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Abstract

Let p be a prime,F a field of pn elements, andG a finite p-group. It is shown here that ifG has a quotient
whose commutator subgroup is of orderp and whose centre has indexpk , then the group of normalized
units in the group algebraFG has a conjugacy class ofpnk elements. This was first proved by A. Bovdi
and C. Polcino Milies for the casek = 2; their argument is now generalized and simplified. It remains
an intriguing question whether the cardinality of the smallest noncentral conjugacy class can always be
recognized from this test.
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Let FG be the group algebra of a finitep-groupG over the fieldF with pn elements.
As is well known, the radicalR of the group algebraFG is then just the augmentation
ideal

A =
{∑

g∈G

agg

∣∣∣∣ ag ∈ F;
∑
g∈G

ag = 0

}
;

and every element ofFG outsideA is a unit. The group of normalized units is

V = V.FG/ = {1 + a | a ∈ A};
and this is a group of orderpn.|G|−1/. The structure of such groupsV is one of the
interesting questions in the theory of modular group algebras. What is the connection
of the class of these groups with other classes of finitep-groups? Explicit calculations
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in V.FG/ are usually extremely difficult, even whenG is fairly small, so examples
are very hard to come by.

The survey [1] covered many relevant results; more have appeared since then, for
example in [3] and [4].

In this paper we continue an investigation, begun by Polcino Milies and the first
author in [2], exploringwhat numbers can occur as cardinalities of conjugacy classes
of elements ofV . Only powers ofpn come into consideration, because the cardinality
of the conjugacy class of an elementv is the index of the centralizerCV .v/ while

CV .v/ = {1 + a | a ∈ CA.v/};
whereCA.v/ is anF-subspace, so in fact

|V : CV.v/| = pn.|G|−1−dimCA.v// = pn.|G|−dim CFG.v//:

To each elementx = ∑
xgg of the group algebra,x + (

1−∑
xg

)
is an element ofV ,

with the same centralizerasx, so our question may be thought of as this:what numbers
can occur as codimensions of centralizers of elements in the group algebraFG?

It was shown in [2] that 1 cannot occur as such a codimension, but 2 always does
if G has a nonabelian quotient in which the index of the centre isp2. Of course,
then 2 is the smallest positive codimension, and the commutator subgroup of the
quotient in question has orderp. Every finite nonabelianp-groupG has quotients
with commutator subgroups of orderp; let pk be the index of the centre in such a
quotient. Our main result is that in this caseFG has an element whose centralizer
has codimensionk. However, we have not been able to decide whether the smallest
positive codimension must always arise in this way (that is, by considering all such
quotients and choosing one with centre of minimal index).

THEOREM. Let F be a field ofpn elements andG a finite p-group. If G has a
quotient with commutator subgroup of orderp and centre of indexpk, then the group
of normalized units ofFG has a conjugacy class ofpnk elements.

QUESTION. If k is chosen minimal forG, is pkn minimal among the cardinalities
of the conjugacy classes of noncentral elements?

By the above discussion, the Theorem will follow once we prove the two lemmas
below. The first of these is very general.

LEMMA 1. LetF be any field,G any finite group,G → SG a surjective homomor-
phism,r .∈ FG/ the sum of the elements of the kernel, andFG → FSG, x 7→ x̄
the corresponding homomorphism ofF-algebras. For each elementx of FG, the
codimensions of the centralizers ofxr and x̄ are equal:

|G| − dimCFG.xr / = |SG| − dimCFSG.x̄/:
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LEMMA 2. Let F be any field of characteristicp, and G a finite p-group with
commutator subgroup〈c〉 of order p and centreZ of index pk. Further, let T be
a transversal of〈c〉 in G, and sets = ∑

t∈T t . Then the centralizer of the element
s.c − 1/p−2 in FG has codimensionk. (Whenp = 2, interpret.c − 1/p−2 as1.)

Under the assumptions of the Theorem, one could now write down explicitly a
normalized unit with the required number of conjugates; this is left to the reader.

We remark here thatk is always even. For, if the commutator subgroup of a finite
p-group is of orderp, then it is contained in the centre, and the central factor group
is elementary abelian. Moreover,.gZ;h Z/ 7→ g−1h−1gh yields a nondegenerate
symplectic form onG=Z viewed as a vector space over the field ofp elements, so the
dimensionk of this space is always even.

The proofs of the lemmas simplify and generalize some of the arguments from [2],
but there remain results of interest in that paper that have not been mentioned here.

PROOF OFLEMMA 1. Step 1. The sumr is central inFG, because whenr is
conjugated by an element ofG, only the order of the summands changes.

Step 2. Forx ∈ FG, xr = 0 is equivalent tox̄ = 0. To see this, letK be
the kernel andT be a transversal to the kernel. Each elementx of FG is of the
form x = ∑

t∈T

∑
h∈K xthth, andhr = r for everyh in K (because when the sum

r = ∑
k∈K k is multiplied byh, only the order of the summands changes). Thus the

coefficient ofth in xr is
∑

k∈K xtk, independent ofh, and it is also the coefficient oft̄
in x̄.

Step 3. Forx; y ∈ FG, .xr /y = y.xr / if and only if x̄ ȳ = ȳx̄. Indeed,.xr /y −
y.xr / is .xy − yx/r by Step 1, so by Step 2 it vanishes if and only ifxy − yx does.

Step 4. Step 3 means thatCFG.xr / is the complete inverse image ofCFSG.x̄/ under
the homomorphismFG → FSG. Since this homomorphism is surjective, it follows
that the codimensions of the two centralizers are equal.

PROOF OFLEMMA 2. Recall that assumptions and notations are not the same as in
the previous proof. In particular, nowT is a transversal to〈c〉, while s = ∑

t∈T t and
c ∈ Z. Elementary calculations show thatci .c−1/p−1 = .c−1/p−1 for every element
ci of the commutator subgroup〈c〉. For short, writes.c − 1/p−2 = y.

For g ∈ G andt ∈ T , we may writeg−1tg = tci t with 0 ≤ i t < p, and then

g−1yg =
∑
t∈T

tci t .c − 1/p−2 = y +
∑
t∈T

t .ci t−1 + ci t−2 + · · · + 1/.c − 1/p−1

= y +
∑
t∈T

i t t .c − 1/p−1:

If g−1yg = y, theni t = 0 for all t ∈ T . This proves thatCG.y/ = Z.
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The idealFG.c − 1/p−1 lies in the centre ofFG. For, this ideal is spanned by
the elementsg.c − 1/p−1 with g ∈ G; when such an element is conjugated by some
element ofG, it is multiplied by an element of the commutator subgroup, and (as we
have already noted) every such factor is absorbed by.c − 1/p−1.

Modulo this ideal,hy ≡ y wheneverh ∈ G. To see this, recall that the coset ofy
moduloFG.c−1/p−1 is the sum of the cosets of thet .c−1/p−2 ast ranges throughT .
When this sum is multiplied byh, only the order of the summands changes, because
if ht = t ′ci for somet ′ in T andci ∈ 〈c〉, then

ht.c − 1/p−2 = t ′ci .c − 1/p−2 = t ′.c − 1/p−2 + t ′.ci − 1/.c − 1/p−2

≡ t ′.c − 1/p−2 .mod FG.c − 1/p−1/:

As a consequence we have that every product.h − 1/y is central inFG, and by a
similar argument so is everyy.g − 1/ with g ∈ G. It follows that

.g − 1/.h − 1/y = .h − 1/y.g − 1/ = y.g − 1/.h − 1/;

whence

.gh/y − y.gh/ = .gy − yg/+ .hy − yh/:

This shows that the mapg 7→ gy − yg is a homomorphism from the multiplicative
groupG to the additive group ofFpG, whereFp is the prime subfield ofF. We have
seen that the kernelCG.y/ of this homomorphism is precisely the centreZ.

The mapx 7→ xy− yx is an endomorphism of theF-spaceFG, with kernelCFG.y/
and image theF-span of thegy − yg with g ∈ G. Thus the codimension ofCFG.y/
is the dimension of thisF-span. Thegy − yg all lie in FpG, and there they form
an additive subgroup isomorphic toG=Z, that is, anFp-subspace of dimensionk.
SinceFG arises fromFpG simply by extension of scalars, it follows that theF-span
of thegy − yg is also of dimensionk. This completes the proof.
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