
to 3Sfc+1 and so they are finite; being nilpotent groups in 23, they belong to U;
hence K belongs to the locally nilpotent variety U(m). To sum up: H has
finite exponent, if is a locally nilpotent normal subgroup of H, and HjK
is locally soluble (for it belongs to <)8%n+k~1)). From this information it is
easy to deduce that H, and therefore every group in SSĵ j"*', is locally
soluble. This completes the inductive step, and with it the proof of (c).

PROOF OF (d).

It is now assumed that 11 is locally soluble and ULN = ULN
{m). As in

the proof of (c), it can be assumed without loss of generality that
U = ViLN = U(m); moreover, according to (c), there exist integers n such
that n ^ m and 23(n) is locally soluble. Then 33(n) contains no finitely gener-
ated simply monolithic groups, and the ^-generator subgroups of its nil-
potent groups all lie in 11: thus the nilpotent groups of 231"' all lie in 11.
This shows that S3 = S3(n); all that remains to note is that a locally finite
variety defined by w-variable laws can also be defined by a finite set of
laws: cf. the proof of 51.54 in [15].

Appendix 2

In view of the use of Theorem 6 of Kargapolov [6] in this paper,
it seems worth including a direct argument which in fact yields the strong
form of that theorem mentioned on p. 7. The result is:

THEOREM. Let G be an infinite, simple, locally finite group, and HjM
a finite, simple factor of G. Then HjM is isomorphic to a proper factor of some
finite, simple factor KjN of G.

In fact, H has finite subgroups A such that AM = H; and if A is chosen
minimal with respect to this property, then K and N can be chosen that K > AN
and A n (A n M)N = A n M: then, of course,

HjM ~ AjA nM ~ ANj{A n M)N ^KjN.

This proof makes use of a simple lemma, which was noted before
Theorem 4 in [10] as a consequence of 4.3 and 4.4 of [9]:

LEMMA. The simple groups in a variety generated by a finite group are
all finite.

Let Ao be the subgroup generated by a complete set of representatives
of the cosets of M in H; then Ao is finite, and A0M = H. Let A be minimal
among those subgroups of AQ which satisfy AM = H. As AjA n M £ HjM,
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the intersection A n M is a maximal normal subgroup of A. If M1 is a
proper normal subgroup of A, then Mx M < H gives that Mt(A n M) < A,
and so Mx f=L A n M. This means that A n Af is the only maximal normal
subgroup of A.

According to the Lemma, G is not contained in the variety generated
by A; hence G has finitely generated subgroups which are not contained
in this variety. Choose one such subgroup; as G is generated by the con-
jugates of A, this subgroup is contained in a subgroup B generated by
finitely many conjugates of A, and B is not in the variety generated by A.
In particular, the intersection D of the kernels of all the homomorphisms
of B onto factor groups of A, is non-trivial. Thus G is generated by the
conjugates of D, so that B is contained in a subgroup generated by finitely
many conjugates of D: in other words, G has a finite subgroup C such that
the normal closure K of D in C contains B. If all maximal normal subgroups
of K contained D, so would their intersection, which is proper in K, char-
acteristic in K and hence normal in C: this would be contrary to the choice
of K as the normal closure of D in C. Thus K has a maximal normal subgroup
N which does not contain D, a fortiori does not contain B and hence does
not contain some conjugate g~*Ag of A which is part of the given generating
set of B. By changing from B, X, K, N to their conjugates gBg"1 etc.
if necessary, it can be assumed that g = 1: then K ^ B ^ A ^ N. Now
A n N is a proper normal subgroup of A; as such, A n N is contained in
the unique maximal normal subgroup A n M of A; so that

A n {A n M)N = (A n M)(A n N) = A n M.

It remains to exclude the possibility that l̂Af = K. If this were the
case, one would have from B ^ A that B = A(B n N), so that

BjB nN s A/A nB nN

would follow. However, this and the choice of D would imply that
N Ŝ  B n 2V ̂  D, contrary to the choice of N.
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