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Some Sylow subgroups 

BY L. G. KovAcs, University College of North Staffordshire 

B. H. NEUMANN, F.R.S., University of Manchester 

AND H. DE VRIES, University of Amsterdam 

(Received 26 September 1960) 

Most of the well-k-nown theorems of Sylow for finite groups and of P. Hall for finite soluble 
groups have been extended to certain restricted classes of infinite groups. To show the 
limitations of such generalizations, examples are here constructed of infinite groups subject 
to stringent but natural restrictions, groups in which certain Sylow or Hall theorems fail. 
All the groups are metabelian and of exponent 6. There are countable such groups in which 
a Sylow 2-subgroup has a complement but no Sylow 3-complement; or again no complement 
at all. There are countable such groups with continuously many mutually non-isomorphic 
Sylow 3-subgroups. There are groups, necessarily of uncountable order, with Sylow 2-sub- 
groups of different orders. The most elaborate example is of an uncountable group in which 
all Sylow 2-subgroups and 3-subgroups are countable, and none is complemented. 

Let 11 be a set of prime numbers. A H-group is a periodic group whose elements 
have orders divisible by primes in H only. If C is a group and H a H-subgroup of G, 
then H is contained in a maximal, or Sylow, H-subgroup of G; cf. Kurosh I956, 
? 54. If H consists of a single prime number p, we correspondingly have p-groups, 
p-subgroups, Sylow p-subgroups. 

Eugene V. Schenkman has provedt the following theorem: 
If the group C is countable, periodic, and locally soluble, then to every pair IH, IH' 

of complementary sets of primes there exists a Sylow H-subgroup S and a Sylow 
H'-subgroup T of G such that 

ST=G and SrT={1l}; 

in other words, S and T are complements in G. 
It is clear that the condition of periodicity cannot be omitted; nor can the con- 

dition of local solubility, for by a well-known theorem of Hall (I937) a finite group 
is soluble if to every prime p it has a complemented Sylow p-subgroup. In fact, 
again by a well-known theorem of Hall (I 928), in a finite soluble group every Sylow 
H-subgroup is complemented; every Sylow H'-subgroup complements every Sylow 
H-subgroup; moreover, for fixed HT all Sylow HT-subgroups are conjugate and thus 
isomorphic. These theorems of Hall are used, together with a representation of the 
given group as a direct limit of a sequence of finite groups, to prove Schenkman's 
theorem; we omit the details. 

In this paper we demonstrate by examples that under the assumptions of 
Schenkman's theorem: (i) there may be Sylow H-subgroups that are complemented, 
but not by Sylow H'-subgroups; (ii) there may be Sylow Fl-subgroups that are not 
complemented at all; (iii) there may be continuously many mutually non-isomorphic 
Sylow H-subgroups for fixed H. However, it is not difficult to see that in 

t Oral communication. 
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Schenkman's groups, and more generally in countable locally finite groups, all 
Sylow 11-subgroups, for fixed 11, have the same order. We show that in uncountable 
groups even this weak proposition may fail to hold. 

We also present another, rather more elaborate example, to show that the 
assumption of countability in Schenkman's theorem cannot be dispensed with. 
This is a group of order c (the cardinal of the continuum), whose Sylow p-subgroups 
are all of countable order, and not complemented.t The same example also allows 
a different interpretation, as follows. 

The theorem that 'the order of a Sylow p-subgroup of a finite group is the highest 
power of p that divides the group order' allows no immediate translation into the 
language of infinite groups; but if it is reformulated as 'the product of the orders of 
the Sylow p-subgroups, over all different primes p, is the group order', then it 
makes sense in those infinite groups in which the order of a Sylow p-subgroup does 
not depend, for fixed p, on the particular Sylow p-subgroup chosen. By what has 
been said, this includes the countable locally finite groups, and for these it is in fact 
true. In groups with Sylow p-subgroups of different orders (for one and the same p), 
one would have to weaken the proposition further to 'there are Sylow p-subgroups, 
one for each prime p, such that the product of their orders is the group order'. 
However, not even this is true in the uncountable group we construct, though the 
group is metabelian and of exponent 6. Is it true for countable periodic groups 
without any solubility assumption? This looks as intractable a problem as the 
problem (due, we believe, to Tarski) whether there are infinite groups all of whose 
proper non-trivial subgroups have prime orders. 

All our groups will not only be periodic, but boundedly periodic, that is of finite 
exponent; and the exponent will be as small as it can be, namely 6; moreover, the 
groups will not only be locally soluble, but soluble and even metabelian; the sets 
17 will consist of a single prime (usually p = 2, occasionally p = 3) only; and the 
Sylow p-subgroups will be elementary abelian or, in one case, nilpotent of class 2. 
All this may be taken to indicate that 'good' Sylow theorems and Hall theorems 
for infinite groups are not to be looked for in the direction indicated by Schenkman's 
theorem, even with some further stringent assumptions on the structure of the 
group thrown in. 

1. NOTATION AND PRELIMINARIES 

If {Ai}i? I is a family of groups, the cartesian product, denoted throughout by P, 
consists of all functions f on I to Uq Ei Ai that satisfy 

f(i) EAi, 

with multiplication defined in the obvious way by 

(fg) (i) = f(i) g(i), for all i E I. 

All the laws common to the Ai are laws in P, too; thus if all Ai have finite ex- 
ponent n, then so has P; and if all Ai are soluble of length 1, then so is P. 

t [Added in proof, 6 January 1961.] A note by Kargapolov (I959) has come to our 
attention. In this he constructs an uncountable metabelian group of exponent 6 in which 
the Sylow 3-subgroup is not complemented. 
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The Cartesian product contains the direct product, denoted throughout by P*, 
consisting of all thosef E P whose support 

o(f) = {i I E I.f(i) t 1} 

is finite. We shall here be concerned with groups G contained in the Cartesian product 
and containing the direct product 

* < G < P; 

the name interdirect product has been proposed for such groups. 
For fixed i E I, those f that satisfy 

o(f ) ' {i} 

form a co-ordinate subgroup AQ isomorphic to the constituent Ai; the projection 

Ark: P -> Ai defined by fT = f(a) 

is an epimorphism whose restriction to Aq is an isomorphism. Thef7Ti are also called 
the components of f. 

Two or more elements of a group will be called consonant if they jointly generate 
a p-subgroup, for some prime p. They must then, of course, be periodic of p-power 
order. There is a Sylow subgroup containing given elements if, and only if, they are 
consonant. 

Assume that all constituent groups Ai have finite exponent n, so that P also has 
exponent n; thent elementsf, g, ... of P of p-power order are consonant if, and only 
if, their components f7Ti, q7Ti, ... are consonant, for every i E I. 

LEMMA 1 1. Let the Cartesian product P have finite exponent, and let S be a Sylow 
p-subgroup of P. Then S* = S n P* is a Sylow p-subgroup of the direct product P*, 
and SiTi is a Sylow p-subgroup of Ai; moreover, S is the Cartesian product of its com- 
ponents Sni, and S is their direct product. If for fixed p and for every i E I a Sylow 
p-subgroup Si of Ai is given, then there is a unique Sylow p-subgroup S of P, namely 
the Cartesian product of the Si, and a unique Sylow p-subgroup S* of P*, namely their 
direct product, such that S7ri = Sear, = S. 

The proof is obvious, and we omit it. 

COROLLARY 1-2. If P* < G < P and if S is a Sylow p-subgroup of G, then 
S* = S n P* is a Sylow p-subgroup of P*. Every Sylow p-subgroup S* of P* is con- 
tained in one and only one Sylow p-subgroup S of C, and S consists of all those elements 
of G that are consonant with the elements of S*. 

One easily extends the definitions and results of this section from p-groups to 
H-groups. 

For most of our constructions we need the special case of interdirect products 
that arises when all constituent groups Ai coincide with a single group A. We then 
use the terms cartesian power, direct power, interdirect power of A, and write P = AI 

t We are indebted to the referee for reminding us that without the, assumption of finite 
exponent this is not generally true. 
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for the Cartesian power (no special notation will be required for the corresponding 
direct power Pt, nor for other interdirect powers). 

The index set will not always be denoted by I; instead we reserve the letter I 
for a particular countable index set, namely 

I = {I, 2, 3,} 

2. SYLOW SUBGROUPS WITHOUT COMPLEMENTS 

For our first example we take A to be the symmetric group of degree 3, 

A = gp(a,b; a2 = b3 = (ab)2 = 1); 

we put ab = a'. The group G is to be the subgroup of P AI generated by the direct 
power P* and one further element g0, defined by 

g0(i) =a' for all i E I. 

Then G is clearly countable, metabelian, and of exponent 6. Denote by S the Sylow 
2-subgroup of G defined by 

S7ri = gp (a) for all i E I. 

Then S < P*; for every element of G outside P* is of the form 

g=f*go, fe E P*; 

and if we choose i E I - (f *), then 

g(i) = go(i) = a', 

which is not consonant with Srri; thus g 0 S. 
Let T denote the (clearly unique, because normal) Sylow 3-subgroup of G. Then 

alsoT<P*,and ST=P*. 

It follows that S cannot be complemented by a Sylow 3-subgroup in G. This does 
not mean that S is not complemented in G; for let U be the group generated by T 
and g0. Then clearly Su = G. 

Now U nP = T, and as S < P*, then 

S o U = (S n P*) n U = S n (P* n U) = S T = {1}. 

Thus S and U are complements in G, and we have proved the following proposition. 

TIHEOREM 2- 1. There is a countable metabelian group G of exponent 6 which has a 
Sylow 2-subgroup S which is not complemented by any Sylow 3-subgroup in G, but 
which has a complement U containing elements of order 2. 

A slight modification of our construction leads to a group with a Sylow subgroup 
that is not complemented at all. We replace the symmetric group of degree 3 by 
its direct product with the tetrahedral group, that is to say, we put 

A = B x C, 

where B = gp(a, b; a2= b3 = (ab)2 =), 

C = gp (c, d; C2 = 3 =(cd)3- 1). 
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Then A is again metabelian and of exponent 6. A Sylow 2-subgroup D of A is given 
by D= gp (a,c,cd), 

where (as usual) cd = d-led. We note that a' = abc is not consonant with the elements 
of D. We again take as our group G the subgroup of P = AI generated by the direct 
power P* and one further element g0, now defined by 

g0(i) =a for all i E I. 

Then G is clearly countable, metabelian, and of exponent 6. Denote by S the Sylow 
2-subgroup of G defined by 

S7i =D for all i E I. 

Then S < P*; for every element of G outside P* is of the form 

gf*go, f*EP*; 

and if we choose i E I -(f *), then 

g(i) = go(i) = a, 

which is not consonant with Srri; thus g 0 S. 
Now let U < G be such that SU = G. Then there are elements s E S and u E U 

such that su = yg. As I is infinite and the support of s is finite, we can choose 
to E I-o(s); then u(i0) = g0(io) = 

Next let ho denote the element of P* defined by 

ho(iO) = d, 

ho(i) = 1 for all it i0. 

Then there are elements s' E S and u' E U such that s'u' = ho. Now 

u'(io) = xd, 

u'(i) = ys for all i * io, 

where x, yi E D; it follows that o(U'2) = {io} and 

U'2(io) = X-d2, 

where x' E gp (c, cd). Put v = [u, u'2]. Then o-(v) c {io}, and 

v(io) = [,f x'd2] = [c, x'd2] [c, d2] = cd * 1. 

It follows that v * 1 and v E S; but also clearly v E U. Thus the intersection of S 
and U is non-trivial, and S has no complement in G. 

TIHEOREM 2-2. There is a countable metabelian group G of exponent 6 which has a 
Sylow 2-subgroup S which is not complemented in G. 

Note that by Schenkman's theorem G must also have a Sylow 2-subgroup which 
is complemented, and even complemented by a Sylow 3-subgroup of G. 
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3. NON-ISOMORPHoIC SYLOW SUBGROUPS 

Examples are known of non-periodic groups with non-isomorphic Sylow p-sub- 
groups, and even with Sylow p-subgroups of different finite orders, stringent further 
assumptions like supersolubility and the maximal condition for subgroups not- 
withstanding (Zappa I 94 ). Awell-known example of a countable periodic (and even 
locally finite) group with non-isomorphic Sylow p-subgroups is the ('restricted 
symmetric') group of all finite permutations of a countably infinite set: this has 
to every prime p continuously many mutually non-isomorphic Sylow p-subgroups.t 
By contrast, if a locally finite group G has a finite Sylow p-ssubgroup S, then all Sylow 
p-subgroups of G are conjugate and hence isomorphic to S; for if T is any other finite 
p-subgroup of G, then S and T jointly generate a finite subgroup of G, in which 
S is a Sylowp-subgroup and T is contained in some conjugate of S: thus the order 
of T is bounded by that of S; if G also contained an infinite p-subgroup, then we 
could pick from it more elements than there are in S, but finitely many, and they 
would generate a finite p-subgroup of order strictly greater than that of S: as we 
have seen, this is impossible. We remark that in a countable locally finite group all 
Sylow p-subgroups (for fixed p) have the same order; for if one of them is finite, they 
are all isomorphic, and if none of them is finite, they are all countably infinite. 
Moreover, we remind the reader that all periodic locally soluble groups are locally 
finite. 

We now proceed to construct a countable locally finite group with continuously 
many mutually non-isomorphic Sylow 3-subgroups. Unlike the restricted symmetric 
group referred to above, our group will be soluble, in fact metabelian, and of finite 
exponent, namely 6. In a countable group of exponent 6 all Sylow 2-subgroups are 
isomorphic, because they are elementary abelian and have the same order. This is 
why we consider Sylow 3-subgroups. 

We begin by introducing the finite groups from which our group is to be built 
up. Let n be a positive integer, and put 

An = gp (an, be cnW cnll ... . Con ZnO Zn11 * n Zen, (341)) 

with the defining relations (3.1) below. For the present we suppress a suffix n: 

a3 = b2 =(ab)3 = C3 = C3 f Cn Z = Z3 = *3 Zn 
3 

[a,ci] = zi, [a,zi] = [b,ci] = [b,zi] = [ci,c] = [c,z] = [zizj] (3.1) 

(i,j =O 1,... ,n).J 

The generators zi are redundant, as are also some of the defining relations. The group 
can be described as the splitting extension of the direct product of a four-group 
(generated by b and ba) and an elementary abelian group of order 32n+2 (generated 
by c0, cl, ..., , zCm z1, ..., Zn) by the automorphism of order 3 (induced by a) which 
maps b on ba and ba and bba, multiplies ci by zi, and fixes zi (i = 0, 1, ..., n). We put 

a' = ab; 

t We do not know where this fact is to be found in the literature. 

20 Vol. 260. A. 
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this is also of order 3, and induces the same automorphism of the direct product 
as a does. We note that S= gp (a, c, el, en) 

and Sn= gp (a', co, cl, *, en) 

are Sylow 3-subgroups of An. They are nilpotent of class 2 and have exponent 3; 
and An is metabelian and has exponent 6: we omit the easy verification. We also 
note that the centre of Sn (and of S') is 

Zn - P (Zo, Z1, * * * Zn); 

that the elements of Cn = gp (co, cl, ***, en, zo, Z1, ***, Zn) 

have 3 or fewer conjugates each; and that this property characterizes them 
among the elements of Sn (and of S'). Further, the centralizer of Cn in Sn (and in 
S') is Cn itself; and the index of Zn in Cn is 

|Cn:Zn| = 3n+1. 

We now consider the different groups An simultaneously, and therefore restore 
the suffix n to the generators. The group we construct is a direct product of count- 
able interdirect powers of An, one for each n. It is, however, best constructed in 
one step; we use a double index set J2 = I x I, where again I = {1, 2, 3, ...}; the 
elements of 12 will be written in. The Cartesian product P is to consist of all 
functions f on 12 to U An, subject to 

f(mn) E An. 

Multiplication is 'componentwise', as always; the projections are l7mn. The direct 
product P consists of the functions f* with finite support o(f*). 

The group C is to be generated by P* and further elements gi, one each for 
i = 1, 2, 3, ..., defined by 

gi(mn) = 1 when n *= ?, 

gi(mi) = as for all MEl1. 

G is then clearly countable, metabelian, and of exponent 6. 
Let J be an arbitrary subset of I. We define a Sylow 3-subgroup S. of G by its 

components, as follows. 

SJlTmn = Sn for all M E I, n E J, 

SJfTmn = Sn for all M E I, n E I- J. 

Our object is to show that if J * J', then S. and Sj, are not isomorphic; we do this 
by showing how J can be uniquely recovered from the abstract properties of S. 
(as distinct from the representation of S. as a subgroup of P). 

First we note that rilnlTmn is consonant with Sn but not with Sn, because an E 

is not consonant with an = gn7Tmn Hence gn E Sj if, and only if, n E J. It suffices, 
therefore, to characterize those numbers n for which gn E Sj, using the structure of 

Si, not, of course, its suffix. To this end we consider elements s E Sj with precisely 
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3 conjugates. They are the elements that have just one component with 3 
conjugates, and all others central; that is to say, there is a pair m'n' E J2 such that 

inTmn E Cn' - Zn' (3-2) 
8rTmn E Zn for all mflE I2_ {m'n'}.f 

Such an element s commutes with gn if n * n', but fails to commute with gn,. 

LEMMA 3-3. The number n' belongs to J if, and only if, Sj contains an element g 
with the property 

ink g fails to commute with every element 8 to which there is a number m' such that 
(3 2) is satisfied. 

Proof. We have already seen that g = gnu has Yn, and gn E Sj if n' E J; this 
proves the 'only if' part. To prove the converse, assume g E Sj has property ink. 

Write g in the form f= ?l?n *. g fPE, 

with gnl, gn2, *** gn E Sj. Nowf * has only a finite number of non-trivial components, 
and so there can be only a finite number of pairs m'n' such thatf * fails to commute 
with an s satisfying (3.2). All gn with n $ n' commute with all s that satisfy (3.2). 
Hence n' must occur among n1, n2, ..., nr; and it follows that n' E J. This completes 
the proof of the lemma. 

The lemma does not yet give the structural characterization we look for, as (3.2) 
is expressed in terms of the pair m'n'. However, the property 9n, depends only on 
the second member of the pair, and we now show how this is determined abstractly 
from 8. To this end we consider the set K(8) of all those elements s' of Sj that are 
permutable with all elements that are permutable with 8; then K(S) is a subgroup, 
namely the centralizer in Sj of the centralizer in Sj of 8. One readily verifies that 
K(8) consists of the centre Z, say, of Sj together with all elements 8' that satisfy 

8fITmnf E Cn' Zn'7 

8'1Tnn E Zn for all mn E I2 - {m'n'}, 

with the same pair m'n' as for 8. It follows that 

K(8)/Z-Cn'/Zn 

and the index of the centre in K(s) is 

IK(8):ZI = 3n'+1 

Thus n' is abstractly determined by 8, and we can paraphrase Lemma 3 3 as follows: 

LEMMA 3-4. The number n' belongs to J if, and only if, Sj contains an element g 
which fails to commute with every element s with 3 conjugates and the property that 
the index of the centre in the centralizer of the centralizer of 8 is 3n'+1. 

COROLLARY 3 5. If J J', then Sj and Sj, are not i8omorphic. 

As there are continuously many subsets J of I, we see that a has at least con- 
tinuously many mutually non-isomorphic Sylow 3-subgroups. But a is countable, 

20-2 
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and so cannot have more than continuously many subgroups of any kind; and we 
have proved: 

THEOREM 3-6. There is a countable metabelian group C of exponent 6 with con- 
tinuously many mutually non-isomorphic Sylow 3-subgroups. 

It may be remarked that here 'metabelian' is best possible, because in a nil- 
potent group, and even in a locally nilpotent group, the Sylow p-subgroups are 
unique (cf. Kurosh 1956, p. 229). The exponent 6 is also obviously the smallest 
possible. Finally, we note that our group C is an extension of an FC-group (namely 
P*) by an elementary abelian 3-group, and by contrast in an FC-group all Sylow 
p-subgroups are isomorphic (cf. Neumann 1958). 

We conclude this section by presenting a simple example of a metabelian group 
of exponent 6 with two Sylow 2-subgroups of different orders. By a remark at the 
beginning of this section such a group must have uncountable order. 

Let A again be the symmetric group of degree 3, 

A = gp(a,b; a2 = b3 = (ab)2 = 1), 

and put, as before, a' = ab. 

We form the Cartesian power P = A', and define C as the subgroup of P generated 
by the direct power P* and further elements gj, indexed by the subsets J of I, 
and defined by gj(i) = a' for i E J 

gj(i)=l for iEI-J. 

Clearly C is metabelian and of exponent 6, and of order 
- IGI = C = 2xo. 

We note that the product of two generators gj, gj, is itself a generator 

gJgJ' = gJ.v 

namely the one that belongs to the symmetric difference 

J' = (J -J') u (J' -J). 

Hence every element of C can be written in the form 

g =f f*g, 

wheref * E P* and J is empty or infinite. 
Now consider the Sylow 2-subgroups S, S' of C defined by 

S7Tr = gp(a) for all iEI, 

S'7Tj = gp(a') for all iE I. 

Then S < P*; for if g E -P*, then 

g =f *gj 

withf * E P* and J infinite; choosing i E J -(f *), we have 

g(i) = gj(i) = a', 
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and this is not consonant with S7Ti; thus g 0 S. It follows that S is countable. On 
the other hand, every gj is consonant with every S'7Tj, whence it is seen that S' 
contains every gj and thus has order c: 

THEOREM 3 7. 'There is a metabelian group G6 of exponent 6 and order c which has 
a countable Sylow 2-subgroup S and a Sylow 2-subgroup S' of order c. 

4. UNCOUNTABLE GROUPS WITH COUNTABLE SYLOW SUBGROUPS 

For the construction of our next example we require a set of continuously many 
subsets of a countable set with pairwise finite intersections. The existence of such 
a set was first proved by Sierpinski (i928). The countable set is again I = {1, 2, 3, ...} 
and we denote by Z the set of all subsets o of I that satisfy the following three 
conditions: 

(i) 1 E o; 

(ii) if i E-and i < j < 2i, thenj jC; 

(iii) if i E o, then 2iEa or 2i+1 E 0. 

Then every C E l clearly also has the properties 

(iv) o is infinite; 
(v) if 1 < i E o, then[ii] E o; 

(vi) if 1 < i E oc, then i+ 1 0 a; 

and it is not difficult to verify that the o E Z are characterized also by (iv), (v), (vi). 
We also note, for later reference, another property of o E X, namely 

(vii) if j > 1, then there is one and only one i E o in the range j < i < 2j- 1. 

If o, o' are elements of C, laAd if 1 < i E o 
n o-', then also [ii] E o - o', by (v), 

and no j strictly between [hi] and i belongs to either o- or o', by (ii) and (vi); hence 
o and o' coincide on {1, 2, ..., i}. It follows that if o n o-' is infinite, then o- = a', 
or, differently put, different elements of Z have finite intersections. 

Next we allocate to each C E a sequence 6 = {61 ,62, 63, ...} of zeros and ones: 
if - = {i, i2, 3, ... } with 1= i1 <i 3 < ..., we put 

en = in+1rl 2in. 

As il = 1 and in+1 = 2n + 121- 1+c622n-2+... + e, 

the correspondence between the o E Z and the sequences e is one-to-one, and it 
follows that the cardinal of ? is c. 

We now choose a finite group A that contains two elements a, a' which are not 
consonant but have equal prime power order. For the present we shall take A to 
be the symmetric group of degree 3, 

A = gp (a, b; a2= b3 = (ab)2 = 1); 

and we again put a' = ab. But the construction can equally well be carried out with 
a different group A, and we shall later vary A. 

The group C we define will again be an interdirect power of A contained in the 

Cartesian power P = AI (and containing the direct power P*). Specifically, C is 
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to be the group generated by P* and certain further elements gc, one to each o E C, 
which are defined as follows. 

(i) If i E o- and 2i E o, then g,(i) = a; 
(ii) if i E o- and 2i+ 1 E o, then gr(i) = a'; 

(iii) if i 0 o, then gr(i) = 1. 

It follows that the support of g, is 

Now if f, f' E P, then clearly 
O([Lf, ']) '= O ) n (G ' 

It follows that [gr,, gr] E P*; 

and it is not difficult to see that G/P* is an elementary abelian 2-group with basis 

{gP*I},,. We note that the order of C is c, and also that the elements of order 3 
form, with the unit element, a subgroup T of P* which is the-clearly unique- 
Sylow 3-subgroup of G. 

LEMMA 441. Every consonant set of elements of C is countable. 

Proof. Every element of C can be written in the form 

f = f *9U1 9U2 ... *~" *(4.2) 

where f * E P*. We may take o1, cr2, ..., o-r all different here, and then r depends on 
the element f only, and so do o1, 02, ..., or The support o(f *) is finite, and so are 
the intersections 0-m n on for m + n. Thus the set 

o(f*)j uU am G 
?n<n 

is finite, and there is a least integer k(f ) that exceeds all its elements. It is not 
difficult to see that k(f ) depends on f only, not on its representation (4 2); for k(f ) 
is the least integer k with the property that if i > k and if i E -(f), that is iff(i) $ 1, 
then there is a unique on among o1, 2, ..., o.r such that i E on, and 

f(i) = gon(i). 

To each on, 1 n < r, there is, by property (vii), one and only one i in the range 
k(f) s i < 2k(f -1 such that i E on; we denote this by jn(f ); and we put 

J(f ) = {jl(f ) j2(f ), *** jr(f )3 

We note in passing that the j(f ) are all distinct, and thus r < k(f). We also note 
that J depends onf only, not on the order of the factors in (4.2). 

There are only countably many possible values of k(f ), and to each of them there 
are only finitely many sets (namely the subsets of {k(f ), k(f ) + 1, ..., 2k(f ) - 1}) 
that can serve as J(f ). Let F be an uncountable subset of C. Then there is at least 
one integer, ko say, and at least one set JO c {kO, ko + 1, ..., 2ko - 1} which are the 
k(f ) and J(f ), respectively, of uncountably manyf E F. Thus the set 

Fo = {f |fEF Xk(f) = ko*J(f) = J0} 
is uncountable. 
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Letfo EFO. As P* is countable, there are elements in F0 that are not congruent 
to fo modulo P*; letfo be one of them. We represent fo, f in the form 

90 ~~~~~~~~(4-3) fO-S fOr -1 92 .. * * gr' 

So = fO*' g"' g *** get (4.3') 

Note that the number r of factors outside P* is the same for both, because r IJ0 ; 
note also that JO is not empty, as otherwisefo andf' would be congruent modulo P*. 
There is at least one on that does not occur among u, o2, ..., or; for otherwise the 
sets {o1, C2 ***v or} and {a4', o, ..., o*r} would be equal, and fo and f would be con- 
gruent modulo P* and commutators, hence modulo P*, contrary to assumption. 
We may assume that o1 does not occur among the o, oC, ..., or, because changing 
the order of the factors glar only changes the initial fo* in (4 3). Now as 

J(fO) = Jo = J(fo) 

there is a number n, 1 < n < r, such that jn(fo) = jj(fo), and again we lose no gen- 
erality by assuming n = 1. Thus o-1 $ u, but there is an i, namely 

j~l(fo) = l(f o) > ko) 

which is common to o- and o. Let i* be the greatest number in the finite set 

A'1 o 4'1. Then i* > ko = k(fo) = k(f') 

and therefore fo(i*) =go-j*) 

fo'(*) = (j*) 

As one of o1, o-/ contains 2i*, while the other contains 2i* + 1 (because i* is the 
greatest element of their intersection), one of g..(i*), g-,(i*) is a and the other is a'. 
It follows that fo(i*) and fo(i*) are not consonant, and thus fo and f are not con- 
sonant either. Thus every uncountable subset F of G contains pairs of elements 
that are not consonant, and the lemma follows. 

THEOREM 4*4. There is a metabelian group C of exponent 6 and of order c all of whose 
Sylow p-subgroups are countable. It has a (normal, hence unique) Sylow .3-subgroup 
T which has no complement in G. Every Sylow 2-subgroup S of G has a complement 
U in G which is normal in G and contains elements of order 2. 

Proof. The group G we have here constructed is-as an interdirect power of a 
metabelian group of exponent 6-metabelian and of exponent 6; we have already 
seen that its order is c; and its Sylow p-subgroups are countable by lemma 4*1. 
As all elements of order 3 belong to the unique Sylow 3-subgroup T, any comple- 
ment of T would have to be of exponent 2, and so would be contained in a Sylow 
2-subgroup S: but these are countable only, and so ST is only a countable subgroup 
of G. On the other hand, given a Sylow 2-subgroup S of G, we can construct a com- 
plement U of it as follows: As G/T is an elementary abelian 2-group, every subgroup 
of it is a direct factor. We choose U so as to contain T and so that U/T is a com- 
plementary direct factor of ST/T in G/T. Then S and U together generate G; but 
U contains the derived group T of G and hence is normal in G; it follows that 
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G = SU. Finally, as U/T and ST/T are complements, S n U is contained in T. 
But S n T = {1}, whence also S n U = {1}, and the theorem follows. 

We could have carried out the same construction with other primes than 2 or 3, 
or with 2 and 3 interchanged. Specifically, let H be the group obtained by the same 
construction when the symmetric group A of degree 3 is replaced by the tetrahedral 
group B = gp (a, b; a3 = b2 = (ab)3 = 1), 

where again a' = ab. Denote by K the direct product 

K = GxH. (4.5) 

As B is also metabelian and of exponent 6, so then is H, and K. The Sylow p-sub- 
groups of K are the direct products of Sylow p-subgroups of G and of H, hence 
countable. To show that they are not complemented, we first prove the following 
more general lemma. 

LEMMA 4-6. Let G, H be arbitrary groups with subgroups T < G and U < H, and 
let K = G x H and V = T x U. If V is complemented in K, then T is complemented 
in G. 

Proof. Let W be a complement of V in K; thus VW = K and V W = {1}. 
Denote by IT and p the projections of K onto G and H, respectively. We show that 

X = (Up-, n W) n 

is a complement of T in G. Clearly X is a subgroup of G. Let g E G be arbitrary; then 
there are elements v E V, w E W such that g = vw. Write v = tu and w = xy, where 
t = Vrr, u = vp, x = wnr, y = wp. Then t E T and u E U; also uy = gp = 1, whence 
y E U, and w E Up-1 n W; thus x E X. Further, tx = g7r = g, and it follows that 
TX = G. Finally let x* E T n X. Then there is an element w* E Up-1 N W such that 
W*n =x* E T and w*p E U; then W* ET x U = V; but as also W* EW and 
Vci W = {1}, it follows that w* = 1 and x* = 1. Hence T n X = {1}, and X is a 
complement of T in G, as required. 

We return to the particular group K of (4.5), and consider a Sylow 3-subgroup 
V of it; now V = T x U where T is the unique Sylow 3-subgroup of G and U is some 
Sylow 3-subgroup of H. As T is not complemented in G, it follows from the lemma 
that V is not complemented in K. Correspondingly the Sylow 2-subgroups of K are 
not complemented either. Thus we have proved 

THEOREM 4-7. There is a metabelian group K of exponent 6 and of order c all of 
whose Sylow p-subgroups are countable, and none of whose Sylow 2-subgroups or 
3-subgroups is complemented. 
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