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During the past two  decades, asymptotic methods o f  algebra have
achieved substantial progress and found applications throughout mathe-
matics (topology, functional analysis, probability theory, etc.). Central for
this field is the concept of the growth of a finitely generated algebra (for
associative algebras known also as the Gel'fand—Kirillov dimension), going
back to  Schwartz [Sell], Gel'fand-Kirillov {G1(], and Milno r [ Mt  This
concept has been intensively studied for groups, semigroups, associative
algebras, and some other structures. In  particular, it  was discovered that
any nontrivial identity that is satisfied in an algebraic structure has major
influence on its growth. This suggests that there should be some connec-
tions between the growth o f  algebras and the theory o f  varieties (i.e.,
classes of algebras defined by identical relations).

In the present paper we introduce and study the concept of the growth
of a variety. Although here we are mainly concerned with varieties o f
groups and group representations, it should be noted that this concept can
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be naturally extended to varieties o f  arbitrary algebraic structures, and
thus may be of interest from the standpoint of universal algebra.

The paper consists o f  three sections. In  Section 1 we introduce the
notion of growth for varieties of group representations and propose two
main problems to be studied. Section 2 is concerned with the growth o f
varieties of groups (or, equivalently, varieties of representations of group
type). Finally, in Section 3 we investigate the growth of varieties of group
representations of ring type.

The authors are grateful to  G. M.  Bergman, A.  Berele, and A.  N.
Krasil'nikov for useful conversations.

I. GROWTH OF VARIETIES: THE MAIN DEFINITIONS
AND PROBLEMS

The considerations o f  this paper arose from the study o f  varieties o f
group representations. We recall briefly a few definitions, notation, and
examples (for details see [PV] o r [V2]). We  assume that the reader is
familiar with varieties of usual (that is, one-sorted) algebras.

Let K  be an arbitrary but fixed field. Our objects o f study are linear
representations of groups over K. A  representation p : G A u t y  of a
group G on a (left unitary) K-module V  is often denoted by p = (V,G);
the result o f  the action o f  an element g  E G on an element v  E V is
denoted by c • g.

Let F  be  the free group o f  countable rank with  free generators
KF be its group algebra over K; and t i— u(x 1
, ,  x
n
)  b e  a n

element of KT'. Suppose there is given a representation p : G —> A u t
K
V .
We say that ti is an identity (or a law) of p if  for arbitrary g
l
, . .  •  ,  g „  E  G ,p (g „)) =  O

in End
K V .  
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of all representations satisfying a certain set of identities. I f  r  is a variety
of group representations over K, then the set Id ,cr of all its identities is a
two-sided ideal of KF, which is invariant under all endomorphisms of the
group F.  Such ideals are called fu lly invariant (o r verbal). A  standard
argument shows that the map V'--> Id V' is a bijection between varieties
and verbal ideals of KF.

Let V"  be a  variety and I  = Id V the  corresponding verbal ideal.
Regarding KF /I as an F-module, we obtain a representation

Fr(V) (  KF/I ,  F)

called the free (cyclic) representation of countable rank of I f  p — (V,G)
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is an arbitrary representation in t h e n  every map sending the unit I  +  I
of KF /1 to V  and the free generators x, o f  F to elements of G can be
uniquely extended to  a  homomorphism o f  representations Fr( - i  p.
Similarly, if F, is a free group on n generators x „  and I  -  I  n KF,
then the natural representation Fr„(21 ( K F , 1 1 , , F )  is the free (cyclic)
representation of rank n of

EXAMPLES. ( I )  A  representation p  = (V,G) is called stable of class n,
or simply n-stable (this terminology goes back to Kaloujnine and P. Hall),
if there is a series of G-modules

0 -,61„ c A ,  c  c A , ,  -  V

such that G acts trivially on each quotient / 1 / A , .  A typical example of
an n-stable representation is ut n
( K )  ( K '  ,  
U T , , ( K ) ) ,  
w h e r e  
U T
( K )  
i s  
t h e

full unitriangular matrix group of degree n acting on Kn in  the natural
way. The class -Yrt o f  all n-stable representations is a variety because it is
definable by a single identity (x, -  I )(x
2  -  I )  •  •  
•  ( x „  -  
1 ) .  I t  
i s  
e a s y  
t o  
s e e

that Id(5" ') -  A', where A is the augmentation ideal of KF.
(2) A  representation is n-unipotent i f  it  satisfies the identity (x -  1)".

The variety of all n-unipotent representations is denoted by W
n
.  E v i d e n t l y
5 "  c  I f  K  is a field then, by a classical theorem o f  Kolchin, every
finite-dimensional unipotent representation is stable. In  other words, for
finite-dimensional representations over a field, "stable" and "unipotent"
are the same. For infinite-dimensional representations, in general, this is
not true.

To introduce the main concept of this paper, take an arbitrary variety ,Y
--
;

of group representations over a field K. How fast is this , r growing? If  i s
locally finite-dimensional, a natural approach to this rather vague question
could be the following. For every n, consider the free representation o f
rank n in

F r ,
( : "
)  
=  
(  
F
n
)
.

Then the algebra i s  finite-dimensional; denoting

n )  =  d i m  K ( K 1 - - ; , / i „ )  ( 1 )

we obtain a function M O .  The growth of this function can be taken as a
reasonable characterization o f  the growth o f  our variety. Such functions
have been studied by several authors for various types of algebraic struc-
tures, starting with Higman's paper [Hi2] on varieties of groups.
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However, if  i s  not locally finite-dimensional, the function (1) is not
defined. In this case, instead of (1), we consider the function

where GKdim stands for the Gerfand-Kirillov dimension. Recall that if  A
is a finitely generated unital algebra over a field K, then

In d
v
( m
)

GKdim( A) =  t im  -  t im log (  d
v (  i n ) ) in I n  M i n

where V is any finite-dimensional generating subspace of A and
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)
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The Gel'fand-Kirillov dimension reflects the rate of growth of the algebra
and, in essence, is its "degree of polynomiality". More precisely, if  A  has
polynomial growth of degree a then GKdim(A) = a, but if GKdim(A) =
a then a  is the infimum of all real numbers p such that the growth of A
is bounded by a polynomial of degree p. For details we refer the reader to
[ K U a standard reference in the field.

Since for every n the number g (n ) (if it exists) characterizes the growth
of the free object o f  rank n  o f  the variety i t  is natural to  call the
function g
z
:  
R  
t h
e  
g r
o w
t h  
fi i
n c
t i
o n  
o
f  
t
h
e  
u
a
r
i
e
t
y  
2
'
.  
O
u
r  
i
n
i
t
i
a
l

question can now be stated more precisely: what is the rate of growth o f
g
z
(
n
)
?  
T
h
e  
m
a
i
n  
i
d
e
a  
i
s  
t
o  
t
a
k
e  
o
n
e  
m
o
r
e  
s
t
e
p  
a
n
d  
t
o  
i
n
t
r
o
d
u
c
e  
t
h
e

following concept.

DEFINITION. I f '  is a variety of group representations, then its growth
is

g ( n )  G K d i m (  )  ( 2 )

g r(, r) =  lim log„(g,( n))

(
3
)

= lim log„(GKdim( KF,11„)). ( 4 )

Notes. I .  This notion is clearly motivated by the definition o f  the
Gerfand-Kirillov dimension. Comparing (3) and (4), one can informally
call gr(,r) the "doubled Gerfand-Kirillov dimension", or even -
t h e  g r o w t hof growths".

2. The growth g rW) o f  a locally finite-dimensional variety ,',2" is not
defined (since the GKdim of a finite-dimensional algebra is zero). But in
this relatively simple case our construction is not needed, because fo r
locally finite-dimensional varieties i t  is natural to  use the function (1),
rather than (2). We exclude these varieties from further consideration.
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Once the basic concept of this paper is introduced, a host of questions
cries out fo r exploration. How does the growth behave under various
operations with varieties? Is there any relation between the growth o f a
variety and its axiomatic rank? its basis rank? Which abstract properties of
a representation p  actually determine the growth o f  var p?, and so on.
Probably, the first two questions that should be solved in this direction are:

Problem I. Characterize the varieties of group representations s u c h
that O n )  is finite fo r all n. In other words, which varieties are locally
finite-GK-dimensional?

Problem 2. Wh ich  real numbers can occur as g r(r )  for a variety o f
group representations ,r?

So far none o f  these problems has been solved in  fu ll generality. To
explain some of the specific difficulties, consider for example Problem 2. It
follows from results of Borho and Kraft [BK, Bergman [Bg], and Warfield
[WI that the range of possible values of the Gel'fand—Kirillov dimension of
an individual algebra is (0) U (1) U [2, oc]. However, to determine the range
of values of gr(21, one has to evaluate not the growth of a single algebra
but the asymptotic behavior o f a sequence o f  numbers that are defined
asymptotically themselves. First of all, it  is necessary to collect sufficient
experimental material, i.e., calculate the growth of a number of concrete
varieties.

The present paper is primarily concerned with two interesting particular
cases: varieties o f  group type and varieties o f  ring type (see definitions
below). Essentially they can be reduced to the study of varieties of groups
and associative algebras, and are considered in Sections 2 and 3, respec-
tively. In  both cases Problems 1 and 2 are solved completely, and the
results turn out to be strikingly different. Roughly speaking, varieties o f
group type are growing "very rapidly" and, unless certain rigid restrictions
are satisfied, they have infinite growth. The key role here belongs to a well
known theorem of Gromov [G]. On the other hand, varieties of ring type
are growing "very slowly" and, if the characteristic of the ground field is 0,
they all have growth

This difference is in no way surprising. It is well known that the varieties
of associative algebras over a field o f  characteristic O are much more
"tame" objects than varieties o f  groups. There is  a  lo t  o f  evidence
supporting this claim. For example, all varieties o f  algebras are finitely
based (Kemer's theorem), while most o f  the varieties of groups are not.
The results of the present paper provide additional evidence of this sort.

Concluding this introductory section, we note that the concepts intro-
duced here can be naturally extended to algebras of arbitrary finite type.
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Indeed, let•'-8 be a variety of algebras with finitely many finitary opera-
tions. Take a finitely generated algebra A  in tt and let S s , }  be
a finite generating set for A. For each natural number m, denote by d (m)
the cardinality o f  the set D
s
( m )  o f  
a l l  
e l e m e n t s  
o f  
A  
t h a
t  
c a
n  
b
e

represented by a word of length at most in  on S. For example, if  i s  a
variety of groups, then d (m)  is the number of distinct elements of A that
can be expressed as a product of at most m elements s
i
l
l
.  ( F o r  a r b i t r a r y

algebras, if  some of the basic operations are nullary or unary, d (m)  may
be infinite. But this obstacle can be overcome if  one properly defines the
length of a word—see for example [1
1
1 ).  T h e  
f u n c t i o n  d
s
( m )  
d e p e n d s  
o n

the choice of the generating set S, but

] i m l o g
h
, ( d
s
( m ) )  
g r
(  
A
)

M

is an invariant of A, which we will call the growth of A (although it would
be more precise to call it the rate of growth). In particular, if  A is a linear
algebra over a field K, then by d
s
( m )  o n e  
s h o u l d  
o f  
c o u r s e  
d e n o t
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n o t  
t h e

cardinality o f the set D
s
( m ) ,  b u t  
t h e  
d i m e n s
i o n  
o f  
i t
s  
K -
s p a
n ,  
a n
d  
t h
e n

gr(A) G K d im(A ) .  Now for every n let Fr„010 be the free algebra o f
rank n in  a n d  let

g ( n )  =  g r(Fr„(3 )).
Then the growth of the variety Ql can be defined similarly to (4):

gr0.0 l i m l o g
n
( g ( n ) ) .These definitions will be used in the next two sections in the context of

varieties of groups and associative algebras, respectively.

2. VARIETIES OF GROUP TYPE

Let b e  a variety of groups. Denote by a) t h e  class of all representa-
tions p = (V,G) such that G/Ker p E t i .  This class is a variety because if
Q.Z is defined by group words f, F ,  then w t  is  defined by the f, — i  E
KF. It is easy to see that the map t o • '
.  i s  i n j e c t i v e ,  
a n d  
s o  
t h e r e  
e x i s t s

a natural embedding o f  the set o f  varieties o f  groups into the set o f
varieties of group representations over a given K. The varieties of group
representations (.,)1Z are sometimes called varieties of group type.

In the present section Problems 1 and 2 are solved for varieties of group
type. First we show that in  this case they have purely group-theoretic
content. Le t c z )  b e  a  variety o f  group type. I f  V  is the verbal
subgroup of F corresponding to t h e n  F / V  = G is the free group of
countable rank of a n d  I  = Id ʻ r  is the kernel o f the canonic epimor-

PI

(
5
)
(6)



phism K F -4 K[F/171. Therefore the module of the relatively free repre-
sentation F r( r )  ( K F / I ,  F) is simply the group algebra KG. The same is
true for the free objects of finite rank n: if  t i
n  =  V  n  F
„  a n d  I
„  —  
I  o  
K F , „

then KF„/1„ K G „ ,  where G,, =
It is well known that GKdim(KH) = g r(H) for every group H. By (2)

and (5) we have

g , (n ) G K d im(K F„ / 1 „ )  =  GKdim(KG„) =  gr(G„) =  g„
1
, ( n ) ,and so gr(,r) — gr(Z). Thus, instead of varieties of group representations

of the fo rm w ,  we may consider varieties o f  abstract groups. The
following example shows that every natural number does occur as gr(lZ)
(and so as gr( w •tZ)).

EXAMPLE. L e t  b e  the variety of nilpotent groups of class <  c. Our
aim is to find gr(n , ). Set F r , ( )  = G„, and find first the growth of this
group. Take the lower central series

in G„. Each factor y , (G „) / y , (G „)  is a free abelian group of some rank
r(i). By a theorem of Bass [Ba],

Further, the rank r( i ) is given by the classical Witt  formula

where the sum is taken over all divisors k  o f  i  and ,L(k) is the Mikius
function

1.1(k) =  { ( _ l )

GROWTH OF VARIETIES OF GROUPS 4 9 9

G„ =  Y I (GJ D Y2(Gn)

gr(G„) =  E  ir(i).

1
r ( i )  — E p t ( k ) n t /
k

i •

Combining all these formulas, we obtain
e 1gr(G„) E  E,u(k)//i/ki- i k i i

if k is a product of s distinct primes (s 0 ) ,
otherwise.

E Ekt(k)ni/k
1
=
1  
k

••• —

— tic + terms of lower degree in

(7)
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Thus

In particular, gr(91) — I ,  where 91 is the variety of abelian groups.

Does there exist a variety of groups whose growth is a non-integer? In
view of (8), one might guess that for some variety %1 such that 9Z,
9Z,.,
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case: in fact, we will show that the growth of every variety of groups is an
integer (provided it is defined and finite).

Before stating the main result of this section, we recall that a variety of
groups is called torsion-free (or pure) if  its free groups are torsion-free. I f

is an arbitrary variety, then the variety t
0  g e n e r a t e d  
b y  a l l  
t o r s i o n - f r e e

groups from i s  torsion-free; it  is called the torsion-free part of S .
If i s  a locally finite variety, then ,g =  O for every n and therefore

the growth of '/3 cannot be defined by (6) (cf. Note 2 in  the preceding
section). For the sake of convenience of formulations, we formally define
the growth of every locally finite variety to be equal to O. Also, we will say
that the growth of a variety i s  infinite if  it is not finite. This means that
either g ( n )  = oc for some n or t l o g
n
( g ( n ) )  =  o c .

The following theorem solves Problems I  and 2 for varieties of groups
(or varieties of representations of group type).

THEOREM i L e t  'V be a variety of groups.
(A) A l l  finitely generated groups in h a v e  finite (i.e., polynomial) growth

if  and only if  •Z.Z c  , 1 1  fo r some integer c and some locally finite variety 11.
(B) I f  c a n  be presented in the form ":8 = V  11 with 'N nilpotent and
locally finite, then gr(Zz ) is equal to the nilpotency class o f  'N „ (and

therefore is an integer). Otherwise, s-8 has infinite growth.

The proof consists of several steps. First we prove (A). By a well known
theorem of Gromov [G], the growth of a group G is polynomial if and only
if G is nilpotent-by-finite. I t  follows that sa t isfie s the condition of the
theorem if  and only if  it is locally (nilpotent-by-finite). I t  remains to show
that such a variety is nilpotent-by-(locally finite).

Let b e  a locally (nilpotent-by-finite) variety. Denote by 9t the variety
generated by all torsion-free nilpotent groups of sZz. We begin by showing
that this 9Z is nilpotent. Let G be a free group of finite rank of 9Z, then:

(i) G is polycyclie-by-finite;
(ii) G  is residually (torsion-free nilpotent).

gr(9Z .) l i m l o g
r i
( d  +  
• • •  
)  
c .

11

(8)
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We claim that every group G satisfying (i) and (ii) is torsion-free nilpotent.
Indeed, by (ii) there is a system of normal subgroups N, o f  G such that
G/N, is torsion-free nilpotent and n  N =  1. Clearly, i f  G / A  and G / B
are torsion-free nilpotent, then so is G / (A  n  B). I t  follows that G has a
strictly descending chain of normal subgroups

G  D  H
i  D  
H ,  
D  
•  
•  
•

[ x f , . 6 , . . . , . < ,
1
1 —

re Y 1 (G)/1 /1 (G))=  r(Y1(H)/Y1+1(H)).

(
9
)such that each G / H,  is torsion-free nilpotent and n  H, = 1. Since the

Hirsch numbers of the G / H
i  a r e  
b o u n d e d  
b y  
t h e  
H i r s c
h  
n u m b
e r  
o
f  
G
,  
i
t

follows that the chain (9) is finite, whence the claim follows.
Thus every free group of finite rank of 9? is torsion-free nilpotent, that

is, T  is a locally nilpotent variety whose free groups have no torsion. I t
follows from Zel'manov's theorem [Z]  on the nilpotency o f  Engel L ie
algebras over a  field o f  characteristic O that such a  variety must be
nilpotent.

Now let c be the nilpotency class of T,  and let G be the free group of
rank c + 1 in  W freely generated by ,  1
.  B y  t h e  
a s s u m p t i o n
on W, this group is nilpotent-by-finite. Since a finitely generated nilpotent
group is torsion-free-by-finite, there is a  torsion-free nilpotent normal
subgroup H  o f  G  with  G / H  finite. Therefore, fo r some e  we  have

x
c
e
+
1 
e 
H 
a
n
d

(because H  e 91). This is a relation between free generators o f G, and
hence an identity of W. Since this identity determines the variety g
-
t
c e
,

we have

But then W c  9 1
c
(T  n  ' ,
3 : ) ) .  
T h e  
v a r i e
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finite, which completes the proof of (A).
To prove (B), we will need a number of auxiliary results. Some of them

are of independent interest. We denote the torsion-free rank of an abelian
group A by r(A),  and the Hirsch number of a polycyclie group G by h(G).

LEMMA L  L e t  G be a finitely generated nilpotent group, T  its torsion
subgroup, and H — G/T.  Then for any i,
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Proof S e t  y (G )  = G. and y ( H )  — H
i
,  s o  H ,  =  
G , T / T .  
B y  
t h e  
i s o -

morphism theorems,

H
i
/
H
,
,
,
(
G
,
T
/
T
)
/
(
G
,
1
T
/
T
)
;
-
_
-  
G
i
T
/
G
i
+
I
T  
G
i
/
(
G
i  
n  
G
i
,
,
T
)

( G
i
/ G
i
, )
/
( (
G ,  
n

Note further that G. n  G
i
,_  I
T  ( G -  
n  T ) G
i
, , ,  
s o

(G
i 
n  
(
G
i  
n  
(
G
i  
n  
7
)
/
(
G
1
,
1  
n  
T
)
.

Since T is periodic, this shows that 111H,, i s  isomorphic to a quotient of
G,/G,, 1 modulo a periodic subgroup, and r ( G
t
/ G , ) =  r ( H , / H , )  
f o l -

lows. I

COROLLARY 1. L e t  b e  a nilpotent variety. Then

g n )  =  g(  n)

for evely n, and so gr( )  = gr(Vd.

Proof L e t  G be the free group of rank n of V  and let T be its torsion
part. Then G / T  is the free group of rank n of V „.  By the Bass formula
(7), the growth of a finitely generated nilpotent group is equal to Eir(i),
where r(i) is the torsion-free rank of the ith quotient of the lower central
series of this group. Together with Lemma I ,  this implies that the groups
G and G / T  have the same growth, whence the claim follows. I

LEMMA 2. L e t  G be a finitely generated torsion-free nilpotent group, and
let p be a prime greater than the nilpotency class of G. Then the composition
length of the group G /GP is equal to h(G), the Hirsch number of G.

Proof O u r  statement is equivalent to  saying that i f  h (G) = n then
1G/GPI = pn. We argue by induction on h(G). I f  h (G) = I ,  then G  is
infinite cyclic and the claim is obvious. Let h(G) = n. Since G is a finitely
generated torsion-free nilpotent group, there is an infinite cyclic normal
subgroup H of G such that G / H = G is torsion-free. Then h (6 ) = n — I
and, by the induction hypothesis, 1
-
6 / 6 P I  =  
p fl _ I .

We prove that H  O GP = HP. Take any h e H o  GP, then h g f  •••
gf fo r some g, e  G. Since p  is greater than the nilpotency class of G, a
product of pth powers must be again a pth power (see for example [H] or
[Hill).  Therefore h = e  for some g E G and, since G / H  is torsion-free,
we have g E H and so h E HP.
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It follows that GPH/GP H / ( H  o GP) = H/HP, which is a group of
order p. Furthermore,

• P  ( G / H ) / ( G P H / H )  G / G P H  —= (G / G P )/ (G P H/ G " ).

Since IGPH/GPI p  and 1 / G P I  = p
n - 1
,  w e  g e t  
I G / G P 1 —  
p
n  •  
I

LEMMA 3. L e t  '1Z be a torsion-free nilpotent variety o f  class c. Then
har,,( Z.0) is a polynomial in n of degree precisely c.

Proof I t  follows from a theorem of Higman [Hil l that

Therefore there exists p  > c such that the nilpotency class of s1B = O
Z,A
1
, 
i s  
p
r
e
c
i
s
e
l
y  
c
.  
S
e
t  
F
r
n
O
t
4  
=  
G
n
.  
B
y  
L
e
m
m
a  
2
,  
h
(
G
,
,
)  
i
s  
e
q
u
a
l  
t
o  
t
h
e

composition length o f  G
n
/ G „ P  F r
n
( U ) .  
I t  
r e m a i
n s  
t o  
a p p
l y  
a n o
t h e
r

result o f  Higman [Hi21 which states that i f  .1B is a nilpotent variety o f
finite exponent and o f  class precisely c,  then as a  function o f  n  the
composition length of Fr„(910 is a polynomial of degree precisely c.

COROLLARY 2. L e t  b e  a torsion-free nilpotent variety, G„ =  F r
n
e
-
8 ) ,

and

= var(-
8  T
p
i p  
>  
c
)
.

r ( i )  r ( y , ( G
n
) / y , ,
i
( G „ ) ) .

Then r(i) is a polynomial in n of degree precisely

Proof S ince  A
n  =  G
n
/ y , ( G „ )  
a n
d  
B
n  
=  
G
n
/  
i
( G
„ )  
a
r
e  
t
h
e  
r
a
n
k  
n

free groups o f  the varieties O  fl
, 1  a n d  O  
s t
„  i t  
f o l l o w s  
f r o m

Lemma 3 that h (A
n
) a n d  h
( B „ )  
a r e  
p o l y n
o m i a l
s  
i
n  
n  
o
f  
d e
g r
e e
s  
i  
—  
1  
a
n
d

i, respectively. Since

r( i )  h ( B )  — h (A ),

r(i) is a polynomial of degree

PROPOSITION 1. L e t  b e  a nilpotent variety and let c be the nilpotency
class of ',13 0
. 
T h e n  
g r
M  
=  
c
.

Proof L e t  4
.8  b e  
a  
n i l p o
t e n t  
v a r
i e t
y .  
B
y  
C o
r o
l l
a r
y  
I  
w
e  
m
a
y  
a
s
s
u
m
e

that i s  torsion-free. As usual, let c be the nilpotency class of a n d  let
= Fr, , ().  First we find the growth of G
n
.  T a k e  t h e  
l o w e r  
c e n t r a l  
s e r i e s

=  Y i ( G n )  D  Y 2 ( G „ )  D  D  Ye + I ( G „ )  =  I ;

by choosing n  large enough we may guarantee that the class o f G  is
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precisely c. From (7) we have

g r(G
n
) 
=  
i
r
(

i-1

where r ( i )  r (y , (G , , ) /  y , (G ) ) .  By Corollary 2, r ( i )  is a polynomial o f
degree i in n, hence g r(G
o
) i s  a  
p o l y n o m i a l  
o f  
d e g r e
e  
c :  
g r ( G
„ )  
=  
a
o
n c  
+

a
l 
+ 
•  
•  
•  
w
i
t
h 
a
o 
O
.  
T
h
e
r
e
f
o
r
e

gr( )  =  lim lo g
n
(g , .
v  ( n ) )  
l i m  
l o g
n
( g r
( G )

n n

= l i m l o g
n
( a
o
n e  
+  a
t
t i c '  
+  
•
•
•
)  
=  
c
.

LEMMA 4. F o r  arbitrary varieties of groups a n d  U,

gr(s-t? '2 IV ) =  max(gr(• '.8),gr(3.)).

Proof Cle a rly gr(',14 m a x t g r ( 1 3 ) , g r ( U ) ) .  To prove the reverse,
note that F r0 8  F
n
/ ( /  n  
W ) ,  
w h e r
e  
V  
a n
d  
W  
a r
e  
t
h
e  
c o
r r
e -

sponding verbal subgroups of F.  Therefore

Fr„(',Z ' Z
1
3 )  
c  
( F
n
/ V )  
x  
(
E
1
W
)  
=  
F
r
,
(
)  
X  
F
r
(
)
.

Since gr(A X B) g r ( A )  + gr(B) for any groups A and B, it follows that
g v  v
( n )  
g
( n
)  
+  
k
l v
( n
) .  
B
u
t  
t
h
e
n

gr('t V  a ; ) =  F r n
-
l o g
n
( g  v
( n ) )

l -  imlo g „(g ,
t z
(n ) +  
g
( n ) )

- m a x ( l i m l o g
o
( g „
o
( n ) , h m l o g
n
( g
a
, ( n ) ) )

— max( gr( )  , gr(s.21)1
Note that Lemma 4 is valid even i f  one o f  the varieties is o f infinite

growth, or of growth O (that is to say, it is locally finite).

LEMMA 5. Eve ry decomposable variety o f  groups has infinite growth,
unless it is locally finite.

Proof L e t  b e  a decomposable variety, that is, U — D  for nontriv-
ial varieties X  and '& By (A), we may restrict ourselves to the case when

c  T
c
l I  
f
o
r  
s
o
m
e  
c  
a
n
d  
s
o
m
e  
l
o
c
a
l
l
y  
f
i
n
i
t
e  
v
a
r
i
e
t
y  
U
.  
I
f  
b
o
t
h  
X  
a
n
d  
?
)

are of nonzero exponent, then so is a n d ,  as a subvariety of 91 (
. 1 1 ,  w i l lbe locally finite. Thus we may assume that either exp 3E =  O or exp ?) = O.
The latter is impossible, for otherwise •8 would contain a subvariety of the
form 9 I
p
' N  
w h i
c h  
i
s  
n
o
t  
c o
n t
a i
n e
d  
i
n  
a
n
y  
9
Z
,  
H
e
n
c
e  
e
x
p  
—  
0
,  
a
n
d  
s
o

s-8 contains a subvariety of the form l p •
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To complete the proof, it is enough to show that "Zi; = % 91
1
, i s  a  v a r i e t y

of infinite growth. But this is easy, because

g ( n )  — (n  — 1)pn +  1,

so g ( n )  is an exponential function. Indeed, the free group F r , ( )  o f
rank a in  9B is an extension of a free abelian group A of rank r = (n —
1)p" +  I  b y an elementary abelian group o f  order pn (by Schreier's
formula). The growth of A  is equal to r;  the same is true fo r any finite
extension of A. Thus g ( n )  = gr(Frp(V))

The rest of the proof is essentially based on results of Groves [Gr].

LEMMA 6. L e t  b e  a nilpotent-by-(locally finite) variety, that is, 9.3 C
9Z,11 f o r some c and some locally finite variety I I .  I f  '21 I
, ,  f o r  a l lprimes p, then •13 c  , 9 1
(  f o r  
s o m e  
n a t u r a l  
n u m b e
r s  
n  
a n
d  
t .

Proof Consider first the case when LìC  213rn for some m. Repeating
literally the proof of Lemma C in [G i
] ,  w e  o b t a i n  
t h a t  
t h e n  
' 1 ;  
c  
" 1 3 , 9 1 ,  
f o r

some n and t. (The proof in [Gt
.
] u s e d  t h e  
a s s u m p t i o n  
t h a t  
' 2 ;  
i s  
c o n t a i
n e d

in a product o f finitely many varieties each of which is either soluble or
Cross, but used it only to ensure that all finite exponent subvarieties of
are locally finite. This also follows from our hypothesis.)

Since '23 is  nilpotent-by-(locally finite), fo r some m and s  we  have
c  ? VT, .  Now we can proceed by induction on s. For s l ,  the result

follows from the above. Suppose that s > I .  Then

c %( 91s
-
'T  n  
Z O

and, by the induction hypothesis, % I  n  c  3 „? t '  for some n and t.
It follows that "/3 c  % „  %t, whence

c  O M ,  n  T O ' .

Again by the induction hypothesis we have % •Ii„ n s,.8 T
k  % r  f o r  s o m e  
k
and r, so that '2; c ?1"

)
1
1  
C  
T
k
2
V
+
1
.

Now we can prove Part (3) of Theorem I. Let i3  be a variety of finite
growth. It follows from (A) that c  I l
c
i t  f o r  s o m e  
c  a n d  
a  
l o c a l l y  
fi n i t e

variety 11. Moreover, by Lemma 5, T  may not contain subvarieties of the
form 'A %
p
.  
T h e r
e f o r
e  
L e
m m
a  
6  
i m
p l
i e
s  
t
h
a
t  
"
Z
.
;  
c  
" 1
. 1
/
, '
A '  
f
o
r  
s
o
m
e  
n
a
t
u
r
a
l

numbers n and t.
Set ' V  — 93 n  'A', and note that '21 c  T
fl
a  S i n c e  V  
i s  a  
s o l u b l e

variety and % %
p 9 , v  
f o r  
a l l  
p r i m
e s  
p
,  
T h e
o r e
m  
C
( i
)  
i
n  
[
G
i
]  
g u
a r
a n
t e
e s
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that u  c  l A
n
, 9 1  
f o r  
s o m
e  
m  
a n
d  
d
.  
I
t  
f o
l l
o w
s  
t
h
a
t

c

Since we also have c ' 2 3
/
,  w h e r e  
k  
e x p  
I I ,  
L e m m
a  
A  
f r o
m  
1 G
r l

implies that there exist a nilpotent variety 'N and a locally finite variety II '
such that I I ' .

It remains to note that gr("tZ) = gr('N) n ilpo tency class of 9t (Lemma
4 and Proposition 1).

Note. I t  follows from the proof of Theorem l that there is a gap in the
growth of varieties of groups: the function g,
t
, g r o w s  e i t h e r  
p o l y n o m i a l l y  
o r

at least exponentially. In  other words, there are no varieties o f  " inter-
mediate" growth.

3. VARIETIES OF RING TYPE

Following [V11, we first establish a  connection between varieties o f
associative algebras over a field K  and varieties of group representations
over the same K.  Fo r most o f  this section, it  will be assumed that K  is
infinite, but i t  is more convenient to  start without that restriction. Let
KKKZ)) be the algebra (with 1 ) o f  formal power series over K  in  a
countable set of noncommuting variables Z  I z
i
,  z
2
, . . . ) .  T h e  
e l e m e n t s

I +  z, are invertible in  K ( (Z ) )  and, according to Magnus EM], the map
x, I  +  z, can be uniquely extended to a monomorphism of K-algebras
KF --> K(<Z>). In  the following we will identify K F with  its image in
K q Z)),  so that every u E  KF can be uniquely written as a formal power
series

U =  U
( 0 )  
+  
U
M
+  
•
•
•  
+
U
(
n
)  
+  
•
•
•

where u
( n )  
E A ,
,  
,  
z  
•
•
•  
z
,  
i
s  
a  
fi
n
i
t
e  
K
-
l
i
n
e
a
r  
c
o
m
b
i
n
a
t
i
o
n  
o
f  
m
o
n
o
-

mials of degree n in  the z,. But then the free associative algebra KKZ
(without 10 is naturally contained in  KF, so we have an embedding of
K-algebras

K (Z )  K F  K < ( Z »  •

The algebra K<<Z)> has a natural filtration

1 0 Z ) )  A  DA
2  D  • • •  
D  
n  
=  
0 ,

n = I
(10)
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where A  is the ideal o f  series without constant terms. For each subset
S c  K(KZ)) let g  denote its completion with respect to this filtration.

Now let 4  be a  variety o f  (associative) algebras over K ,  and le t
T -  T(-0 ) be the corresponding verbal ideal (or T-ideal) of I C (Z .  Set
a T — I n  KF. In other words,

aT = tu E KEY n: u
(n
,  E  T ) .  
( l i
)

One can prove that a T  is a verbal ideal of KF, so that it  determines a
variety o f  group representations which we denote b y aAf. The map

a 4  yields the desired connection between the varieties of algebras
and varieties of group representations over the field K.

This connection has a number of important properties, from which we
recall two. First, i f  K  is infinite, then the map a  is injective. Second, if
char K = 0, then I m a can be completely described: i t  consists o f  the
so-called homogeneous Magnus varieties. For details we refer the reader
to [V1] or [V2, Sect. 1.3].

From now on we assume that K is infinite.
In Section 2 we considered the injective map w t  f rom varieties of

groups to varieties of group representations. Now we also have an injective
map ,e  -* me  from varieties of associative algebras to varieties of group
representations; it  is natural to say that the varieties a.4' are of ring type.
Our aim here is to solve Problems 1 and 2 for such varieties. The answers
turn out to be somewhat trivial.

THEOREM 2. L e t  ,T a 4 r  be an arbitraiy variety of ring type.' Then:
(a) g n )  is finite for every n;
(b) i f  char K = O then gr(,r) = 1.

Proof T h e  proof consists o f two steps. First we prove that the ana-
logues of (a) and (b) are valid for varieties of algebras. Second we show
that the case o f  varieties o f  group representations o f  ring type can be
reduced to that of varieties of algebras (although the reduction is not as
straightforward as for varieties of group type and the map co).

I. Let 4 '  be a nontrivial variety o f  algebras and let T  = T(4 ').  Set
T„ =  T o K ( z
n
> ,  
w h e r e  
K ( Z
n
>  
i
s  
t
h
e  
f r
e
e  
a s s
o c i
a t i
v e  
a
l
g
e
b
r
a  
o
n

z Th e n  K ( Z
n
) / T  i s  
t h e  
f r e
e  
a l g
e b r
a  
o
f  
r a
n k  
n  
o
f  
.
4
'
.

The growth function g
4
. ( n )  a n d  
t h e  
g r o w t
h  g r
( 4 ' )  
o f  
t h
e  
v a r
i e t
y  
-
e  
a
r
e

defined as described in Section 1:

g A n )  G K d i m ( K ( Z „ ) / T ) ,  g r ( . 4 ' )  — l imlo g „(g , (n )).
ti

'As agreed in Section I ,  we assume that 2  i s  not locally fini te-dimensional .
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Since K (Z , ) / T ,  is  a finitely generated PI-algebra, and the Gel'fand—
Kirillov dimension of a finitely generated Pl-algebra is finite [Bel, DI, we
have that

g ( n )  is finite for all n.

Moreover, it was recently proved by Berele [Be2[ that if  R is a Pl-algebra
over a field of characteristic O then there exists a linear function f (n ) such
that the Gerfand—Kirillov dimension of every n-generated subalgebra of
R is at most f(n). Thus g ,(n ) is bounded by a linear function of n, and so

if char K O  then gr( „or) =  1.

(Note that g r(4 ') cannot be less than 1. Indeed, we may assume that AV
is not nilpotent; otherwise i t  is locally finite-dimensional and there is
nothing to speak about. But then Af  contains the variety of all commuta-
tive algebras, whose growth is equal to 1.)

2. Now we return to varieties of group representations. Let X =  a . ,  be
a variety of group representations of ring type. As usual, we write

T — T(A r),  T
n  =  
T  
n  
K < Z
„ > ,  
1  
=  
I d
( 2
1 ,  
I
,
,  
—  
I
n  
K
F
„
.

Consider the,cr -free representation of countable rank F r ( ' )  ( K F  /I, F).
Our next aim is to show that the algebra KF/1  satisfies some multilinear
identity of ./e. Recall that I  = T n KF, where T  is the completion of T
with respect to the filtration (10). Clearly

Furthermore, A / (A n  +  T) e ,e  for any n, and so

A /  'T n A  /(An +  T) •

Since the ground field K  is infinite, some nontrivial multilinear identity
z
i
,  
z
n
,
)  
m
u
s
t  
h
o
l
d 
i
n 
A
V
.  
S
e
t

= g(u,, v u
2
, . . . ,  u
n
„  v ,
n
)

where Eu, v] u i  • — tu; then g (u t •  u  2, V
n i
)  i s  a l s o  
a  n o n t r i v i a l

multilinear identity of .4'. In addition, each of the

is the zero polynomial. Since g is an identity of A /  i t  follows from the

(
A
n  
+  
T
)
*

1 1 = i
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latter property that it is an identity of the algebra

ICK(Z))/ f  = K • 1 ED ( A / f )

and therefore also of the subalgebra

(K F +  K F A t  n K F ) =

as required.
Thus K F/ I  is a PI-algebra. Therefore g ,(n) G K d i m(K F „ / /
n
)  i s  fi n i t e

for any n. Moreover, by the result we quoted from [Ben there is a linear
function f (n )  = kn such that the Gel'fand—Kirillov dimension o f  every
n-generated subalgebra of KF /I is at most kn. Since K b
-
n
/ 4  i s  a  s u b a l g e -

bra of KF /I generated by 2n elements,

g „(n ) G K d i m (  KI,/ I  ) 2 k n ,

whence g r(r) = 1. I

In conclusion we recall that our work was motivated by the following
question: for a given variety ,r, what is the rate of growth of the function
g,: N -›  R, where g ,(n ) is the rate of growth of the rank n free object in
,r? For this purpose, in (6) we introduced an asymptotic invariant, gr(2),
of the variety zr This invariant is convenient if  the function g ,  is growing
polynomially. If it is not the case, there are other ways to estimate the rate
of growth of g
r
•  
S o m e  
t y p e
s  
o f  
a  
s u p e
r p o l
y n o m
i a l  
g r
o
w t
h  
(
o
f  
t
h
e  
o
r
d
e
r

function of a locally finite variety of groups) were discussed by Higman in
[Hi21, and one can follow his example.

On the other hand, the growth of varieties of associative algebras (over
fields of characteristic 0) need not be classed simply as linear, but could be
differentiated according to the slope of that linear function. Explicitly, in
this context we could change to the definition

gr( Ar) 8 ' 4 4  n)nn

509

(12)

For example, it is known that if  Ar
k i s  t h e  
v a r i e t y  
g e n e r a t e d  
b y  
t h e  
a l g e b
r a

of k  x  k matrices, then G K d i m(F r
n
(A r
k
) )  =  k
2
( n  —  
1 )  +  
1 .  
I n  
t e r m s  
o f

(12), this gives that g r(A r
k
) k
2
.  
A n o t h e r  
e x a m p l
e :  
i f  
g i
c  
i s  
t h
e  
v a r
i e t
y

generated by the algebra o f  triangular k  X k matrices, then gr(5k) = k
(personal communication of Berele). I t  would be interesting to solve an
analogue of Problem 2 in this situation.

Note that so far we do not have examples of a variety (of any sort) whose
growth is a non-integer.
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