
Finite Groups with Trivial
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Abstract. Generalizing examples of  Swan and Wiegold, this note shows how to construct
more finite groups (including some perfect groups) whose Schur multiplicator is trivial but
whose abelianized deficiency is arbitrarily large.

1991 Mathematics Subject Classification: 20F05

I. Introduction

Given a finite presentation for a group in terms of generators and defining relations,
one obtains the deficiency of that presentation by subtracting the number of generators
from the number of relations. The deficiency of a finitely presentable group G is the
minimum of the deficiencies of its (finite) presentations: we write it as def G. If G is
finite, then def G a  O.

B. H. Neumann I l l ]  asked whether the deficiency of a finite group has to be zero
whenever the Schur multiplicator of the group is trivial. The first examples to show that
the answer is negative were made by Swan 1121: he gave an infinite set of finite groups
whose multiplicators are trivial but whose deficiencies admit no upper bound. Later
Wiegold 1151 produced a different construction to the same end (and, as was reported
in 1151, Neumann immediately added a slight modification to reduce the number of
generators).

Our aim here is to generalize both constructions. This will yield new examples
which can be tailored to various purposes. In particular, it will be seen that there exist
finite perfect groups with trivial multiplicator but arbitrarily large deficiency. As is the
nature of generalizations, the process will direct our attention to various features of
the two constructions, separating similarities from differences.

The author is indebted to the organizers of Groups—Korea 1994 for the financial support
which enabled his attendance and for their warm hospitality. Work on this paper started
during that conference, and its direction was influenced by continuing correspondence
with C. I. Wotherspoon.
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When a finite group G is written as I  R with F  free of finite rank, conjugation
in F yields a G -module structure on R/R'.  The number obtained by subtracting the
rank of F  from the minimum of the cardinalities of the G -module generating sets
of R/R
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symbols, we write this as

bdef G =  dG(RI R
1
) —  d
( F ) .

(It was proved by Gruenberg in [7], and again as part (ii) of Corollary 7.9 in [8], that
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so in  this context we do not have to take the minimum of all possibilities.) As
def G d b -(R)— d(F) for some choice of F I
R  a n d  o f  c o u r s e  
d i , - ( R )  
d G ( R  
I  
R ' ) ,

it follows that def G a  bdef G. It is easy to adapt the arguments of Swan [12] and
Wiegold [15] to show that in their examples there is no upper bound on the abelianized
deficiencies either. The same will be true of the generalizations.

We shall write the Schur multiplicator of a finite group G as M(G). The connection
between deficiency and the Schur multiplicator may be viewed as follows. In the situ-
ation considered above, the quotient RJR,  Fl is the direct sum of M(G) with a free
abelian group of rank d(F).  On the other hand, RAI?, Fl is a G -homomorphic image
of R/ R
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Thus

def G a b d e f  G d ( M ( G ) ) .

(In different notation, this was (3) in Wamsley's survey [14]).
Before the fundamental paper [12] of Swan and the developments that flowed

from it, it  was not known that dG(R/R
1
) —  d ( F )  i s  
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case there was no method for calculating this number, so the only lower estimate of
def G came from the inequality def G d ( M ( G ) ) .  A group G is called efficient if
def G =  d(M(G)) (beware: for infinite G , the definition is different). In the light of
the present discussion, G cannot be efficient unless the minimum number of generators
of R/R' can be read off the largest G -trivial quotient RAI?, Fl o f this module. In
general, modules with this property are fairly rare, and so one can expect that inefficient
groups are far more common than efficient ones. It is not the examples of Swan and
Wiegold, and the generalizations to be presented here, that are the rare exceptions, but
the groups that have been found to be efficient.

As usual in such pseudo-statistical speculations, other views are also quite plau-
sible. While modules with this property are rare in general, they may not be so rare
among the modules which arise as RI  ,  and they may be even less rare among the
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at any one time, and by the skills available to the beholder. I, for one, would not know
where to look for an efficient finite group that is not already in the literature, but
would be happy to attempt to 'make to measure' any number of further examples with
abdef G >  d(M(G)).
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One cannot close such a discussion without mentioning that the existence of a finite
G with def G >  abdef G is still an open problem and looks as intractable as ever.
(This was Question 6 in Wamsley's survey [141.) Recall that Gmenberg proved that
if  a finite group G is written as I  R and if T is a normal subgroup of F contained
in R with RI T  finite or soluble, then dF(RIT) d G (R I R ' )  (Propositions 2.8 and
7.10 in [8]; note that in the second line of p. 47 'finite soluable' should be replaced by
'soluble'). Thus in attempting to prove def G > abdef G for some particular G , it is
a waste of time to investigate the I  T with RI  T finite or soluble.

2. The Constructions

Both of the constructions that we generalize are based on a nontrivial module of order
7 for the group of order 3 A l l  the examples are semidirect products Q x N where Q
is the group of order 3 (or, in the Wiegold—Neumann case, the cyclic group of order
6) and N ranges through certain groups made from copies of the module. Swan's N
are simply the direct sums of copies of the module. Wiegold first takes a free product
of two copies of the module, and his N are the quotients of that free product over
suitable terms of the lower central series.

Perhaps the most important common property of the two constructions is that the
orders of the group and module are coprime, so the orders of the semidirect factors
will also be coprime. The action of Q on N (used in defining Q Ix N) yields an action
of Q on M(N) (see the next section). Let M(N) Q denote the subgroup of of M(N)
consisting of the elements fixed by Q The key to ensuring that M(Q N )  ,  O is
the following.

Lemma L If  the orders of Q and N are coprime, then

M(Q N )  M ( Q )  M ( N ) Q

The relevant special case of this lemma is explicitly mentioned in Swan [12] and
justified by reference to the spectral sequence of the extension N Q  x N Q
.In its present generality, it can be read off as a special case from Theorem 2 of Tahara
[13[, who did not use spectral sequences. A proof without cohomology will be given
in the next section. The reader who prefers the spectral sequence proof may still find
some interest in the implicit group theoretic interpretation provided by our argument
for some ingredients of the spectral sequence. (Wiegold chose to avoid this lemma in
favour of a simple and direct but somewhat ad hoc argument.)

Both Swan and Wiegold use a simple consequence of the Reidemeister—Schreier
Theorem, namely that if H is a subgroup of a group G then

1 +  def G ( 1  +  def H) :
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to ensure that the groups G they construct have large deficiency. The lower estimate
they use for def H is d (M(H)),  so in effect they are using that

1 d e f  G ( 1 +  d(M(H)))1 IG : HI.

One can equally easily deduce from the foregoing that

1 +  abdef G ( 1 +  abdef HO G  : HI ( 1  +  d (M(H)))I IG :

so in fact both constructions yield groups of arbitrarily large abelianized deficiency.
We shall also rely on this argument.

In the generalizations we are about to describe, the task is to choose first a group Q
and then infinitely many groups N on which Q acts, in such a way that (INI,1Q1) 1 ,
M(N) Q ,  0, and the set of the numbers d (M(N)) is not bounded above. By the
discussion so far, we know that we shall have M(Q x  N) ,  M(Q) with the set
of the numbers abdef(Q x  N) unbounded. In particular, if  also M(Q) 0 ,  then
our semidirect products will have trivial multiplicator and unbounded abelianized
deficiency.

For the generalization of Swan's construction, the critical property of Q is to
have an element that is not conjugate to its inverse. (Thus for this purpose the group of
order 2 and SL(2, 5) are bad, but all larger finite cyclic groups and SL(2, 7) are good.)
Such a Q always has an irreducible complex character, x  say, that is different from
its complex conjugate-
;
-
(
- ( s e e  V .
1 3 . 7 a  
i n  
H u p p
e r t  
H O
D .  
T h
e n  
X
2  
d o
e s  
n
o
t  
i n
v o
l v
e

the trivial character (because the scalar product of X
2  w i t h  t h e  t r i v i a l  
c h a r a c t e r  
i s

also the scalar product of x  with  7 ).  Equivalently, for the simple module U that
affords x we have (U O U)Q =  O. Next, choose any prime p congruent to 1 mod
Q I Over the field of p elements, which we write as Fp , the representation theory

of Q is the same as over the complex field, so there is an simple Fp Q - modu le V
such that (V  O V)Q =  O. For each positive integer k,  let Nk be the direct sum
of k copies of V O f  course then also (Nk O Nk)Q =  0, so we can appeal to the
completely elementary V.25.4 in [101 for the conclusion that the Sylow p -subgroup
of M(Q x  Nk) is trivial: in view of Lemma 1, this yields that M(Nk)Q =  0 and
M(Q r).< N k )
,
M ( Q ) .  
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deduce M(Nk)Q =  O from M(Nk) N k  A Nk N k  0  Nk • Since Nk is elementary
abelian and d(Nk) k  dim V k ,  we know that d(M(Nk)) I k ( k  —1), so the
d(M(Nk)) have no upper bound.

It may be worth noting here that the way Neumann made 2-generator examples
from Wiegold's 3-generator groups can also be used to make 2-generator examples
from Swan's many-generator groups. Choose a group Q  with M(Q) =  O and a
module V o f characteristic p , as above. For each positive integer k that is prime to
PI Q1, set Qk =  Ck X Q (where Ck is a cyclic group of order k) and let Nk be the
Qk -module induced from V (so Qk V Nk is the twisted wreath product of V by Qk,
the action of Q on V  providing the twisting). Then d(Qk v  Nk) m i n { 2 ,  d(Q)}
and M(Qk v  Nk) O  for all k,  while the abelianized deficiencies tend to infinity.
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(Note that the subgroups Q x Nk form a subsequence in the corresponding sequence
of generalized Swan examples.) If Q is perfect and p  >  3, one can replace the Ck
by the SL(2, q) with q running through the primes larger than I Q I that are congruent
neither to I  nor to — I modulo p, and the same conclusions will still hold, while the
Qk N k  will remain perfect. (To see that d(Qk t)< (  min{2, d(Q)), argue first
that Qk can be generated by min{2, d(Q)} elements, then write Qk as FIR with F
a free group of this rank and appeal to a theorem of Gaschtitz [6] for the fact that Nk ,
like every one-generator Qk -module of characteristic p ,  is a quotient of R / R
/
R P
where RP stands for the subgroup (rP r  E R ).)

For the generalization of the Wiegold—Neumann construction, the critical property
of Q is to have a nontrivial central element, z say, which does not generate all of
Q (Thus here all groups of prime order and all nonabelian simple groups are bad,
but cyclic groups of composite order and perfect groups like SL(2, q) for odd q ,
q 0  3,  are good.) Let  R be any subgroup of  Q  such that R <  (R,  z) <  Q ,  and
let p be a prime which does not divide IQ' and is congruent to 1 modulo I RzI (that
is, modulo the order of the element Rz in  the factor group (R, z)I R). Choose a I  -
dimensional Fp R , z) -module, U say, on which R acts trivially and z acts by a scalar
of multiplicative order I
R z I .  T h e n  
z  
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a s  
t h a t  
s c a l
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F
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-
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induced from U,  and V  can be written as a direct sum of I
Q  :  ( R ,  z ) I  
s u b s p a c e s ,
each of dimension 1, that are permuted by Q.  It follows that the free product of
I Q : (R, z) I groups of order p, which we shall call P ,  admits an action by Q which
is such that V  is Q  -isomorphic to P /P ' .  Write the lower central series of P as
P = P  >  • • • >  P, >  • • • ; for each positive integer k such that k +1 is not divisible
by I Rz I , set Nk P  I Pk+1 • From Theorem 2.6 of Haebich [9] we know that M(Nk)
is isomorphic toP  /- k+1 P 1 k+2 • It follows that P I Pk+2 is a Schur covering group of Nk •
The action of Q on P yields an action on Nk , and we form the semidirect product
G =  Q X N.  with reference to this. The action of Q on P  also yields actions on
the covering group P / P k
+
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+ 1 1  
P k
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group. These actions match in the way that is necessary to ensure that when M(Nk)
is viewed as a Q -module in the sense of Lemma 1, it is Q -isomorphic to Pk+1 I -Pk+2
(see the last two paragraphs of  the next section). I t  is easy to calculate, following
Wiegold [15], that Pk+1 I Pk+2 is an elementary abelian p -group and z has nontrivial
powering action on Pk+1 /Pk-F2 thus M ( N )  e =  O as required. Further, Wiegold
asserted in [15] that the rank of Pk+il Pk+2 tends to infinity with k , and this yields
that our set of the d(M(Nk)) has no upper bound.

However, I must admit that 1 have not been able to locate or devise a proof for
the proposition that the rank of Pk+1 I Pk+2 tends to infinity. (1 am grateful for a last-
minute suggestion that it may be possible to deduce it from Gaglione [5].) To this
extent, the justification of the construction given above is incomplete.

One way to sidestep this difficulty is by exploiting the freedom to choose p. By
Dirichlet's Theorem, there are infinitely many primes satisfying the present require-
ments. Write Pk and Nk as Pk,
p a n d  N k ,
p  t o  
i n d i c a t e  
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choice as well. If p > k +1 , then Nk+1,
p i s  a  r e g u l a r  
p  - g r o u p  
( b e c a u s e  
i t s  
n i l p o t e
n c y

class is small) and so it has exponent p (because it is generated by elements of order
p). It follows that in this case N k
+
1 ,
p  i s  a  
f r e e  
g r o u p  
o f  
t h e  
v a r i e t
y  9 3
p  
n  
O l k
+
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groups of exponent p and class at most k +1 , and P- I  Pk4-2,p is the last term of
its lower central series. Thus the rank of Pk+1, I  Pp, - i s  given by Witt's Formula,
from which one can see that this rank is independent of p and does tend to infinity
with k Fo r each k such that k + 1 is not divisible by I Rz I , choose Nk as one of the
Nk,
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we claimed.

In the generalized Wiegold—Neumann construction, V had to be a monomial mod-
ule in order that action on it should lift to action on a free product P of cyclic groups
with P  I P' V .  The other important point was that some element of Q act on V
as a nontrivial scalar, so one can deduce that this element, and therefore also Q, acts
fixed-point-free on certain lower central factors of P  I f  instead we choose P  as a
free group of 93
p n  
O l i ,  
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of the p ' -group Q on P I P' can be lifted to an action on P  Witt 's Formula is just
a special case of the character formula of Brandt [21, which enables one to compute
the action on the lower central factors of these P  Using this, it may be possible to
verify that the action of Q is fixed-point-free even when no individual element of Q
is known to act without fixed points. Of course these P are finite and so no single one
of them will yield an infinite family of examples.

3. A Proof of Lemma 1

The aim of this section is to present an elementary proof of Lemma 1.
In preparation, we establish two simple propositions. They concern the (right)

action of a finite group Q on a finitely generated abelian group A I t  will be convenient
for the moment to write A additively. Let A Q denote the subgroup consisting of the
fixed points of Q in  A ,  and Ao the torsion subgroup of A. Write [A, Q] for the
subgroup of A generated by the elements a(x — I ) with a E A and x E Q.

(a) I f  the index IA : AQ is  prime to I V ,  then [A, Q] n AQ ,  O.

(b) i f  IA01 is prime to IQ', then [A, Q1 n Ao

For the proof, let ri denote the element E
y
,
Q
( 1  -  y )  
o f  
Z Q  ,  
a n d  
n o t e  
t h a t

(x — Uri =  1Q1(x — 1) whenever x E Q: thus

1 O i f  a ,
,---

1Qta i f  a E [A, Ql•
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It follows that [A, O n  AQ has exponent dividing I QI I f  IA: A I  is prime to 1 QI
then A  ,  AQ +  I OA and hence [A, Q] =  [ I V A ,  Q] =  I Ql[A , Q] A  finitely
generated abelian group that is divisible by IQ! has no nonzero element of order
dividing 1 Q1, so in this case [A, Q] n A Q O .  On the other hand, if  IA01 is prime
to IQ' then there is a positive integer k such that Q l
k  1  ( m o d  
I A 0 1 ) ,  
a n d  
t h e n

a E [A, Q] n An implies that a =  1 Q l
k
a  =  a t i k  E  
A V /  
[ A 0 ,  
Q l .  
T h i s  
c o m p l e t
e s

the proof of (a) and (b).
We are now ready to start on the proof of Lemma 1.
Let 7
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primes. Then M(Q) is a fr -group and M(N) is a 7r t
- g r o u p ,  s o  t o  
p r o v e  
L e m m a  
1  i t

will be sufficient to show that M(Q x N) has a subgroup isomorphic to M(N) Q with
quotient isomorphic to M(Q).

The definition of multiplicator that we use is this: given a fi
n i t e  g r o u p  G  ,  
w r i t e  i t

as I  R with F  free of finite rank, and set M(G) =  (F'  n R)I[F, RI. (Accordingly,
in this section we use multiplicative rather than additive language even where the
multiplicator is concerned.) As the discussion on pp. 29-31 o f Beyl and Tappe [1]
explains, there is in fact a functor M from fi
n i t e  g r o u p s  t o  
a b e l i a n  
g r o u p s ;  
s o  
i n

particular there is, for each G , a distinguished homomorphism

Aut G A u t  M(G), a  1—)- M(a).

Composition with this homomorphism converts any action on G into an action on
M (G) • Given a semidirect product Q x  N formed with respect to some action of Q
on N,  it is in this sense that we have an action of Q on M(N).  In terms of normal
subgroups in a free group, this comes to the following.

Write Q x N as FIS  with F  free of finite rank, and let RIS correspond to the
normal subgroup N of Q x  N.  Then FIR =  Q and R is also a free group of finite
rank, so we have

M(Q N )  =  ( F
l  n  S ) /
I F ,  
S ] ,

M(Q) =  (F'  n R)I [ F,  RI,
M(N)  =  S ) I [ R ,  S].

Moreover, the relevant action of Q on M(N) is that which comes from conjugation
in F .  To justify this last claim, recall that if  a E Aut N then M(a ) is defined by
choosing any endomorphism, e say, of R such that (r S)a =  (rE)S for all r  in R,
and setting M(a):  r
l
[ R ,  S ]  
( r
t
s ) [ R ,  
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of Lemma 3.1 in [1] shows that the M (a) so defined depends only on a and not on
the choice of e.) The a that are relevant to our claim come from conjugation in
the same conjugation can also be used to define the corresponding e, and then our
claim follows. Note also that, by Maschke's Theorem, M(N) Q is isomorphic to the
largest Q -trivia] quotient of M(N),  so in the present terms

M(N)Q ( R
/  n  
S ) I
[ R ,  
S l
[ F ,  
n  
S
i
.
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A modular lattice generated by two chains is always distributive: thus in the normal
subgroup lattice of F , the sublattice generated by the two chains

F R  S  [ F ,  S] [ F ,  S ]  a n d  r  [ F ,  R] [ R ,  SI

is distributive. The figure shows the Hasse diagram of the distributive lattice E defined
on these nine generators by the displayed inclusions and

F ,  R  R ]  [ F ,  SI, R
1  [ F ,  R
1  n  
S ]

as defining relations: its verification is an elementary lattice theory exercise.

M(Q)

M(N)

M(Q N)

The sublattice in the normal subgroup lattice of F  is a homomorphic image of
this L .  Dotted lines have been used to denote edges which are present in L  but, as
we shall see, always collapse in F  (in the sense that the two endpoints of the edge
are equal in F).  Note that once those collapses are established, the planned proof of

    Should be
\mathsf{M}(Q\ltimes N)
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Lemma 1 will be complete, with (R
1  n  S ) [ F ,  5 1 1
[ F ,  . 5 ]  
a s  
t h e  
r e q u i r e
d  
s u b g r
o u p  
i n

M(Q x N).
By one of the elementary isomorphism theorems,

(F
/  
n  
R
)
/
G
F
/  
n  
[
F
,  
(
F
'  
f
l  
R
)
S  
I
[
F
,

The left hand side is a quotient of the 7t
- - g r o u p  M ( Q )  
a n d  
t h e  
r i g h t  
h a n d  
s i d e  
i s  
a

section of the 7r ' -group RIS, so both must have order 1 Th is proves the first pair of
collapses. (It was noted in [11, at the top of p. 31, that the functorial nature of M very
directly yields that M(Q) is not only a quotient but even a module direct summand
of M(Q N ) ,  and no coprimality was used there. However, the translation of that
argument into the present setting would involve a more complicated lattice.)

The proposition (a) established at the beginning of this section may now be applied
with A =  S I :  since le  S I R
1
[ F ,  S 1  
A Q  ,  
t h e  
c o p r i m a l i t
y  
c o n d i t i
o n  
i s  
s a t i s fi
e d .

The conclusion gives that [F, RI n R'S S ] ,  and the second pair of collapses
follows. Next, apply (b) with A =  S I[R, Si: then Ao =  (R
/ n  S ) I [ R ,  5 1 ,  
s o  t h e  
c o -

primality condition holds. The conclusion gives that R' n [F, SI S l [ F ,  n  SI,
the last collapse we wanted to show. This completes the proof of Lemma 1.

We conclude this section by sketching two justifications for a claim we used im-
plicitly in the discussion of the generalized Wiegold—Neumann construction, namely
that if some action on a group N lifts to an action on a covering group of N, then by
restriction to the copy of M(N) in that covering group we get the same action as by
composition with the homomorphism Aut N A u t  M(N) provided by the functor
M Given a covering group of N,  this time write that as FIS  (where F  is free of
finite rank), with RIS as the copy of M(N) in FIS:  then

FIR N ,  F
l  n  
S  
[ F ,  
R 1
,  
( F
t  
n  
R
)
S  
=  
R
,

so that there is a natural isomorphism

M(N) =  (F
t  fl  
R ) I
[ F ,  
R I  
R  
I  
S
.

Let a be an automorphism of FIR that lifts to an automorphism of FIS, say, to a
* ,and let us use our freedom to define M (a) in terms of an endomorphism E of F that
lifts a  because it lifts a* • Of course then e and a* agree on RIS, so the action of
M(a) on (F
I  n  
R )
I 1 F ,  
R I  
a n
d  
t
h
e  
a c
t i
o n  
o
f  
a
*  
o
n  
R  
I
S  
a
r
e  
i n
t e
r t
w i
n
e
d  
b
y  
t
h
e  
n
a
t
u
r
a
l

isomorphism F'  n R)I[F, RI R  I S above. This is just the rigourous form of what
we had to establish.

The claim we have just proved could not serve as a general description on how to
convert an action on N to an action on M(N) (for example, if N is elementary abelian
of order 2 ,  the natural action of Aut N does not lift to any Schur covering group of
N). However, it is possible to give such a description, in terms of covering groups rather
than free groups, by reference to the familiar result that any two covering groups of of
a finite group N are isoclinic. Strictly speaking, what one proves there is that, given
any two surjective maps a, : N, —* N with ker a
t N i '  n  Z ( N )  
a n d  k e r  
a i  M
( N ) ,

Should be
A=R/R'[F,S]

Replace \mathsf{N}
by  N_i
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there is a unique isomorphism NI '  —* N2' with a certain property. I f  al is  fixed
and a2 ranges through the aloe with a e Aut N, then to each a we get a uniquely
determined automorphism, a l say, of Ni' .  This a l maps ker at onto itself, and the
restriction of al to that kernel 'is' M (a) (In  fact, a a l  defines a homomorphism
Aut N A u t  NI' .) The second justification promised lies in checking that if a lifts
to an automorphism a* of NI then the restriction of a* to Ni'  also has the property
which characterizes a l , so that restriction must be al

4. Some Explicit Examples

In the perfect group SL(2,7), the elements of order 7 are not conjugate to their in-
verses; over any Fp with  p  1  mod 168, this group has an simple module V  o f
dimension 3 such that V (g) V contains no fixed point other than O. In fact, Section 232
of Burnside [31 (see particularly its last sentence) explicitly describes such a represen-
tation over any field containing a square root of —7, so we can even choose p =  11.
Of course the centre is nontrivial, the multiplicator is trivial, and the deficiency is zero
(see for example Campbell and Robertson ILIA and therefore this group can play the
role of Q in both constructions. For the generalized Wiegold—Neumann construction,
SL(2, 5) presents a smaller perfect alternative in the role of Q. The Q x N obtained
with these choices seem to be the first perfect finite groups proved to have trivial
multiplicator but positive deficiency.

To provide a better understanding of the constructions and to illustrate further
aspects of the available methods, we explore here some of the smallest perfect examples
that we can make and determine the exact abelianized deficiency of these groups. The
latter calculations will be based on the following result, whose proof is deferred to the
next section and in which IF,, stands for the trivial Q -module of p elements.

Lemma 2. I f  Q is a finite p ' -group acting on a finite p -group N, then

abdef(Q v N) =  max{ abdef Q, clQaF
p M ( N ) )  —  
l } .

Take the generalized Swan construction first, with Gk =  Q  V Nk where
Q =  SL(2, 7) and Nk is the direct sum of k copies of the Q -module V o f  order 11
3mentioned above, so

GkI =  336 x 1 1
3 k
.Though we do not need it, for orientation we note that it can be seen using the results

of Gaschiltz [61 that

d(Gk) 1  +  Ik/31
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where by w e  denote the unique integer such that x s Fx1 <  x +  1. We shall
prove that

abdef Gk =  Rk(k  + 1 )1 -1 .  (
1
)In particular, a bdef GI =  abdef G2 =  O but abdef G3 =  1.

Towards the proof of (1), we already know that abdef Q =  O (because even
def Q =  0). By the general rules of multilinear algebra,

M ( N k )  N k  A  N k  =  ( V
e k
)  A  ( V
e k
)  =  
( V  
A  V )
( 1 ) k  
( 1 )  
( V  
0  
V ) ® 1
1 4 - 0
.

As for every 3 -dimensional simple module, the exterior square V A V of V is also
3-dimensional and simple. Any simple module of prime dimension on which the
derived group acts nontrivially is in fact absolutely simple, and this applies to both V
and V A V. For this particular V, it is also easy to see that the direct complement of
V A V in V 0  V is absolutely simple. Call that 6-dimensional module W: then

M ( N k )  -=  ( V  A  17)(1 )k (k )-1 ) v v e l k ( k - i ) .

The way for counting the minimum number of generators of a semisimple module
can be found in Lemma 7.12 of [8]; using that and the fact that the multiplicity of an
absolutely simple module of dimension d in the largest semisimple quotient of the
regular module is d, we obtain that

c/Q(IFII O M(Nk)) i l k ( k  + 1)1,

and so (1) follows from Lemma 2.
Next we turn to the generalized Wiegold-Neumann construction, this time writing

Hk =  Q N Nk, still with Q =  SL(2,7). There is then only one nontrivial element
in Z(Q), and that must be our z The largest subgroup R that does not contain z is
of order 21, and then the index of (R, z) is 8; the smallest p  we can choose is 5,
and the smallest permitted value of k is 2. Now N4 is the free group of rank 8 in the
variety 935 n 9i4 which consists of all groups of exponent 5 and nilpotency class at
most 4, so the ranks of the first four lower central factors of P can be calculated by
Witt's Formula: they are 8, i  (8
2 -  8 ) ,  ( 8
3  -  
8 ) ,  
a n d  -
4
1
( 8
4  8
2
) .  
W e  
o n l
y  
n e
e d  
t h
e

first three to deduce that

1H21 =  336 x 5
3 6  a n d

I m(N2)I = 5168,
with M(N2) elementary abelian.

Notice that 168 is also the dimension of the unique largest F5 Q -module which
can be generated by a single element and on which z acts as the scalar -1  There is
no reason to expect that M (N2) is that particular module, but calculation shows that
it is, and hence

a b d e f  H2  =  0
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follows by Lemma 2. This coincidence was first established by a direct computer
calculation that one could not hope to perform by hand. I am greatly indebted to Dr
M. E Newman for this, for his other contributions that will be mentioned below, and
for many illuminating discussions on related matters.

There is another argument which justifies this conclusion and which does not rely
on a machine; it can be sketched as follows. Groups of exponent p  and nilpotency
class at most p -  I are the same, in the strongest possible sense, as Lie algebras over
Fp that are nilpotent of class at most p -  1 • In particular, N3 is just the rank 8 free
Lie algebra in the variety of the Lie algebras over F5 that are nilpotent of class at
most 3 Ca ll this Lie algebra L(8, F5, 3), or briefly L  A lso  in this sense, M (N2)
is L
3
,  
a
n
d  
b
o
t
h  
a
r
e  
F
5  
Q  
-
m
o
d
u
l
e
s
.  
T
h
e  
c
o
n
n
e
c
t
i
o
n  
b
e
t
w
e
e
n  
t
h
e  
n
a
t
u
r
a
l  
a
c
t
i
o
n
s  
o
f

GL (8,5) on L / L
2  a n d  
o n  L
3  
w a s  
d e s c
r i b e
d  
b
y  
B r
a n
d t  
i
n  
1
2
1
.  
T
h
a
t  
c o
n n
e c
t i
o n  
c
a
n

be restricted to the action of Q, it survives the 'extension of scalars' which replaces
F5 by its algebraic closure, and also the 'reduction of constants' which establishes
the connection between the representations of Q over that algebraic closure and the
representations of Q over the complex field C Thus the connection between the
actions of Q on L / L
2  a n d  
o n  L
3  
d o e s  
n o t  
c h a
n g e  
i
f  
w
e  
r e p
l a c
e  
L  
b
y  
L
(
8
,  
C
,  
3
)
.  
L
e
t

x denote the complex character corresponding to the action of Q on PIP ',  that is, the
character afforded by the complex L I L
2
:  b y  B r a n d t ' s  
F o r m u l a ,  
t h e  
c h a r a c t e
r  
a f f o r d
e d

by L
3  
i s  
t
h
e
n  
g
i
v
e
n  
b
y  
t
h
e  
r
u
l
e  
t
h
a
t  
i
t
s  
v
a
l
u
e  
a
t  
a
n  
e
l
e
m
e
n
t  
x  
o
f  
Q  
i
s  
1
-
(
x  
(
x
)  
—  
x  
(
x
3
)
)
.

Here x is the character of Q induced from the character of (R,z) which is 1 on R
and —1 on the rest of (R,z), so it is easy to calculate, and therefore so is L3(X)• On
the other hand, the character corresponding to the unique largest module which can
be generated by a single element and on which z acts as the scalar —1 has value 168
at the identity element, —168 at the central involution, and 0 at every other element
of Q. It remains to observe that this character and L3(X) coincide, and the argument
is complete.

The next example in this sequence is H4 • A slight extension of the argument above
yields first that

11
-
14
1 
=  
3
3
6  
x  
5
1
2
1
2  
a
n
d  
'
M
(
M
I
)
!  
=  
5
6
5
5
2
.

Further, it  justifies that c/Q (M (N4)) is the minimum number of generators of the
CQ -module that affords the character Ls(X) whose value at x is ( x  (x) — x ( x
5
) ) .
Here x  is the same as above. Using the character table of Q and the orthogonality
relations, an easy hand calculation shows that L5(X) is the sum of

158 copies of each of two irreducible characters of degree 4,
234 copies of each of two irreducible characters of degree 6, and
310 copies of an irreducible character of degree 8.

It follows that c/Q (M (N4)) -= 40 and so, by Lemma 2,

abdef H4 -7-
- 3 9 .
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To attempt to confirm this by the kind of direct machine calculations that were used
above would be stretching the resources available to us at this time.

For a related example with positive deficiency which is not as far out of reach as
this, we exploit the observations of the last paragraph of Section 2: one can imitate the
construction of H2 with P /P
1  t h e  o t h e r  
8  -
d i m e n s i o n
a l  
s i m p l
e  
F 5  
Q  
-
m o d u
l e  
o
n  
w h
i c
h

the central involution acts nontrivially, even though that module is not monomial. This
new version of H2 also has order 336 x 536, but now the role of x goes to the faithful
simple character, 1// say, of degree 8, and L 3 (*) turns out to be the sum of

3 copies of each of two irreducible characters of degree 4,
6 copies of each of two irreducible characters of degree 6, and
9 copies of an irreducible character of degree 8.

The conclusion is that the abelianized deficiency of this version of H2 is 1 • This group
is, of course, much larger than G3 , which remains the smallest perfect group we know
with trivial multiplicator and positive deficiency.

The second smallest is also built on this last pattern, with Q S L (2 ,  5) , p  I l ,
 and P / P
/  
t h e  
d i r
e c t  
s
u
m  
o
f  
t
w
o  
i s
o
m
o r
p h
i c  
2 -
d i
m
e
n
s i
o
n
a l  
s
i
m
p
l
e  
m
o
d
u
l
e
s
.  
(
T
h
e
r
e

are two such simple modules, but they are interchanged by an automorphism of Q, so
the isomorphism type of Q X N2 does not depend on which one we use). The resulting
Q X N2 has order 120 x l i la ,  and its abelianized deficiency is 2.

The last two examples were discovered by Dr M. F. Newman and first justified by
machine computations. I am grateful for his permission to include them here.

5. The Proof of Lemma 2

Set G =  Q v N.  In the notation already used in the proof of Lemma I, a bdef G =
dG (S/S') — d (F),  so the problem is to determine dG(S /S
1
).  B y  t h e  t h e o r e m  
o f

Gruenberg 171 (see Theorem 7.8 in 181), dG (S/S
Ì
) =  m a x
q  d G ( S / S
/
S q )  w h e r e  
q

ranges through the prime divisors of GI and Sq stands for the subgroup ( sq s  e S ).
For simplicity, put d d ( F )  and assume that d ?, 2 I t  follows from a fundamental

result of Gaschtitz [6] (see Lecture 2 in [81) that there is an exact sequence

O —* S / S
1
S q  —
*  
( 1 F
q  
G )
e
'
d  
—
*  
F
q
G  
F  
0  
(
2
)

of G -homomorphisms (where, as usual in this context, IF q stands both for the field
of q elements and for the trivial G -module of q elements). In view of Schanuel's
Lemma and the Krull-Schmidt Theorem (used as in the deduction of Corollary 2.5
in [8]), the existence of such a sequence may in fact be taken as the definition of
S / S
1
S q  
S i
m i
l a
r l
y ,  
R  
I  
R
1  
T
V  
i
s  
c
h
a
r
a
c
t
e
r
i
z
e
d  
b
y  
t
h
e  
e
x
i
s
t
e
n
c
e  
o
f  
a
n  
e
x
a
c
t  
s
e
q
u
e
n
c
e

O I ?  I R
1 l e  
q  
Q )
E 6 '
d
-
p  
Q  
q  
O
.  
(
3
)
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Consider first the case q p .  Given that N is a q' -group, every IF G -module
W can be written canonically as W
N  e )  [ W ,  
N ] ,  w i t hdG(W) m a x f d G ( W

N
) ,  d G ( [ W ,  
N J ) ) .

In this manner, (2) splits into two sequences, and the first of those is

O  — >  ( S / S ' S q )
N  q  
Q )
e )  
d  
F
q  
Q  
F  
—
>  
•  
0

because, in the relevant sense, (IF G )
N  I F
q
Q .  
C o m p a r i n g  
t h i s  
s e q u e n c
e  
w i t h  
( 3 )
,

we conclude that (S/S'S'O
N R I R
1
1 0 .  
T h e  
s e c o n
d  
s e q u e
n c e  
r e s u l
t i n g  
f r
o m  
(
2
)  
i
s

0 [ S / S
t
S q ,  
N 1  
g
G ,  
N
r
d  
[
I
V
,  
N
]  
O  
O
.

Since [IF G , N] is a direct summand of IF G , it is projective, and therefore this se-
quence splits; hence by the Krull-Schmidt Theorem [S/S'Sq, NJ L' G ,  N J ' .
It follows that dG(S/S'Sq) ma x id c , (R1  Rq ) ,  d  — 1 ,  whence one readily sees
that, with q ranging over the prime divisors of IQ I

max (dG(S/S'Sq) — d) =  max (dQ(R I 1 r
1
) —  d )  =  a  
b d e f  Q .

It remains to consider dG(S/S'SP). This is the same as the minimum number of
generators of the largest semisimple quotient of S/S'SP. On that quotient, N  acts
trivially (because every normal p  -subgroup acts trivially on every simple module
of characteristic p );  conversely, the largest quotient on which N  acts trivially is
semisimple (by Maschke's Theorem). Thus the largest semisimple quotient of S/S'SP
is S 1[R, SiSP , and d G (S / S
t
S P ) d Q ( . 5  
1 [ R ,  
S t S P ) .

The torsion subgroup o f  the finitely generated abelian group S I [R,  S] i s
(R' n  S)I[R, S], isomorphic to the p  -group M(N).  I t  follows that (in additive
terminology) S l[R, S]SP is a direct sum of two summands, namely of SAR' n S)SP
and of the Frattini factor group of M(N).  Since I Q1 is prime to p ,  there is such a
direct decomposition of S 1[R, SJSP as Q -module, and so

d0(.5 I[R, S]SP) =  d0(S1(le n S)SP 03
, M  ( N ) ) .The proof of Lemma 2 will therefore be complete if we show that

S I (I r n S)SP I F , ,  o
p
,  p  Q  )
6 )  ( c  
—  ] )  
•

Here the right hand side is familiar, for by the easy (coprime) case of the Gaschtitz
theory quoted above we know that RIB' RP F
p  ( 1 3 4  ( F p  Q ) V
d - 1 )
:  t h u s  
w h a t  
w e  
n e e d

is that s/ (R'  n s)sP R / R ' R P  • As SAR' n S) and R
I
S / R '  a r e  Q  -
i s o m o r p h i c ,  
s o

are their largest exponent-p quotients: SAR' n S)SP S  I R
1 R P  •  W e  h a v e  
r e d u c e d
our target to R'S/R'RP R / R
I
R P ,  a n d  
t h i s  
m u c h  
c a n  
b e  
s e e n  
a s  
f o l l o
w s .

If A is any finitely generated Z -free ZQ -module and B is a maximal submodule
of p -power index, then

pAlpB B l p A  B l p B .
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Repeating this argument shows that A lpAL- '  B I p B  whenever B is a submodule of
p -power index. This may then be applied with A =  R/ R
t  a n d  B =  R ' S I R '  
b e c a u s e ,
being a quotient of  N,  R I R ' S  has p  -power order. The proof  of Lemma 2 is now
complete.
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