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On infinite rank integral representations of groups
and orders of finite lattice type

By

M. C. R. Butler, J. M. Campbell and L. G. Kovács

Abstract. Let � = ZG be the integer group ring of a group, G, of prime order. A main result
of this note is that every �-module with a free underlying abelian group decomposes into a direct
sum of copies of the well-known indecomposable �-lattices of finite rank. The first part of the
proof reduces the problem to one about countably generated modules, and works in a wider context
of suitably restricted modules over orders of finite lattice type of a quite general type. However,
for countably generated modules, use is seemingly needed of the classical theory of �-lattices.

1. Introduction. A classical theorem on integral representations of finite groups states
that every lattice over the integer group ring, ZC(p), of a group, C(p), of prime order, p,
is isomorphic to a direct sum of copies of the 2h + 1 different (up to isomorphism) inde-
composable lattices, the number h being the ideal class number of the field of p-th roots of
unity. A main result of this note is to extend this result to the following theorem describing
certain infinitely generated ZC(p)-modules.

Theorem 1.1. The ZC(p)-modules whose underlying abelian groups are free are
isomorphic to direct sums of indecomposable lattices.

The proof uses two quite different sorts of arguments. Firstly, in Section 2, it is shown
that it suffices to prove the result for countably generated ZC(p)-modules. The argument
establishing this reduction works in a much wider context, for suitably restricted modules
over a quite general class of orders of finite lattice type. Secondly, the proof of the theorem
for countably generated ZC(p)-modules given in Section 3 depends in two different ways
on the Diederichsen-Reiner structure theory for ZC(p)-lattices summarised, for example,
in Theorem 34.31 in [6].

Section 2 contains a theory of generalised lattices over an R-order of finite lattice
type. In this paper, R denotes a Dedekind domain, an R-order is an associative ring, O,
which contains R as a central subring, and which is finitely generated and projective as an
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R-module, and a generalised lattice over such an order is defined to be a (right) O-module
which is projective as an R-module. Thus a lattice in the usual sense (for example, in [6])
is just a finitely generated generalised lattice. Finally, an R-order which has only finitely
many different isomorphism classes of indecomposable lattices is said to be of finite lattice
type. Let O be such an R-order. The main result in Section 2, Theorem 2.1, states that each
generalised lattice is isomorphic to a direct summand of a direct sum of lattices, and hence,
Corollary 2.5, to a direct sum of countably generated generalised lattices. However, the
analogue of Theorem 1.1, that generalised lattices are isomorphic to direct sums of lattices,
can only be shown under further assumptions. It is the case if R is a complete discrete
valuation ring (Corollary 2.6), or if O is a right hereditary ring such that K ⊗R O is a
semisimple algebra over the field, K , of fractions of R (Corollary 2.7); in this latter case,
the generalised lattices are just the projective O-modules. Familiar examples of the last
type are the rings of integers in finite algebraic extension fields of the rationals, viewed as
Z-orders, and the result for one such order is actually used in the proof of Theorem 1.1.

The integer group ring, ZG, of any finite group, G, has finite lattice type if and only if all
Sylow subgroups of G are cyclic and of cube free order ([6]). For these groups, the above
corollaries show that the generalised lattices must be direct summands of direct sums of
lattices, and hence, direct sums of countably generated generalised lattices, the fact used
in the proof in Section 3 of Theorem 1.1. However, the groups of prime order are the only
ones for which the generalised lattices over Z are currently known to be direct sums of
lattices. The situation for a group ring, ẐpG, over the ring Ẑp of p-adic integers is much
simpler; this order has finite lattice type if and only if the Sylow p-subgoups of G are cyclic
of order p or p2, and for these, Corollary 2.6 shows that generalised lattices are direct sums
of lattices.

Chapters 3 and 4 in [6] discuss the theory of lattices over orders of the type considered in
this note. The approach used in Section 2 takes ideas from the paper [2], on orders of finite
lattice type, and also from the proofs in [1] and in [9] that all modules over an artin algebra
of finite representation type are direct sums of finitely generated indecomposable modules.

R e m a r k s 1.2. (1) For p = 2, the question behind Theorem 1.1 was first raised in the
context of Lie algebras by Roger Bryant in 2000 and solved by two of us in 2001. We have
been informed that the same question arose in 2002 in work on C∗-algebras by A. Kumjian
and N. C. Phillips, and was settled independently of our solution by D. J. Benson (see [5]).

(2) At the ICRA meeting at the Fields Institute in Toronto, Canada, in 2002, Yuri Drozd
pointed out that the problem of generalised lattices over an order can be re-formulated as
a bimodule problem to which the matrix reduction procedures of the Kiev School should
be applicable. This interesting suggestion has not yet been pursued further, so far as we
are aware.

2. General theorems. As in the introduction, R denotes a Dedekind domain and
R-orders are assumed to be finitely generated and projective as R-modules. By definition,
the Auslander lattice of an R-order of finite lattice type is the direct sum of one lattice
from each of the finitely many different isomorphism classes of indecomposable lattices.
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The following is the main structure theorem for generalised lattices over R-orders of finite
lattice type.

Theorem 2.1. Each generalised lattice over an R-order of finite lattice type is iso-
morphic to a direct summand of a direct sum of copies of the Auslander lattice of the
order.

The proof requires some notation and preliminary lemmas. Let O be an R-order of finite
lattice type, A be its Auslander lattice, and � be the endomorphism ring of A as a right
O-module. Then A is a left �-, right O-bimodule and determines the left exact functor

F : Mod(O) −→ Mod(�), M �→ HomO(A, M),

from right O-modules to right �-modules. Since F(A) = �� and F commutes with
arbitrary direct sums, it induces category isomorphisms

Add(A)
∼−→ Proj(�) and add(A)

∼−→ proj(�),

where Add(A) (add(A)) is the full subcategory of Mod(O) with objects the direct summands
of direct sums of copies of A (the direct summands of finite direct sums of copies of A),
and where Proj(�) (proj(�)) is the full subcategory of Mod(�) with objects the projective
modules (the finitely generated projective modules).

Since A is the Auslander lattice of O, add(A) is just the subcategory latt(O) of all right
O-lattices. Since R is hereditary, latt(O) is closed under submodules and hence under
kernels, and since F is left exact, proj(�) is also closed under kernels; thus, finitely pre-
sented right �-modules have projective dimension 2 at most. Since � is both left and right
noetherian, an argument given, for example, in Section 4.1 of [10] then proves the following
known result.

Lemma 2.2. � has both right and left global dimensions 2, at most. In particular, Proj(�)

is closed under kernels.

Next, let Latt(O) be the full subcategory of all generalised lattices over O. It clearly
contains the subcategory Add(A), and the proof of the theorem amounts to showing that
they are actually the same. However, two more lemmas are useful.

Lemma 2.3. F maps Latt(O) into Proj(�).

P r o o f. For any right O-module L, the natural O-morphism

iL : L ∼= HomO(O, L) ↪→ HomR(O, L)

is injective and splits as an R-morphism, one left inverse being the evaluation map
f �→ f (1). Also

HomR(O, L) ∼= L ⊗R O∗,
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where

O∗ = HomR(O, R) ∈ latt(O) = add(A).

Now assume that L is a generalised lattice, so that LR is projective. Then also L ⊗R O∗ is
projective as an R-module, and since iL splits as an R-morphism, L′ = Coker(iL) is also
a generalised lattice. We obtain an exact sequence

0 → L → L ⊗R O∗ → L′ ⊗R O∗,

in which, since O∗ ∈ add(A) and LR and L′
R are projective, the last two terms are in

Add(A). Thus L is the kernel of a map in Add(A), so that F(L) is kernel of a map in
Proj(�). The lemma now follows from Lemma 2.2. �

Lemma 2.4. Each O-module L may be imbedded in a short exact sequence

0 → M → X ⊗R A
p−→ L → 0,

in which XR is free and on which the functor F is exact.

P r o o f. Take X to be the free R-module with basis F(L), and p to be the map h⊗R a �→
h(a) for each h ∈ F(L) and a ∈ A. The surjectivity of p is a consequence of the fact
that A is a generator of Mod(O). �

P r o o f o f T h e o r e m 2.1. It suffices to show that each generalised lattice, L, is in
Add(A). Iteration of the last lemma shows that there is an exact sequence of O-modules,

Z ⊗R A
r−→ Y ⊗R A

q−→ X ⊗R A
p−→ L → 0,

in which X, Y, Z are free R-modules, and such that the sequence of �-modules and
morphisms

F(Z ⊗R A)
F(r)−→ F(Y ⊗R A)

F(q)−→ F(X ⊗R A)
F(p)−→ F(L) → 0,

is exact. Lemma 2.3 shows that F(L) is projective, and the first three modules in the
sequence are isomorphic to the free �-modules Z ⊗R �, Y ⊗R � and X ⊗R �, respectively.
Therefore there exists an exact sequence of �-morphisms

F(Z ⊗R A)
ν←− F(Y ⊗R A)

µ←− F(X ⊗R A)
λ←− F(L) ← 0,

such that F(p)λ = 1, λF (p) + F(q)µ = 1, and µF(q) + F(r)ν = 1. Recall that F

induces an isomorphism Add(A) → Proj(�) of module categories. Thus the maps µ and ν

are of the form µ = F(m) and ν = F(n) in such a way that the sequence

Z ⊗R A
n←− Y ⊗R A

m←− X ⊗R A
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is exact and mq +rn = 1. Let e = qm. Then e is an idempotent on X⊗R A. Since pe = 0,
Im(e) � Ker(p). On the other hand

Ker(p) = Im(q) = Im(q(mq + rn)) = Im(eq) ⊂ Im(e).

Hence Ker(p) = Im(e), which implies that p maps the summand Im(1 − e) of X ⊗R A

isomorphically onto L. Since X ⊗R A is in Add(A), so also is L, which fact completes the
proof of the theorem. �

Here are some easy corollaries. Since the Auslander lattice is finitely generated, the
well-known result of Kaplansky’s (see [8] or Theorem 2.47 in [7]) that any direct summand
of any direct sum of countably generated modules is a direct sum of countably generated
modules immediately gives the following corollary.

Corollary 2.5. The generalised lattices over an R-order of finite lattice type are direct
sums of countably generated generalised lattices.

The next two corollaries apply to more specialised orders.

Corollary 2.6. Let R be a complete discrete valuation ring. The generalised lattices
over an R-order of finite lattice type are isomorphic to direct sums of indecomposable
lattices.

P r o o f. By Proposition 6.10 in [6], the hypothesis on R implies that the endomorphism
rings of indecomposable lattices over any R-order are local rings. For an R-order of finite
lattice type, Theorem 2.1 therefore implies that each generalised lattice is a direct summand
of a direct sum of copies of finitely generated modules with local endomorphism rings.
By, for example, Corollary 2.55 in [7], a summand of such a direct sum is again a direct
sum of copies of finitely generated modules with local endomorphism rings, which proves
the corollary. �

Let K be the field of fractions of R.

Corollary 2.7. Let O be a right hereditary R-order such that K ⊗R O is a semisimple
K-algebra, and assume that O has only finitely many isomorphism classes of right ideals.
Then its generalised lattices are its projective modules. In particular, if O is a Dedekind
domain with finite ideal class group, then its non-finitely generated generalised lattices are
free O-modules.

P r o o f. SinceK ⊗R O is semisimple, any lattice overO can be imbedded as a submodule
of a finitely generated projective O-module (see Exercise 1 in Section 23 of [6]). So,
since O is right hereditary, its lattices are the finitely generated projective modules, and
these are direct sums of finitely many copies of right ideals (see, for example, Proposition 4.3
in [6]). Since, up to isomorphism, there are only finitely many right ideals, one concludes
that O has finite lattice type. Moreover, its Auslander lattice is projective, so Theorem 2.1
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implies that the generalised lattices are also projectives, these again then being direct sums
of copies of right ideals in O. The last sentence of the corollary follows from the fact
(see, for example, [3]) that non-finitely generated projective modules over any Dedekind
domain are free. �

3. The proof of Theorem 1.1. In this section, the integer group ring of a cyclic group
of prime order, p, will be taken in the form

� = Z[t]/(1 − tp).

It is of course a Z-order. The proof to follow of Theorem 1.1 splits naturally into two
parts. In Subsection 3.2, Theorem 3.4 shows that any generalised �-lattice, L, has a direct
decomposition

L = L0 ⊕ Lc ⊕ La

into a trivial summand, L0, which is annihilated by the operator 1−t , a cyclotomic summand,
Lc, which is annihilated by the operator 1 + t + · · · + tp−1, and a summand La which is
acyclic in the sense to be recalled below of cohomology theory. The trivial summand, L0,
is just a direct sum of copies of the trivial lattice of rank 1. The cyclotomic summand, Lc,
is a generalised lattice for the ring of integers in the field of p-th roots of unity, so by
Corollary 2.7 is isomorphic to a direct sum of ideals in that ring, and these ideals, viewed as
�-modules, are indecomposable lattices. Thus, the second part of the proof of Theorem 1.1
consists in showing that the acyclic generalised lattices are direct sums of lattices, and this
is done in Subsection 3.3 using Corollary 2.5 and an ad hoc inductive argument.

The Diederichsen-Reiner theory of �-lattices in Section 34 of [6] does, of course, show
that any lattice is a direct sum of trivial, cyclotomic, and acyclic summands, and it further
shows that the indecomposable acyclic summands are precisely the projective indecompos-
ables, each of which has rank p. However, as pointed out already in the Introduction, these
results will actually be needed to show that the acyclic generalised lattices are also direct
sums of indecomposable projective lattices.

3.1. Notation and preliminary results. A special role will be played by the elements
1 − t and 1 + t + · · ·+ tp−1 of the integer group ring � = Z[t]/(1 − tp) so, for brevity, set

s := 1 + t + · · · + tp−1.

Any (right) �-module, L, contains submodules

L+ := Ker(1 − t)L and L− := KersL,

where λL denotes right multiplication by an element λ of � on L. The first of these
submodules is trivial and the second cyclotomic. Since s(1 − t) = 0, there are inclusions

L+ � Ls and L− � L(1 − t),(1)
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and L will be called acyclic when both these inclusions are equalities. Since the cohomology
groups of C(p) with coefficients in L are given by H 0(C(p), L) = L+ and, for all n � 1,

H 2n(C(p), L) = L+/Ls and H 2n−1(C(p), L) = L−/L(1 − t),

the terminology accords with the use — for example, in [10] — of the term F -acyclic object
for an object X on which all right derived functors RnF of the functor F with n � 1 vanish.

Lemma 3.1. Let L be a generalised lattice. Then: (a) L+ ∩ L− = 0. (b) In any
additive subgroup, M , of L, the subgroups L+ ∩ M and L− ∩ M are direct summands
of M . (c) If L+ = Ls and L− is finitely generated, then L is finitely generated.

P r o o f. For x ∈ L+ ∩ L−, x = xt and so 0 = xs = xp. Since L is torsionfree, x = 0,
which proves (a). For (b), note that L+ ∩ M and L− ∩ M are kernels of the restrictions
to M of the abelian group endomorphisms (1 − t)L and sL, respectively. Since LZ is free,
so also are the images of these restricted maps, so they split over their kernels.

The proof of (c) makes use of the identical formula

s + (1 − t)q = p,(2)

where q = (p − 1) + (p − 2)t + · · · + 2tp−3 + tp−2.
Since L+ is a pure subgroup of L, L+p = L+ ∩Lp, and so L+/L+p ∼= (L+ +Lp)/Lp.

Now assume the conditions in (c) hold. Since L+ = Ls, (1) and (2) show that L+ + Lp =
L(1 − t)q + Lp � L− + Lp. Hence L+/L+p is isomorphic to a subgroup of L−/L−p

(this time using the purity of L− in L). However both L+ and L− are free abelian groups,
and L− is finitely generated. Hence so is L+. Finally, (1) and (2) show that Lp � L++L−,
so that Lp, and hence L itself, is finitely generated. �

Use will be made in the next section of the following result, reminiscent of a Stacked
Bases Lemma.

Lemma 3.2. Let S be a commutative ring with 1 and I a maximal ideal in S. If N is
a submodule of the free S-module M , and N � MI , then M has a direct decomposition
M = A ⊕ B such that N = AI ⊕ B.

P r o o f. Let X be a free basis of M . Since MI � N , M/N is a vector space over the
field S/I , so there is a subset Y of X which maps one-to-one, modulo N , onto a basis
of M/N . Let A be the submodule generated by Y , so that M = A + N . For each element
x ∈ X\Y , choose zx ∈ N such that x − zx ∈ A, and let B be the submodule of N generated
by the elements zx . It is easy then to verify that A and B satisfy the lemma. �

R e m a r k 3.3. It seems possible that Lemma 3.2 remains true, at least if S is a Dedekind
domain, forM projective rather than free. If so, the last part of the proof of the decomposition
theorem in the next section would simplify significantly.
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3.2. A decomposition theorem.

Theorem 3.4. A generalised �-lattice, L, has a direct decomposition L = L0⊕ Lc⊕La

in which L0 is trivial, Lc is cyclotomic, and La is acyclic.

P r o o f. The first step is to show that

L = L0 ⊕ M, where L0 � L+ and M+ = Ms.(3)

Since t = 1 on L+, there are inclusions L+ � Ls � L+p to which Lemma 3.2 may be
applied with S = Z, I = pZ, M = L+ and N = Ls, to obtain direct decompositions

L+ = L0 ⊕ A and Ls = L0p ⊕ A.

This is, of course, a �-module decomposition, since every subgroup of L+ is a trivial
�-module.

By Lemma 3.1, there is an abelian group direct decomposition of L of the form

L = L+ ⊕ U = L0 ⊕ A ⊕ U

in which U is not necessarily a submodule of L. Let u ∈ U . Then

us = xup + au = xus + au,

for some xu ∈ L0 and au ∈ A. Since U is a free abelian group, each element u of a
chosen basis of U may be replaced by u̇ := u − xu, and the u̇’s are then a basis of a new
complement, U̇ , of L+ in L such that U̇s � A. For any u̇ ∈ U̇ , let

u̇(1 − t) = x + a + ü where x ∈ L0, a ∈ A, ü ∈ U̇ .

Multiplication by s gives

0 = xp + ap + üs ∈ L0 ⊕ A ⊕ U̇ ,

so, since üs ∈ A, xp = 0. Now L is torsionfree, so x = 0 and u̇t ∈ M := A ⊕ U̇ , which
shows that L = L0 ⊕M is a module direct decomposition such that M+ � A � Ms. Since
L+ = L0 ⊕ M+ and Ls = L0p ⊕ Ms, it follows from the initial choice of L0 and A that
M+ = A = Ms. This completes the proof of (3).

Following this step, it suffices to prove the theorem under the assumption—made from
now on—that

L+ = Ls.

One possibility is that L− is finitely generated. If so, part (c) of Lemma 3.1 shows that L

itself is finitely generated, so the theorem follows from the Diederichsen-Reiner theory.
The other possibility is that L− is not finitely generated. Since it is cyclotomic, it is a

generalised lattice over the Z-order � = �/(s) of all algebraic integers in the field of pth
roots of unity, so by the last assertion in Corollary 2.7, is a free �-module. Thus, Lemma 3.2
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may be applied to L−, with S = �, with I the ideal generated by the irreducible element
1 − t + (s) of �, and with M and N the �-modules L− and L(1 − t), respectively. The
lemma yields direct sum decompositions of �-modules, and hence of �-modules,

L− = Lc ⊕ B and L(1 − t) = Lc(1 − t) ⊕ B.(4)

By Lemma 3.1, there is an abelian group direct decomposition

L = L− ⊕ V = Lc ⊕ B ⊕ V

in which V is not necessarily a submodule of L. Let v ∈ V . Then

v(1 − t) = yv(1 − t) + bv,

for some yv ∈ Lc and bv ∈ B. Since V is a free abelian group, each element v of a selected
basis may be replaced by v̇ := v − yv to obtain a new complement V̇ of L− in L such that
V̇ (1−t) � B. Hence N := B⊕V̇ is a �-module complement of Lc such that N(1−t) � B.
Now comparison of the formulae L− = Lc ⊕ N− and L−(1 − t) = Lc(1 − t) ⊕ N(1 − t)

with (4) shows that N− = B = N(1 − t). However, N inherits from L the property
N+ = Ns, so it is an acyclic generalised lattice, as the theorem asserts. �

R e m a r k 3.5. If � is a principal ideal domain, that is, if the ideal class number h = 1,
the use of the Diederichsen-Reiner theory in the proof of this theorem can be avoided, for
then L− is always a free �-module.

3.3. Acyclic generalised lattices. The proof of Theorem 1.1 can now be completed by
proving it for acyclic generalised lattices. The actual result to be proved is the following
more precise statement.

Theorem 3.6. Each acyclic generalised �-lattice is isomorphic to a direct sum of
indecomposable projective lattices.

Some preliminary definitions and results are needed. First, there is the following
straightforward consequence of the Diederichsen-Reiner classification of �-lattices in
Theorem 34.31 in [6].

Lemma 3.7. A �-lattice, F , of rank at most p is either an indecomposable projective
lattice, or F = F+ ⊕ F−.

Next, recall that in relative homological algebra a lattice, M , over an R-order O is said
to be relatively injective if any short exact sequence,

0 → M → X → Y → 0,

of O-modules which splits as an exact sequence of R-modules is split as a sequence of
O-modules.
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Lemma 3.8. Finitely generated projective modules over the group ring RG over R of a
finite group G (viewed as an R-order) are relatively injective.

P r o o f. It suffices to show that RG is relatively injective. Let f : RG → X be an
RG-module monomorphism for which there is an R-module epimorphism h : X → RG

such that hf = 1RG. If e denotes the R-module endomorphism of RG such that e(1) = 1
and e(g) = 0 for g ∈ G\{1}, the homomorphism h∗ : X → RG given by

h∗(x) =
∑

g∈G

(eh(xg))g−1 for each x ∈ X

is easily seen to be an RG-homomorphism satisfying h∗f = 1RG. �

Corollary 3.9. A finitely generated projective submodule, F , of a generalised �-lattice,
L, which is pure as an additive subgroup of L is a �-module direct summand of L.

P r o o f. The lemma shows that F is relatively injective for the Z-order �. As an abelian
group, it is a finitely generated pure subgroup of the free abelian group L, so is a direct
summand of LZ. Therefore it is also a summand of L�. �

Lemma 3.10. In any generalised �-lattice, L,

0 =
⋂

m�0

Lpm =
⋂

n�0

L−(1 − t)n.

P r o o f. The first equality holds since L is free as an abelian group. The second is then
a consequence of the easily verified formula (1 − t)p−1 ≡ s(mod p). �

Proposition 3.11. Each element, x, of an acyclic generalised �-lattice, L, is contained
in a finitely generated projective direct summand of L.

P r o o f.

C a s e 1. Assume x ∈ L−. By Lemma 3.10, we may assume that x /∈ L−(1 − t);
however, since L is acyclic, there is some y ∈ L\L− such that x = y(1 − t). Let F be
the pure closure in L of the lattice y�. It has the same rank as y�, which is at most p,
but cannot decompose as F = F+ ⊕ F− because, otherwise, x ∈ F(1 − t) = F−(1 − t),
contrary to the assumption that x /∈ L−(1 − t). By Lemma 3.7, F is an indecomposable
projective lattice, so by Corollary 3.9 is a summand of L.

C a s e 2. Assume x ∈ L+. By Lemma 3.10, we may assume that x /∈ L+s = L+p, but
since L is acyclic, there is some y ∈ L\L+ such that x = ys. Let F be the pure closure in L

of the lattice y�. It has the same rank as y�, which is at most p, but cannot decompose
as F = F+ ⊕ F− because, otherwise, x ∈ Fs = F+s, contrary to the assumption that
x /∈ L+s. By Lemma 3.7, F is an indecomposable projective lattice, so by Corollary 3.9
is a summand of L.

C a s e 3. Any x ∈ L. By Case 1, L has a direct decomposition L = F1 ⊕ L1 in which
x(1 − t) is contained in the finitely generated projective module F1, and L1 is an acyclic
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generalised lattice. Let xs = x0 + x1, with x0 ∈ F1
+ and x1 ∈ L1

+. By Case 2, L1 has
a direct decomposition L1 = F2 ⊕ L2 in which x1 is contained in the finitely generated
projective module F2. By (2), it follows that xp ∈ F = F1 ⊕ F2, and since F is a direct
summand of L and L is torsionfree, x ∈ F . Since F is also a finitely generated projective
module, this proves the proposition. �

P r o o f o f T h e o r e m 3.6. By Corollary 2.5 it suffices to consider an acyclic generalised
lattice, L, which is countably generated. Given a sequence x1, x2, . . . of generators of L,
one can construct inductively a sequence of projective sublattices F1, F2, . . . of L such
that, for each n � 1, L has a direct decomposition L = F1 ⊕ F2 ⊕ . . . ⊕ Fn ⊕ Ln, and
the summand F1 ⊕ F2 ⊕ . . . ⊕ Fn contains x1, x2, . . . , xn. The proposition shows this can
be done for n = 1. Suppose n � 1, and that F1, F2, . . . , Fn have been constructed with
the required properties. Let xn+1 = y + z with y ∈ F1 ⊕ F2 ⊕ . . . ⊕ Fn and z ∈ Ln.
Since Ln is acyclic, the proposition implies that Ln has a direct decomposition of the form
Fn+1 ⊕ Ln+1 in which Fn+1 is a projective lattice containing the element z. This extends
the construction to n+ 1, as required. By construction the infinite sum

∑
n�1

Fn is direct, and

contains a generating set of L, so it must equal L. Finally, the construction ensures that
each Fn is a finitely generated projective lattice.

N o t e (added 18 February 2004). We are grateful to the referee for drawing our attention
to the facts that [5] has appeared by now, and that we (like [5]) could also have used
Theorem 6.1 of [4] to advantage. Namely, instead of Theorem 3.6 proved with the help of
Corollary 2.5, one can aim directly for the claim that every acyclic generalised �-lattice is
projective, and invoke [3] to deduce that therefore such a generalised lattice is either free or
finitely generated. To sketch a proof of this claim, let L be an acyclic generalised �-lattice.
By Theorem 6.1 of [4], in order to prove that L is projective, it suffices to show that L/pL

is projective as (Z/pZ)C(p)-module. Recall that every (Z/pZ)C(p)-module is a direct
sum of quotients of the regular module (the argument is the same as for (Z/pk

Z)-modules).
From this, or directly, it is easy to see that a (Z/pZ)C(p)-module, M , is free if and only
if Ker(1 − t)M � Ms. It remains to check that M = L/pL passes this test. Suppose that
l + pL ∈ Ker(1 − t)M , that is, l(1 − t) = px for some x ∈ L. Then px ∈ L−; as L− is
a group direct summand in L, we also have x ∈ L−; as L is acyclic, L− = L(1 − t), so
x = y(1 − t) for some y ∈ L; and then (l −py)(1 − t) = 0. This shows that l −py ∈ L+;
using L+ = Ls (the other half of the acyclicity assumption), we conclude that l − py = zs

for some z ∈ L, and then l + pL = (z + pL)s ∈ Ms as required.
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