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Free centre-by-metabelian Lie algebras in characteristic 2

L. G. Kovács† and Ralph Stöhr

Abstract

We study free centre-by-metabelian Lie algebras over a field of characteristic 2. By using
homological methods, we determine the dimensions of the fine homogeneous components of
the second-derived algebra. In conjunction with earlier results by Mansuroǧlu and the second
author, this leads to a complete description of the additive structure of the second-derived ideal
in the free centre-by-metabelian Lie ring.

1. Introduction

Let G denote the free centre-by-metabelian Lie algebra of finite rank r > 1 over a commutative
ring K with 1, and let X be a free generating set for G. Then G is a central extension of the
free metabelian Lie algebra G/G′′ with kernel G′′. Of course, G/G′′ is well-understood: it is a
free K-module and the simple basic Lie monomials form a basis of it (see, for example, [1]).
The second-derived ideal G′′ is much more complicated. When K = Z, this ideal contains
elements of order 2, and the 2-torsion occurring in even degrees is very different from the
2-torsion in odd degrees. This was discovered by Kuz’min in his pioneering paper [2]. Much
later it turned out (see [4, 7]) that some of the details on Lie rings given in [2] required
modification. The results in [4] were conclusive in the case where K is a field of characteristic
other than 2, and also for the torsion-free part of G′′ when K = Z. Most of the present paper
is devoted to calculating the dimensions of the fine homogeneous components of G′′ under
the assumption that K is a field of characteristic 2. Combined with the results in [4], these
dimensions determine the full additive structure of G′′ in the K = Z case as well. We give non-
trivial elements in each fine homogeneous component such that the component is the direct
sum of the cyclic groups generated by these elements. The approach to the problem offered here
seems to be new. It is based on ideas developed in [4], but makes essential use of homological
methods.

The paper is organized as follows. Notation and some preliminary notions are introduced in
Section 2. In Section 3, we record some facts about the homology of modules over polynomial
rings. In Section 4, we discuss tensor products and symmetric and exterior squares of such
modules, and in Sections 5 and 6 we determine some low-dimensional homology groups with
coefficients in such modules. Our main result, giving the dimensions of the fine homogeneous
components of G′′, is proved in Section 7, and the application to free centre-by-metabelian Lie
rings is carried out in Section 8.
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2. Preliminaries

In what follows K denotes a field or the ring of integers, X = {x1, x2, . . . , xr} is a finite set
with r > 1. The free centre-by-metabelian Lie algebra on X over K is defined as the quotient

G = L/[L′′, L],

where L is the (absolutely) free Lie algebra on X over K and L′′ is its second-derived ideal.
Thus, G is a central extension of the free metabelian Lie algebra G/G′′ = L/L′′ with kernel
G′′ = L′′/[L′′, L]. Let M = G′/G′′ = L′/L′′. The adjoint representation in G induces on M the
structure of a module for the abelian Lie algebra G/G′, and hence for the universal envelope
U of G/G′. In fact, this universal envelope is U = K[X], the ring of polynomials in X. The
starting point of our investigation is the isomorphism

G′′ ∼= (M ∧ M) ⊗U K, (2.1)

where the exterior square M ∧ M of the module M is considered as a U -module with derivation
action, that is, for u, v ∈ M and x ∈ X the action is given by (u ∧ v)x = ux ∧ v + u ∧ vx, and
K is regarded as a trivial U -module (see [4, (2.7)]). More generally, tensor products of U -
modules as well as exterior and symmetric powers will always be regarded as U -modules with
derivation action. The exterior, tensor and symmetric squares of any U -module A fit into the
short exact sequence

0 −→ A ∧ A −→ A ⊗ A −→ A ◦ A −→ 0, (2.2)

where the relevant maps are given by a ∧ b �→ a ⊗ b − b ⊗ a and a ⊗ b �→ a ◦ b (a, b ∈ A). If K
is a field of characteristic 2, then the exterior square is a homomorphic image of the symmetric
square, and there is a short exact sequence

0 −→ D(A) −→ A ◦ A −→ A ∧ A −→ 0, (2.3)

where the map on the right is the natural projection given by a ◦ b �→ a ∧ b, and D(A) is the
kernel of this map. If A is a K-basis of A, then D(A) is precisely the span of all squares
a ◦ a with a ∈ A. Note that D(A) is a trivial U -module. Indeed, for any x ∈ X, we have
(a ◦ a)x = ax ◦ a + a ◦ ax = 0 as we are in characteristic 2. Note that characteristic 2 is essential
here. If the characteristic of K is not 2, the exact sequence (2.3) is not available.

The augmentation map ε : U → K takes every polynomial in X to its constant term. Its
kernel is the augmentation ideal Δ, which consists of the polynomials with zero constant term.
The corresponding short exact sequence

0 −→ Δ −→ U
ε−→ K −→ 0

is referred to as the augmentation sequence. We will assume that the set X is ordered by
x1 < x2 < . . . < xr. The module M has a K-basis consisting of the left-normed Lie products
[y1, y2, . . . , yn] with yi ∈ X, y1 > y2 � y3 � . . . � yn, n � 2, and as a U -module it is generated
by the Lie products [xi, xj ] with 1 � j < i � r. Let P denote the free U -module of rank r
with free generators e1, e2, . . . , er. The map [xi, xj ] �→ eixj − ejxi extends to an embedding
μ : M → P . Moreover, if σ : P → Δ is the map determined by ei �→ xi, then

0 −→ M
μ−→ P

σ−→ Δ −→ 0

is an exact sequence of U -modules (see [6]). This yields a 4-term exact sequence

0 −→ M ∧ M −→ P ∧ P −→ Δ ⊗ P −→ Δ ◦ Δ −→ 0, (2.4)
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where the maps are (from left to right) given by

m1 ∧ m2 �−→ m1μ ∧ m2μ (m1,m2 ∈ M),
p1 ∧ p2 �−→ p1σ ⊗ p2 − p2σ ⊗ p1 (p1, p2 ∈ P ),
δ ⊗ p �−→ δ ◦ pσ (δ ∈ Δ, p ∈ P ),

with μ and σ as defined above. A proof of the exactness can be found in [4, Proof of Lemma
5.1]. The exact sequence (2.4) will be one of the main tools in our approach to G′′.

The free centre-by-metabelian Lie algebra G, the polynomial ring U = K[X], and all the
modules considered so far (such as M , P , Δ), as well as all tensor, exterior or symmetric
products of such modules, have natural gradings by degree and, moreover, fine gradings by
multidegree with respect to the generating set X. The multidegree of a Lie monomial w ∈ G
with factors from X is the r-tuple q = (q1, q2, . . . , qr), where qi is the partial degree of w with
respect to xi ∈ X. The partial degrees add up to the total degree of w, say n = q1 + . . . + qr.
We also refer to q as a composition of n, q � n, in r parts. By Gn, we denote the degree
n homogeneous component of G, that is the K-span of all Lie monomials of degree n in
G, and we write Gq for the span of all Lie monomials of multidegree q. The latter is the
fine homogeneous component of multidegree q. A fine homogeneous component Gq and the
corresponding multidegree q are called multilinear, if all non-zero parts of q are equal to 1.
It is clear that each Gn is the direct sum of the fine homogeneous components Gq, where q
runs over all compositions of n. It is also plain that if a composition q′ can be obtained from
q by permuting the parts, then Gq and Gq′ are isomorphic as K-spaces. In particular, any
fine homogeneous component Gq is isomorphic to Gq̃ where q̃ is the unique partition of n that
can be obtained from q by permuting the parts. (Recall that a partition of n is a composition
q = (q1, q2, . . . , qr) � n such that q1 � q2 � . . . � qr.) We set G′′

q = Gq ∩ G′′.
The fine homogeneous components of the polynomial ring U = K[X] and of the various U -

modules considered so far are defined in a natural way, given that each free generator ei of the
module P is assigned the same partial degree as the matching xi. For example, the element
e1x1x2 ∈ P has degree 3 and multidegree (2, 1, 0 . . . , 0) and the element e2x1 ⊗ e3 ∈ P ⊗ P has
degree 3 and multidegree (1, 1, 1, 0, . . . , 0). Note that all the maps considered in this paper
respect the fine homogeneous structures, in that they map fine homogeneous components into
fine homogeneous components, albeit sometimes with a shifted multidegree: in this sense, they
are morphisms of finely graded K-modules. In the case of the polynomial ring U = K[X], all fine
homogeneous components are one-dimensional, and Uq is spanned by the unique (commutative
and associative) monomial of multidegree q in U . We write U for the set

U = {y1y2 . . . yk; yi ∈ X, y1 � y2 � . . . � yk, k � 0}
of all monomials in U , with the convention that 1 is the only monomial of degree zero. Of
course, U is a K-basis of U , and U \ {1} is a K-basis of Δ.

It is easily seen that the smallest non-zero homogeneous component of G′′ is G′′
4
∼= G2 ∧ G2.

Most the rest of this paper is devoted to finding the dimensions of G′′
q for q � n with n � 5.

3. Homology

In this section, we recall some facts about the homology of U -modules. For details, we refer to
[3, Chapter VII]. Recall that U = K[X] is the ring of polynomials in X with coefficients in K,
and that P is a free U -module of rank r with free generators e1, e2, . . . , er. We let Pk denote the
kth exterior power of P . Thus, Pk is a free U -module with free generators ei1 ∧ ei2 ∧ . . . ∧ eik

,
where 1 � i1 < i2 < . . . < ik � r, with the convention that P0 = U and Pk = 0 for k > r. It is
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well known that the complex

P : 0 −→ Pr
∂r−→ Pr−1

∂r−1−−−→ . . .
∂3−→ P2

∂2−→ P1
∂1−→ P0 −→ K −→ 0

with differentials given by

∂k : ei1 ∧ ei2 ∧ . . . ∧ eik
�−→

k∑
j=1

(−1)j+1(ei1 ∧ . . . ∧ êij
∧ . . . ∧ eik

)xij
,

where the circumflex indicates that eij
is to be omitted, is a free resolution of the trivial U -

module K. The complex P is often called the Koszul complex. Of course, if K is a field of
characteristic 2, the factor (−1)k+1 becomes redundant in the definition of the differential.
The homology groups of U with coefficients in a U -module A are defined by

Hk(A) = Hk(P ⊗U A).

As in the previous section, we assign to each free generator ei of P the same partial
degree as that of the matching xi. Then the free resolution P becomes a complex of finely
graded U -modules. For example, the element (e2 ∧ e3)x2

1 ∈ P2 has degree 4 and multidegree
(2, 1, 1, 0, . . . , 0). Moreover, if A is a finely graded U -module, then the tensor product P ⊗ A
too becomes a complex of finely graded U -modules. This induces a fine homogeneous structure
on the homology groups Hk(A): The homogeneous and fine homogeneous components of those
homology groups are defined in the obvious way, and we use (Hk(A))n for n � 0 and (Hk(A))q

for q � n to denote them.
If A = K, all differentials in the complex P ⊗U K are zero maps, and hence the homology

groups Hk(K) of the trivial module K are free K-modules with K-bases consisting of the
elements (ei1 ∧ ei2 ∧ . . . ∧ eik

) ⊗ 1 with 1 � i1 < i2 < . . . < ik � r. This means that the fine
homogeneous components of the homology groups are as follows: For a composition q � n,
we have

(Hk(K))q =

{
K if k � r, n = k and q is multilinear;
0 otherwise.

(3.1)

4. Tensor products, symmetric and exterior squares

Recall that tensor products of U -modules as well as exterior and symmetric powers will always
be regarded as U -modules with derivation action. The following lemma is well known. It is,
in fact, a special case of a very general result on Hopf algebras (see [5, Theorem 1.9.4]). An
elementary proof, tailored to the needs of the present paper, can be found in [4].

Lemma 4.1. Let N be an arbitrary U -module that is free as a K-module with K-basis N .
Then the tensor product N ⊗ U is a free U -module and the elements m ⊗ 1 with m ∈ N form
a free generating set for N ⊗ U as a U -module.

In particular, the tensor square U ⊗ U is a free U -module with free generators u ⊗ 1 where
u ∈ U . If K is a field of characteristic other than 2, then the symmetric and exterior squares
U ◦ U and U ∧ U are also free U -modules. Things, however, are different in characteristic 2,
where neither U ◦ U nor U ∧ U is free as a U -module.

As before, let P be a free U -module with free generators e1, . . . , er. Thus, P =
⊕

i eiU , and
then P ∧ P ∼= ⊕

i(eiU ∧ eiU) ⊕ ⊕
i<j(eiU ⊗ ejU). Here, eiU ∧ eiU is isomorphic to U ∧ U

and eiU ⊗ ejU is isomorphic to U ⊗ U , but it must be noted that these isomorphisms do not
preserve the fine gradings. They respect them in the sense previously indicated: for example,
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given a multidegree q, the U -module isomorphism between U ∧ U and eiU ∧ eiU matches
the fine homogeneous component (U ∧ U)q to (eiU ∧ eiU)q′ where q′ agrees with q except that
q′i = qi + 2. Similar comments apply to the tensor product eiU ⊗ ejU and the symmetric square
eiU ◦ eiU . We record these simple facts for further reference.

Lemma 4.2. Let P be a free U -module with free generators e1, . . . , er.

(i) For P ∧ P, there is a direct decomposition

P ∧ P ∼=
⊕

i

(eiU ∧ eiU) ⊕
⊕
i<j

(eiU ⊗ ejU).

Here each of the direct summands eiU ∧ eiU is isomorphic to U ∧ U, and each eiU ⊗ ejU is a
free U -module with free generators eiu ⊗ ej (u ∈ U).

(ii) For P ◦ P there is a direct decomposition

P ◦ P ∼=
⊕

i

(eiU ◦ eiU) ⊕
⊕
i<j

(eiU ⊗ ejU).

Here each of the direct summands eiU ◦ eiU is isomorphic to U ◦ U, and each eiU ⊗ ejU is a
free U -module with free generators eiu ⊗ ej (u ∈ U).

The lemma implies that the multilinear components of the homology groups of P ∧ P and
P ◦ P are zero in all positive dimensions. Namely, all free modules, whether graded or not,
have zero homology in all positive dimensions. On the other hand, the fine gradings of the
eiU ∧ eiU and eiU ◦ eiU being as indicated, the ith partial degree involved in any non-zero fine
homogeneous component of such a module is at least 2: so these modules have no multilinear
components and hence no multilinear homology. This will be very useful later.

Corollary 4.3. If q is multilinear, then (Hk(P ∧ P ))q = 0 and (Hk(P ◦ P ))q = 0 for
all k � 1.

5. Trivialization of tensor, symmetric and exterior squares

In this section, we work out the trivialization of the tensor, symmetric and exterior squares
of free U -modules and of the augmentation ideal Δ. For an arbitrary U -module A, the
trivialization of A is the zero-dimensional homology group H0(A) = A ⊗U K = A/AΔ. For
the tensor square, H0(A ⊗ A) is obtained by forming the quotient of the tensor product A ⊗ A
by the K-submodule generated by the elements of the form (a ⊗ b)x, that is, by the elements

ax ⊗ b + a ⊗ bx (a, b ∈ A, x ∈ X).

For simplicity, we denote by a ⊗∗ b the image of the element a ⊗ b of A ⊗ A in H0(A ⊗ A).
Similarly, we use a ◦∗ b and a ∧∗ b for images in the trivializations of the symmetric and exterior
squares. In particular, in H0(A ⊗ A) the relation

a ⊗∗ bx = −ax ⊗∗ b (5.1)

holds for all a, b ∈ A, x ∈ X, and similar relations hold in the trivializations of the exterior
and symmetric squares of A. Further, trivialization yields from (2.2) an exact sequence

H0(A ∧ A) −→ H0(A ⊗ A) −→ H0(A ◦ A) −→ 0 (5.2)

with the first map a ∧∗ b �→ a ⊗∗ b − b ⊗∗ a and the second a ⊗∗ b �→ a ◦∗ b.
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By Lemma 4.1, the tensor product U ⊗ U is a free U -module with free generators u ⊗ 1
(u ∈ U). Hence, the trivialization H0(U ⊗ U) is a free K-module with free generators u ⊗∗ 1
(u ∈ U). In view of (5.1), we have u ⊗∗ v = (−1)deg v uv ⊗∗ 1 and v ⊗∗ u = (−1)deg u uv ⊗∗ 1
whenever u, v ∈ U .

When K is a field of characteristic 2, this implies that the first map in the exact sequence (5.2)
with A = U is the zero map. Then the second map is an isomorphism, and we may conclude
that in this case H0(U ◦ U) is a K-space with basis {u ◦∗ 1 | u ∈ U}. Moreover, now the
sequence (2.3) is also available: take it with A = U . Then there is an exact sequence

H0(D(U)) −→ H0(U ◦ U) −→ H0(U ∧ U) −→ 0.

As D(A) is always a trivial U -module, H0(D(U)) = D(U). Hence the term on the left has a
K-basis consisting of the u ◦∗ u with u ∈ U . The map on the left takes such a basis element
to u ◦∗ u = u2 ◦∗ 1 ∈ H0(U ◦ U). We may conclude that H0(U ∧ U) has a K-basis consisting of
the elements u ∧∗ 1 with u ranging through the non-square elements of U .

We summarize our discussion as follows.

Lemma 5.1. If K is a field of characteristic 2, then

(i) H0(U ⊗ U) is a K-space with basis consisting of the elements u ⊗∗ 1 where u ∈ U ,
(ii) H0(U ◦ U) is a K-space with basis consisting of the elements u ◦∗ 1 where u ∈ U ,
(iii) H0(U ∧ U) is a K-space with basis consisting of the elements u ∧∗ 1 where u ∈ U but

u is not a square.

In view of Lemma 4.2, the following is an easy consequence:

Corollary 5.2. If K is a field of characteristic 2, then

(i) H0(P ⊗ P ) is a K-space with basis consisting of the elements eiu ⊗∗ ej where 1 � i �
j � r and u ∈ U ,

(ii) H0(P ◦ P ) is a K-space with basis consisting of the elements eiu ◦∗ ej where 1 � i �
j � r and u ∈ U ,

(iii) H0(P ∧ P ) is a K-space with basis consisting of the elements eiu ∧∗ ej where 1 � i <
j � r and u ∈ U , and the elements eiu ∧∗ ei where 1 � i � r and u ∈ U such that u is
not a square.

Next we examine the tensor, symmetric and exterior squares of the augmentation ideal Δ.
The result is very similar to Lemma 5.1.

Lemma 5.3. If K is a field of characteristic 2, then

(i) H0(Δ ⊗ Δ) is a K-space with basis consisting of the elements xi ⊗∗ xj where
1 � i, j � r, together with the elements y1 ⊗∗ (y2 . . . yn), where yi ∈ X such that y1 �
y2 � . . . � yn and n � 3,

(ii) H0(Δ ◦ Δ) is a K-space with basis consisting of the elements y1 ◦∗ (y2 . . . yn) where
yi ∈ X such that y1 � y2 � . . . � yn and n � 2,

(iii) H0(Δ ∧ Δ) is a K-space with basis consisting of the elements y1 ∧∗ (y2 . . . yn) where
yi ∈ X such that y1 � y2 � . . . � yn and n � 2, but y1y2 . . . yn is not a square.
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Proof. The tensor square Δ ⊗ Δ has a K-basis consisting of all elements u ⊗ v with u, v ∈
U \ {1}. Since the elements in Δ ⊗ Δ have degree at least 2 and the elements in (Δ ⊗ Δ)Δ have
degree at least 3, we have (H0(Δ ⊗ Δ))2 = (Δ ⊗ Δ)2. This proves the lemma for degree 2. For
a fixed n � 3, in view of the relations (5.1), (H0(Δ ⊗ Δ))n is spanned by the elements y1 ⊗∗
(y2 . . . yn) where yi ∈ X such that y1 � y2 � . . . � yn. Consider the map Δ ⊗ Δ → Δ ⊗ U .
Trivializing yields a homomorphism H0(Δ ⊗ Δ) → H0(Δ ⊗ U). By Lemma 4.1, H0(Δ ⊗ U) has
a K-basis consisting of the elements u ⊗∗ 1 where u ∈ U \ {1}. The image of y1 ⊗∗ (y2 . . . yn)
in H0(Δ ⊗ U) is (y1y2 . . . yn) ⊗∗ 1. It follows that the above spanning set for (H0(Δ ⊗ Δ))n

is linearly independent. This proves part (i) of the lemma. For the proof of (ii), consider the
exact sequence (5.2) with A = Δ, that is,

H0(Δ ∧ Δ) −→ H0(Δ ⊗ Δ) −→ H0(Δ ◦ Δ) −→ 0. (5.3)

It is not hard to see that the image of the left map is spanned by the elements xi ⊗∗ xj +
xj ⊗∗ xi where 1 � i, j � r. Indeed, the left map in (5.3) takes an element u ∧∗ v ∈ H0(Δ ∧ Δ)
with u, v ∈ U \ {1} to u ⊗∗ v + v ⊗∗ u. But if deg u + deg v � 3, the relation (5.1) implies that
u ⊗∗ v = v ⊗∗ u; as we are in characteristic 2, this means that u ⊗∗ v + v ⊗∗ u = 0. We are left
with the elements xi ⊗∗ xj + xj ⊗∗ xi where 1 � i, j � r. Now (ii) follows from the exactness of
the displayed sequence. A similar argument, using the short exact sequence (2.3) with A = Δ,
proves (iii).

In view of the explicit bases described here, it is straightforward to count the dimensions of
the fine homogeneous components of these homology groups. We shall use the results of two
such counts, the first from Lemma 5.3(ii) and the second from Corollary 5.2(iii).

Corollary 5.4. Let K be a field of characteristic 2.

(i) If q � n � 2, then dim(H0(Δ ◦ Δ))q = 1.
(ii) If q � n � 2 with k denoting the number of positive parts of q and m the number of

parts that are equal to 1, then

dim(H0(P ∧ P ))q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
k

2

)
if all parts of q are even,

(
k

2

)
+ k − m otherwise.

6. Low-dimensional homology of the symmetric square Δ ◦ Δ

In this section, we assume that K is a field of characteristic 2. By tensoring the augmentation
sequence with Δ, and combining the result with the augmentation sequence itself, we obtain a
4-term exact sequence

0 −→ Δ ⊗ Δ −→ Δ ⊗ U −→ U −→ K −→ 0.

The two modules in the middle are free, and hence, for all k � 1, there is an isomorphism

Hk(Δ ⊗ Δ) ∼= Hk+2(K). (6.1)

Consider the long exact homology sequence stemming from the short exact sequence (2.2) with
A = Δ. Here is a part of this sequence:

· · · −→ H2(Δ ⊗ Δ) −→H2(Δ ◦ Δ) −→ H1(Δ ∧ Δ) −→ H1(Δ ⊗ Δ) −→
−→ H1(Δ ◦ Δ) −→ H0(Δ ∧ Δ) −→ H0(Δ ⊗ Δ) −→ · · · (6.2)
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From (6.1) and (3.1), we see that most of the fine homogeneous components of H2(Δ ⊗ Δ) and
H1(Δ ⊗ Δ) vanish, the exceptions occurring in degrees 4 and 3, respectively. Similarly, a step
in the proof of Lemma 5.2(ii) showed that H0(Δ ∧ Δ) → H0(Δ ⊗ Δ) is the zero map except in
degree 2. Thus, for q � n � 5, the exactness of (6.2) yields that

(H2(Δ ◦ Δ))q
∼= (H1(Δ ∧ Δ))q and (H1(Δ ◦ Δ))q

∼= (H0(Δ ∧ Δ))q. (6.3)

In particular, as we know the fine homogeneous structure of H0(Δ ∧ Δ) from Lemma 5.3(iii),
the second part of (6.2) gives the following result.

Lemma 6.1. If K is a field of characteristic 2 and q � n with n � 5, then

dim(H1(Δ ◦ Δ))q =

{
0 if all parts of q are even;
1 otherwise.

Now consider the long exact homology sequence stemming from the short exact
sequence (2.3) with A = Δ:

· · · −→ H1(D(Δ)) −→ H1(Δ ◦ Δ) −→ H1(Δ ∧ Δ) −→
−→ H0(D(Δ)) −→ H0(Δ ◦ Δ) −→ H0(Δ ∧ Δ) −→ 0. (6.4)

By its very nature, D(Δ) has no multilinear homogeneous components. Hence, (Hk(D(Δ)))q =
0 for all multilinear multidegrees q and all k � 0. Then the exactness of (6.4) implies that for
all multilinear compositions q � n with n � 5 and all k � 0 there are isomorphisms

(Hk(Δ ◦ Δ))q
∼= (Hk(Δ ∧ Δ))q. (6.5)

By Lemma 5.2(iii), dim(Hk(Δ ∧ Δ))q = 1 for all multilinear compositions q of total degree
n � 5, and by combining this with (6.3) and (6.5), we obtain the final result of this section:

Lemma 6.2. If K is a field of characteristic 2, then, for all multilinear compositions q � n
with n � 5,

dim(H2(Δ ◦ Δ))q = dim(H1(Δ ◦ Δ))q = 1.

7. Free centre-by-metabelian Lie algebras in characteristic 2

In this section, we work out the dimensions of the fine homogeneous components G′′
q for q � n

with n � 5, where G is the free centre-by-metabelien Lie algebra of rank r over a field K
of characteristic 2. In view of the isomorphism (2.1) we can work with the tensor product
(M ∧ M) ⊗U K = H0(M ∧ M). Consider the 4-term exact sequence (2.4). Let W denote the
kernel of the map Δ ⊗ P → Δ ◦ Δ. Then (2.4) can be broken up into two short exact sequences,
namely

0 −→ M ∧ M −→ P ∧ P −→ W −→ 0 (7.1)

and

0 −→ W −→ Δ ⊗ P −→ Δ ◦ Δ −→ 0. (7.2)

We first use (7.2) to work out the dimensions of the fine homogeneous components of H0(W )
and H1(W ), and then we use the result and (7.1) to determine the dimension of the fine
homogeneous components of H0(M ∧ M).
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Lemma 7.1. Let q � n with n � 5 such that k of the parts are non-zero.

(i) If at least one part of q is not divisible by 2, then

dim(H0(W ))q = k, dim(H1(W ))q = 1.

(ii) If all parts of q are divisible by 2, then

dim(H0(W ))q = k − 1, dim(H1(W ))q = 0.

Proof. Consider the long exact homology sequence stemming from (7.2). Since Δ ⊗ P is
a free U -module and hence Hk(Δ ⊗ P ) = 0 for all k � 1, this long homology sequence yields
isomorphisms

Hk(W ) ∼= Hk+1(Δ ◦ Δ) (7.3)

for all k � 1, and an exact sequence

0 −→ H1(Δ ◦ Δ) −→ H0(W ) −→ H0(Δ ⊗ P ) −→ H0(Δ ◦ Δ) −→ 0. (7.4)

The isomorphism (7.3) with k = 1 in conjunction with Lemma 6.1 implies the assertions about
H1(W ). The exact sequence (7.4) implies

dim(H0(W ))q = dim(H1(Δ ◦ Δ))q + dim(H0(Δ ⊗ P ))q − dim(H0(Δ ◦ Δ))q.

By Lemma 4.1, H0(Δ ⊗ P ) is a K-space with basis consisting of the elements y1y2 . . . yj ⊗ ei

with yi ∈ X, y1 � . . . � yj and 1 � i � r. There are exactly k such elements of multidegree
q, and hence dim(H0(Δ ⊗ P ))q = k. Also, dim(H1(Δ ◦ Δ))q is given in Lemma 6.1, and
dim(H0(Δ ◦ Δ))q = 1 by Corollary 5.4(i). It remains to put these numbers into the above
equation.

At this point, let us state our main result.

Theorem 7.2. Let G be the free centre-by-metabelian Lie algebra of rank r > 1 over a
field of characteristic 2, and let q � n with n � 5 be a composition of n in r parts such that k
of the parts are non-zero and m of the parts are equal to 1.

(i) If m = k, that is, if q is multilinear, then

dim(G′′)q =
(

k − 1
2

)
.

(ii) If at least one of the parts of q is greater than 1, then

dim(G′′)q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
k − 1

2

)
if all parts of q are even;

(
k

2

)
− m otherwise.

Proof. Consider the long exact homology sequence stemming from the short exact
sequence (7.1). Its final part is as follows:

· · · −→ H1(P ∧ P ) −→ H1(W ) −→ H0(M ∧ M) −→ H0(P ∧ P ) −→ H0(W ) −→ 0. (7.5)

First we prove (i), the case where q is multilinear. In view of Corollary 4.3, then (7.5) yields
an exact sequence

0 −→ (H1(W ))q −→ (H0(M ∧ M))q −→ (H0(P ∧ P ))q −→ (H0(W ))q −→ 0.
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The exactness of this 4-term exact sequence together with Corollary 5.4(ii) and Lemma 7.1
implies that

dim(H0(M ∧ M))q = dim(H1(W ))q + dim(H0(P ∧ P ))q − dim(H0(W ))q

= 1 +
(

k

2

)
− k =

(
k − 1

2

)
,

as required.
Now we turn to (ii). In this case the exactness of (7.5) implies that

dim(H0(M ∧ M))q � dim(H0(P ∧ P ))q − dim(H0(W ))q. (7.6)

If all parts of q are even, then the right-hand side of this inequality is equal to

dim(H0(P ∧ P ))q − dim(H0(W ))q =
(

k

2

)
− (k − 1) =

(
k − 1

2

)
,

and when at least one of the parts is odd, then

dim(H0(P ∧ P ))q − dim(H0(W ))q =
(

k

2

)
+ k − m − k =

(
k

2

)
− m.

Hence,

dim(H0(M ∧ M))q �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
k − 1

2

)
if all parts of q are even,

(
k

2

)
− m otherwise.

To finish the proof we appeal to [4, Lemma 3.2] where a generating set of (H0(M ∧ M))q is
obtained. More precisely, if qi is a part of q such that qi � 2, then the elements

[z1, xi] ∧∗ [z2, xi](z3z4 . . . zn−2),

z1, z2, . . . , zn−2 ∈ X, of multidegree q with z1 � z2 and z1, z2 �= xi form a generating set for
the fine homogeneous component (H0(M ∧ M))q. There are

(
k
2

) − m such elements, but if all
parts of q are even, then k − 1 of them are zero, namely the ones with z1 = z2. Indeed, such
elements are of the form [z1, xi] ∧∗ [z1, xi]u2 for some u ∈ U , and we have, in view of (5.1),

[z1, xi] ∧∗ [z1, xi]u2 = [z1, xi]u ∧∗ [z1, xi]u = 0.

In either case the number of generators of (H0(M ∧ M))q is precisely the number on the right-
hand side of the inequality (7.6). Hence this number is equal to the dimension of (H0(M ∧ M))q,
as required.

8. The free centre-by-metabelian Lie ring

In this final section, we combine our main result with that of [4] to prove a complete structure
theorem for the underlying additive group of the free centre-by-metabelian Lie ring, that is,
for the case where K = Z. Given y1, . . . , yn ∈ X with n � 5, we follow [4] in calling the Lie
monomial

[[y1, y2], [y3, y4, y5, y6, . . . , yn]] (8.1)

a Kuz’min element if y1 > y2, y3 > y4, y1 � y3 and y4 � y2 � y5 � · · · � yn, and we call an
element of the form

w(y1, y2, y3, y4; y5, . . . , yn) = [[y1, y2], [y3, y4, y5, . . . , yn]] + [[y2, y3], [y1, y4, y5, . . . , yn]]
+ [[y3, y1], [y2, y4, y5, . . . , yn]]

a t-element.
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Theorem 8.1. Let G be the free centre-by-metabelian Lie ring of rank r > 1 on a free
generating set X = {x1, x2, . . . , xr}, let q = (q1, q2, . . . , qr) � n be a composition of n � 5,
and let G′′

q denote the fine homogeneous component of multidegree q of the second-derived
ideal G′′ ⊆ G.

(i) Suppose that q = (q1, . . . , qr) � n is multilinear with qi = 1 for i = i1, i2, . . . , in, where
1 � i1 < . . . < in � r. Then,

(a) if n is odd, G′′
q is generated by the Kuz’min elements of multidegree q and the

t-element w(xi1 , xi2 , xi3 , xi4 ;xi5 , . . . , xin
). The former freely generate a free abelian

group of rank 1
2n(n − 3) and the latter generates a cyclic group of order 2,

(b) if n is even, then G′′
q is a free abelian group of rank

(
n−1

2

)
, and the Kuz’min elements

of multidegree q together with the element

[[xi3 , xi2 ], [xi4 , xi1 , xi5 , . . . xin
]]

form a free generating set for it.
(ii) Suppose that q = (q1, . . . , qr) � n is a composition of n with k non-zero parts, such that

qi � 2 for some i with 1 � i � n, and m of the parts of q are 1. Then
(a) if n is odd, G′′

q is a free abelian group of rank
(
k
2

) − m, and the elements (8.1) of
multidegree q with y2 = y4 = xi, y1 � y3 and y1, y3 �= xi, form a free generating set
for it,

(b) if n is even, then G′′
q is a direct sum of a free abelian group of rank

(
k−1
2

)
that is

freely generated by the elements (8.1) of multidegree q with y2 = y4 = xi, y1 > y3

and y1, y3 �= xi, and an elementary abelian 2-group. If at least one of the parts of q
is odd, then this 2-group is of rank k − 1 − m, and it is freely generated, as a Z/2Z-
module, by the elements (8.1) of multidegree q such that y2 = y4 = xi, y1 = y3 �= xi.
If all parts of q are even, then the torsion subgroup of G′′

q is zero.

Proof. A substantial part of the theorem is proved in [4, Theorem 7.1]. The only points
that were left open in [4] refer to the torsion subgroup Tq of G′′

q . In part (i.a) of [4, Theorem
7.1] it is proved only that Tq is generated by the t-element w(xi1 , xi2 , xi3 , xi4 ;xi5 · · ·xin

). The
question of whether or not this element is non-zero remained open. Now, we can answer this
question affirmatively. Indeed, if we reduce G′′

q modulo 2, then Theorem 7.2 from the previous
section tells us that we obtain an elementary abelian 2-group of rank

(
n−1

2

)
= 1

2n(n − 3) + 1.
By [4, Theorem 7.1], G′′

q /Tq is a free abelian group of rank 1
2n(n − 3). Hence, the torsion

subgroup must be non-trivial. In part (ii.b) of [4, Theorem 7.1] it was proved that if at least
one part of q is odd, then the torsion subgroup of G′′

q has exponent 2 and is generated by
the elements (8.1) of multidegree q such that y2 = y4 = xi, y1 = y3 �= xi. Now, we can prove
that these elements are in fact non-trivial and, moreover, they are linearly independent over
Z/2Z. Indeed, by Theorem 7.2 from the previous section, reduction modulo 2 turns G′′

q into
an elementary abelian 2-group of rank

(
k
2

) − m. By [4, Theorem 7.1], G′′
q /Tq is a free abelian

group of rank
(
k−1
2

)
. Consequently, the rank of Tq as a Z/2Z-module must be k − 1 − m,

the number of elements (8.1) such that y2 = y4 = xi, y1 = y3 �= xi. Hence, these elements are
linearly independent over Z/2Z. This completes the proof of theorem.

While part (i) of our theorem agrees with parts (1) and (2) of [2, Theorem 4], part (ii)
contradicts what is claimed in parts (3) and (4) of that theorem. For a more detailed discussion
of the discrepancies, see [4].
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