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Abstract. Let Ln denote the homogeneous component of degree n in the free Lie ring
on three generators, viewed as a module for the symmetric group S3 of all permutations
of those generators. This paper gives a Krull-Schmidt Theorem for the Ln: if n > 1 and
Ln is written as a direct sum of indecomposable submodules, then the summands come
from four isomorphism classes, and explicit formulas for the number of summands from
each isomorphism class show that these multiplicities are independent of the
decomposition chosen.

A similar result for the free Lie ring on two generators was implicit in a recent paper
of R. M. Bryant and the second author. That work, and its continuation on free Lie
algebras of prime rank p over fields of characteristic p, provide the critical tools
here. The proof also makes use of the identification of the isomorphism types of
Z-free indecomposable ZS3-modules due to M. P. Lee. (There are, in all, ten such
isomorphism types, and in general there is no Krull-Schmidt Theorem for their direct
sums.)

1. Introduction and statement of result. R. M. Bryant and the second author proved (as
part (ii) of the corollary in [2]) that the free Lie ring on two generators, viewed as a module
for the symmetric group S2 which permutes the two free generators, has no nonzero direct
summand on which this group acts trivially. More precisely, it can be seen from Theorem 1 of
[2] and from the formula displayed on p. 284 of [2] that, as ZS2-module, the nth
homogeneous component of this Lie ring is the direct sum of
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copies of the second. (These sums are taken over all, or over all even, divisors d of n;
if a range of summation is empty then the sum is read as 0; and m is the Möbius
function.)

The aim of this note is to provide a similar result for the free Lie ring L on three
generators, viewed as a module for the group S3 of all permutations of those generators. The
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integral representation theory of S3 is nothing like as trivial as that of S2, but it is well
understood from the work of Lee [6]. We show here that there is a Krull-Schmidt Theorem
for the homogeneous components Ln of L: if n > 1 and Ln is written as a direct sum of
indecomposable submodules, then these submodules come from four isomorphism classes,
and explicit formulas (that are independent of the decomposition) can be given for the
number of summands from each isomorphism class. (For comparison, we recall that there
are, in all, ten isomorphism types of Z-free indecomposable ZS3-modules, and different
direct sums formed from them can be isomorphic.)

The first homogeneous component L1 is, of course, indecomposable, but it is not
isomorphic to a direct summand of any other Ln: this is the reason for the exclusion n > 1
which will apply throughout. One of the four relevant indecomposables is L2, and another is
the regular module ZS3. The last two are the unique submodule U of Z-rank 2 in L1 and the
unique factormodule V of L1 with Z-rank 2. (These are unique on the usual understanding
that in the context of integral representations we consider only Z-free modules and restrict
attention to submodules that yield Z-free quotients.)

Some more ad hoc notation will make it easier to state the full result. If X is a module and
Y is an indecomposable module such that, in any unrefinable direct decomposition of X, the
number of summands isomorphic to Y is independent of the decomposition, we call that
number the (Krull-Schmidt) multiplicity of Y in X and write it as �X � Y�. Let d�n� be 1 if n
is a power of 2 and 0 otherwise.

Theorem. If n > 1 and Ln is written as a direct sum of indecomposable submodules, then
each summand is isomorphic to one of L2, ZS3, U and V. Moreover,
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with the last sum being over the divisors d of n that are powers of 3 different from 1, while

�Ln � V� � ÿ 1
n
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We see no prospect of any similar result for free Lie rings on more than three
generators.

2. Proof of the Theorem. Let fx; y; zg be a free generating set of L . Let a be any
permutation of order 3 in S3, and b the transposition in S3 which fixes x and swaps y with
z. Denote by hai and hbi the subgroups of S3 generated by a and by b, respectively.

Step 1 is that Ln as Zhbi-module has no nonzero direct summand on which b acts trivially.
To see this, consider the subset f of L consisting of all left-normed Lie monomials of the
form ��. . . �y; x�; . . .�; x� and ��. . . �z; x�; . . .�; x�. Note that f is permuted by b, and that the action
of b on f is free. Let J be the Lie subalgebra of L generated by f. It is well known in the
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context of Lazard elimination (see for example Theorem 0.6 in Reutenauer [7]) that f is a
free generating set of J, and that J is an ideal in L with quotient of Z-rank 1. The first
homogeneous component J1 of J (in its own grading as free Lie algebra on f) is then a free
Zhbi-module of infinite rank, and J � �L1 \ J1�� �

m ^ 2
Lm. If J has a nonzero Zhbi-module

direct summand on which b acts trivially, then it also has such a direct summand with Z-rank
1; this small direct summand lies in the Lie subring generated by some finitely generated
Zhbi-module direct summand of J1, and is of course a direct summand in that subring as well.
This possibility is ruled out by the first statement of Corollary 2 in [3] read with p � 2 (which
for this case is a direct extension of part (ii) of the Corollary of [2]), so the proof of step 1 is
complete.

Step 2 is that Ln=3Ln as �Z=3Z�hai-module has no 1-dimensional direct summand. This
follows from Theorem 1 of [3] read with p � 3.

Step 3 is to inspect the list of Z-free indecomposable ZS3-modules in Lee [6 ], or on p. 752
of Curtis and Reiner [4], and check that all but four of them are ruled out (as in Section 7 of
[5]) by these tests. The remaining four isomorphism types of indecomposables are those
described above. It is also easy to see that for any finite direct sum of indecomposables from
these four isomorphism classes, the multiplicities can be recovered from the modules
obtained on tensoring with C and from tensoring with Z=3Z. Since in those contexts there is
a Krull-Schmidt Theorem, it follows that for such sums there is one also over Z. The details
of this step are left to the reader.

Step 4 is to prove the third multiplicity formula of the theorem. Tensoring L with Z=3Z,
one obtains a free Lie algebra to which one can apply the results of [3] read with p � 3.
Three of our indecomposable ZS3-modules remain indecomposable and pairwise non-
isomorphic, while the regular module becomes the direct sum of two nonisomorphic
indecomposables modules, namely of L1=3L1 and L2=3L2. This proves that
�Ln=3Ln �U=3U� � �Ln �U� and �Ln=3Ln � L1=3L1� � �Ln � ZS3�. The consequence that
we need from the rather technical central results of [3] was given as Theorem 5.3 in [5]; it
yields that �Ln=3Ln �U=3U� is the sum of the �Ln=d=3Ln=d � L1=3L1� where d ranges over
the divisors d of n that are powers of 3 different from 1. Thus �Ln �U� is the sum of the
�Ln=d � ZS3�, and the third formula of the theorem is proved.

Step 5 is to work out what can be said about the multiplicities we seek by using the
character ln of S3 afforded by Ln 
C. We shall take 1, a and b as representatives of the
conjugacy classes of elements in S3. The orthogonality relations give that in Ln 
C the
multiplicity of the trivial 1-dimensional CS3-module is 1

6 �ln�1� � 2ln�a� � 3ln�b��, the
multiplicity of the nontrivial 1-dimensional CS3-module is 1

6 �ln�1� � 2ln�a� ÿ 3ln�b��, and
the the multiplicity of the 2-dimensional simple CS3-module is 1

6 �2ln�1� ÿ 2ln�a��. On the
other hand, L2 
C is the sum of a nontrivial 1-dimensional and a 2-dimensional simple, CS3

is the sum of the two different 1-dimensionals and two copies of the 2-dimensional simple,
while both U 
C and V 
C are isomorphic to the 2-dimensional simple module. It follows
that

�Ln � ZS3� � 1
6 �ln�1� � 2ln�a� � 3ln�b��;

�Ln � L2� � �Ln � ZS3� � 1
6 �ln�1� � 2ln�a� ÿ 3ln�b��;

�Ln � L2� � 2�Ln � ZS3� � �Ln �U� � �Ln � V� � 1
6 �2ln�1� ÿ 2ln�a��;
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whence

�Ln � L2� � ÿln�b�;
�Ln � ZS3� � 1

6 ln�1� � 1
3 ln�a� ÿ 1

2 �Ln � L2�;
�Ln � V� � ÿln�a� ÿ �Ln �U�:

The final step 6 is to calculate the values of ln from the permutation character l1 afforded
by L1 
C. For g � 1; a; b, the character formula of Brandt [1] says that

ln�g� � 1
n
P
djn

m�d�l1�gd�n=d:

As l1�1� � 3, l1�a� � 0, l1�b� � 1, this comes to
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ln�a� � 1
n
P

djn; 3jd
m�d�3n=d;
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n
;

provided we use the elementary fact thatP
djn; 2Bd

m�d� � d�n�:

This completes the proof of the theorem. h
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