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INTRODUCTION

We are concerned here with determining general properties of k(G), the
number of conjugacy classes of a fi
n i t e  g r o u p  
G .  I n  
t h e  
fi r s t  
s e c t i o n
,  
w e  
p r o v
e

that any subgroup, G, of the symmetric group S,, satisfies k(G)-.5
d  W ereduce the proof of a proposed improvement of this to k ( G ) 2
d - 1  t o  t h ecase that G is "almost simple", using the °Nan-Scott theorem (see [1 ]  or
[12], fo r example). We also give examples to show that there is lower
bound of the form c
d  ( c  >  
1 ,  a  
c o n s t a
n t )  
f o r  
t h
e  
m a x
i m u
m  
n u
m b
e r  
o
f  
c
o
n
-

jugacy classes of a transitive subgroup of the symmetric group Sd (a lower
bound of this nature being essentially obvious if  we allow intransitive sub-
groups).

In the second section, we improve the above bound in the case that G
is a solvable subgroup of the- symmetric group S
e
,  t o  k ( G ) , ( , / j )
d -  f o r

d 2 .
In the third section, we turn our attention to linear groups. We prove

that if  G is a finite solvable subgroup of GL(n, C), then k(H),. 3"  f o r
every subgroup H  o f GIF(G). This has an application to  the so-called
"k(G1/)-problem". We prove:
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THEOREM. L e t  G be a finite solvable group with 1F(G)1= p' J r  some
prime p, some positive integer r. Then k(G)-., 3' 'p ' .  (Note that we do not
assume that G I P
-
(
G ) a n d  
F ( G )  
h a v
e  
c o p r
i r n e  
o r d
e r s  
h e
r e
) .

This has an application to Brauer's k(B) problem in the case of solvable
groups.

COROLLARY. L e t  G be a finite solvable group, p  be a prime, B  be a
p-block of G of positive defect d. Then k(B) • • • • d  1 pd In particular, i f  p > 7,
t h e n  k ( B )  p <  (311 1 ) ' 2  •

In the final section, we consider analogues of the results of Section 3 for
insoluble groups. We prove, using the classification o f  the finite simple
groups:

THEOREM. There  is a constant c such that whenever G is a finite subgroup
of GL(n, C) and H is a subgroup of GIF(G), then k (H), , c "
-- I
.

This has as consequences:

THEOREM. There  is a constant c (the same as in the theorem above)
such that whenever p  is a  prime and G  is a  p-solvable group with
IF*(G)I= p '> 1 (o r equivalently, 0 (G )-=  0 , 1  and 10 p
( G ) 1 =  p '  >  I ) ,  
w e
have k(G). .c'  - 1
p ' .

THEOREM. There  is a constant c (the same as above, and independent of
the prime p and the defect d) such that whenever p is a prime, G is a p-solvable
group, and B is a p-block of G of positive defect d, then k (B ) , . c
d -  p
d  •Sonic Assumed Results

We collect here some results which will be used frequently throughout
the paper, and will sometimes be quoted without explicit reference.

Al (see P. X. Gallagher, [7 ]).  L e t  G be a finite group, H be a sub-
group of G. Then [G : 1 1 ]
-1  k ( H ) , k
( G ) . . ,
[ G  :  
H ]  
k
( H ) .

A2 (P. X. Gallagher, [7 ] ).  L e t  G be a finite group, N be a normal
subgroup of G, x be an irreducible character of N, 1(x) be its inertial sub-
group. Then the number o f  irreducible characters o f  G which lie  over
(G-conjugates of ) x is at most k(I(x)IN).

(A3) (See P. X. Gallagher [7 ]  or H. Nagao [14]). L e t  G be a finite
group, N be a normal subgroup of G. Then k(G) k ( N )  k(G I N).

(A4) (Dixon, Winter, see Isaacs [10]). L e t  G be a p-solvable linear
group of degree n (over a field of characteristic p
)
.  T h e n  [ G  :  p
( G ) ] <  
•  •  
•  4
,
1 1 3

and if p is odd, then [G : p (G )]  p p " (  P
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A5. L e t  G be a p-constrained group with 0 (G )-=  {1 , }.  Then

1
, 
i
f  
p
3 
d
o
e
s 
n
o
t  
d
i
v
i
d
e 
I
G
I
•

k(G) I p
2  
i f  
p
3  
d i v
i d e
s

(This follows from Brauer-Feit [ 4 ] ,  since G has only one p-block by a
minor variant of a theorem of P. Fong).

A6. L e t  G be a solvable completely reducible subgroup of GL(it, q)
for some prime q. Let r?-- n + I be a prime. Then G is r-closed, except
possibly when r is a Fermat prime and O
r
,
2
( G ) >  r
( G ) .

In any case, if  r ?-• n + 2, then G is r-closed (possibly q= r here).
(This is well-known, and follows from the Hall-Higman theorem, after

"lifting" G to a subgroup of GL(n, C), then reducing (mod r), extending
scalars to F, the algebraic closure of GF(r), and considering G10,.(G) as a
completely reducible subgroup o f  GL(n, F) o n  the direct sum o f  the
composition factors of the module obtained).

A7. L e t  G be a finite subgroup of GL(2, C). Then either G has an
Abelian normal subgroup of index at most 2, or Z(G) has even order and
GIZ(G) is isomorphic to one of

A 4 ,  S 4 ,

(see part A of [6], for example).

or A
s

1. ON PERMUTATION GROUPS

443

In this section, we give a general bound for the number of conjugacy
classes of a permutation group of degree d. The constant we obtain in the
first theorem is obtained by using a theorem of Praeger and Saxl ([15]).
Theorems of L. Babai ([ 2 ]  and [ 3 ] )  have the consequence that for suf-
ficiently large d, the order of a primitive permutation group of degree d (not
containing A
d
)  i s  
a t  
m o s
t  2
d -  
I
t  
w i
l l  
b e
c o
m
e  
a p
p a
r e
n t  
t
o  
t
h
e  
r
e
a
d
e
r

from the proof below that i f  it  could be established that a ll primitive
permutation groups of degree d have at most 2
a - 1  c o n j u g a c y  
c l a s s e s ,  
t h e n

the same inequality would follow for all permutation groups.
The results of Babai and Praeger-Saxl are independent of the classifica-

tion of finite simple groups, so that Theorem 1.2 below is also independent
of the classification.

It is known that there is a constant A such n(d), the number of partitions
of d (also the number of conjugacy classes of the symmetric group S
e
) ,  i s
always smaller than exp(A .1c
-
i).  H o w e v e r ,  
w e  
p r e s e n t  
a n  
e l e m e n
t a r y  
p r o
o f
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of a weaker upper bound fo r the number o f  conjugacy classes o f  the
symmetric group S .

LEMMA L  L F o r  (-wry integer d?, 2, k(S,
1
)- < , 2
d  a n d  k ( A
d
) - - . 2
d

Proof: Th is  is true by inspection when d <  5. We prove by induction
that for d?., 5, k (S
a
) < 2
d  2
,  
a n d  
t h e
n  
b o t
h  
c l a
i m s  
o
f  
t
h
e  
l e
m m
a  
w
i
l
l  
f o
l l
o
w

by virtue o f  A l.  Again, the stated inequality is true by inspection for
5•.<., d <10, so we assume that d I O ,  and the result has been established for
smaller values of d (greater than 4).

Any permutation of {1, 2, d }  except for a d-cycle has its shortest cycle
of length dI2 or less when expressed as a product of disjoint cycles. Every
permutation whose shortest cycle is an a-cycle is conjugate within Sd to a
permutation whose shortest cycle i s  (1 2  • • • a). L e t  G „  denote the
elementwise stabilizer o f  '
t  1 ,  2 ,  a }  
i n  S
i
, ,  
w h i c
h  
i s  
i s o m o
r p h i c  
t
o  
S
d

when a  < d. Then, b y  induction, when d  — a ?- 5, (so  certainly when
a d12), there are fewer than 2
(d  " )  2  G „ -
c o n j u g a c y  
c l a s s e
s  
o f  
p e r m u
t a -

tions whose shortest cycle is (12 • • S
a ).Letting q denote the integer part o f d/2, it  follows that there at most
I + ( . 2  f "
i [ 1  
+  
2  
+  
•  
•  
•  
+  
2
q  
]  
c o
n j
u g
a c
y  
c
l
a
s
s
e
s  
o
f  
S
d
,  
a
n
d  
t
h
i
s  
i
s

certainly less than 2'
1 2
.
We can now prove:

THEOREM 1.2. L e t  G he any subgroup of the symmetric group S
d
.  T h e n  G

has at most 5" conjugacy classes.

Proof Th e  result is vacuous when d = 1, so we assume that d> 1, and
that the result has been established for smaller values of d.

We may assume that G is transitive, fo r i f  0
1  i s  o n e  o r b i t  
o f  G  
o n

11, 2, d l  o f  length d
i  <  d ,  
l e t  
Q 2  
=  
1 ,  
2 ,  
d l —
Q , ,  
d , =
d —  
d
, ,

K , = C(Q , ) for each
Then k(G)...<., k(K 1
) k ( G I K , ) ,  
a n d  
K ,  
i s  
f a i t h
f u l l y  
r e p r
e s e
n t e d  
a
s  
a  
g
r
o
u
p

of permutations o f  Q2, GIK, i s  faithfully represented as a  group o f
permutations of 0,, so that by hypothesis k(G)-_<.,5dt-15,12- I = 5d— 2
. We may assume that G is primitive, for let H= G , ,  and suppose that
H max L < G. Let a =  [ L :  H], h  = [G : L], and let c o r e
G
( L ) .  T h e n
GIC is isomorphic to  a  subgroup o f  the symmetric group S
h
,  s o  t h a t
k(G/C),<„ 5
h l
•  
A l s o
,  
C  
h a
s  
h  
o r
b i
t s  
o
n  
1
1
,  
2
,  
d
l
,  
e
a
c
h  
o
f  
l
e
n
g
t
h  
a
,  
a
n
d

the argument used above shows that k(C)-.<_(5" I
)
h
.  H e n c e  k ( G )
,
, ,

k(C) k(G IC) 5
d By Lemma 1.1, we may assume that G is neither Sd nor A

d
.  B u t  t h e n  b y

the aforementioned theorem of Praeger and Saxl, we even have I
G INow 5" 1
>  4
d  
f o r  
d >  
7
,  
w h
i l
e  
f
o
r  
3  
L _
c t
s •
' ,
7 ,  
G  
<  
d
!
1
2  
<  
H
e
n
c
e  
w
e

certainly have k(G),.<, 5
d  
i
n  
t
h
i
s  
c
a
s
e
,  
a
n
d  
t
h
e  
p
r
o
o
f  
i
s  
c
o
m
p
l
e
t
e
.
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Remarks. There  is no constant c such that for every d, every permuta-
tion group of degree d has order at most c
d
,  a s  t h e  
s y m m e t r i c  
g r o u p  
S d

(with d  sufficiently large compared to any specified el illustrates. Further-
more, as soon as we stray away from primitive permutation groups, wreath
product constructions allow examples other than the full symmetric and
alternating groups violating such a bound.

When d is divisible by 4, the symmetric group Sd has a subgroup with
5
d
4  
c
o
n
j
u
g
a
c
y  
c
l
a
s
s
e
s  
(
a  
d
i
r
e
c
t  
p
r
o
d
u
c
t  
o
f  
d
/
4  
c
o
p
i
e
s  
o
f  
S
4
)
,  
s
o  
t
h
a
t  
t
h
e
r
e

is a lower bound of the form e
d  f o r  a n y  
g e n e r a l  
e s t i m a t
e  
o f  
t h e  
m a x i
m u m

number of conjugacy classes of a permutation group of degree d.
Even i f  we restrict our attention to transitive subgroups of Sd, such a

lower bound still exists:

LEMMA 1.3. L e t  d = 3 " 1 ,  where n  is a  non-negative integer. Then a
Sr/ow 3-subgroup o f  the symmetric group Sd has more than y
d  c o n j u g a c yclasses, where ),= 31/6.

Proof B y  Al, we have k(G wr C p) I c(G)' Ip  for any finite group G. An
easy induction argument shows t h a t  k ( C
p  w r  C
p  w r  C
I
,  •  •  
•  w r

I) • S
P "  
w
h
e
r
e  
l
o
g
p
(
M
=  
(
p  
-
2
)
1
(
p  
-  
1
)
,  
a
n
d  
t
h
e
r
e  
a
r
e  
n  
+  
I

occurrences o f  C',„ in  the iterated wreath product. The lemma (and
analogous results for other primes) follow easily.

Remark. W e  illustrate that, with the aid of the O'Nan—Scott theorem,
it is possible to reduce the proof of the claim that every permutation group
G o f  degree d  has a t  most 2 "  co n ju g a cy classes t o  the case that
T A u t ( T )  for some non-Abelian simple group T.

The reduction to the case that G is primitive follows the lines used in
Theorem 1.2. By the O'Nan—Scott theorem there are three cases (other
than the "almost simple" one) to consider:

(a) G  of affine type. Here, d= p" for some prime p, G has a minimal
normal subgroup M of order p" with CG(M)=-
- M .In this case, a Sylow p-subgroup of G has order dividing c l

(n +  1 ) / 2  a n d ,  b yA5, d " +
1
.  
W e  
o n l
y  
n e
e d  
t
o  
c o
n s
i d
e r  
c
a
s
e
s  
i
n  
w
h
i
c
h  
d
n
+  
>
2
a  
I  
,  
o
r

(n + I) log,(d)> (d - I).
If p is odd, this forces p = 3, n •.<., 2, or p = 5, n = I. Both cases where n --= I

yield k ( G ) d  < 2
a  I f  
p =  
3  
a n d  
n =  
2 ,  
t h
e n  
k
( G ) -
< ,
2 7 k
( S )  
w
h
e
r
e  
S  
i
s  
a

Sylow 2-subgroup o f  G. But S  is isomorphic to  a  subgroup o f  a semi-
dihedral group of order 16, so k(S)-.<, 8, k(G) 2 1 6  <2
d  1
=  2 5 6 .

If p = 2, this forces n
2  +  
n > 2 n  —
1 ,  
n  
<  
5 .  
B y  
i n s p e
c t i o n
,  
w
e  
o n
l y  
n
e
e
d  
t
o

4811602.11
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consider n = 3 and n 4 .  I t  is easy to eliminate the case n = 3, since every
subgroup of GL(3, 2) has 7 or fewer conjugacy classes, so that k(G) 5 6  <
2
-
1
=  
2
d
-  
'
.
T
h
e  
c
a
s
e  
n  
=  
4  
i
s  
a
l
m
o
s
t  
a
s  
e
a
s
y
:  
L
e
t  
X
=  
G
I
M
,  
r
e
g
a
r
d
e
d  
a
s  
a  
s
u
b
-

group o f GL(4, 2). Let P  be a maximal parabolic o f GL(4, 2), U  be its
unipotent radical. Then [ X :  X n P] 1 5 ,  and k (X  n P) -<.,k(X n Pn U)
k(X n PI Xn Pn U) 5 6 ,  since U has order 8, and (X  n P)I(X n P 1.1) is
isomorphic to a subgroup of GL(3, 2). Thus k (X )
,
. . ,  1 5  x  5 6  <  2
1
' .  H e n c e

k (G )‹ 2
1 4
,  
a n d  
w
e  
w i
s h
e d  
t
o  
p
r
o
v
e  
t
h
a
t  
k
(
G
)  
2
1
5
.

(b) G  of product type. Here, a
h  f o r  c e r t a i n  
i n t e g e r s  
a  
a n d  
b  
( b o t
h

greater than 1), G is a subgroup of H wr S, (in product action), where H
is a primitive subgroup of S.  By induction, we may assume that every sub-
group of H has at most 2 ' con jugacy classes, so that every subgroup of
the base group B  has at most 2"'' co n ju g a cy classes. By induction,
as G I G n B  is isomorphic to  a  subgroup o f  Sh, we may assume that
k(GIG a n d  k(G n B) 2 "
h  h
,  s o  k ( G ) 2 "
b -  1
,  a n d  
c e r t a i n l
y

k(G)-<,2
a- (c) G  o f  diagonal type. Here, M,  the sock o f  G, is isomorphic
to a  direct product o f  r  1  copies o f  a non-Abelian simple group T,
and d =  I Tirl  Furthermore, G I M is  isomorphic t o  a  subgroup o f
[Out T]  x S
r
. B y  
i n d u c
t i o n ,  
w
e  
m
a
y  
a s
s u
m e  
t
h
a
t

k(G)-<,k(T)r I Out TI

To dispose of this case, it suffices to prove that

r[ log ,(k(T))+ 11+ log,(lOut(T)I )..„ I TI'

But T can be generated by fewer than log,(I TI) elements, and no non-iden-
tity element o f Aut(T) can fix a ll of those generators, so it  follows that
lAu t(T)l< I T1
l0
g
2 (1 7 . 1 )
•  
A l s o ,  
i t  
i s  
c e r t
a i n l
y  
t r
u e  
t h
a t  
k
(
T
)  
<  
I

Hence it 's enough t o  prove that r  + (r — I) x + X
2 " ,  w h e r elog,(ITI ). Since T  has order at least 60, we certainly have >  5.
It follows easily that the desired inequality is valid for r 2 .  When r — 2,

it is easy to check that 2 + y y
2  • , • ,  , 2  f o r  
a n y  
r e a l  
n u m b e r  
y  
5 .

2. ON SOLVABLE PERMUTATION GROUPS

In this section, we show that Theorem 1.2 can be considerably sharpened
for solvable subgroups of the symmetric group Sd. This is not surprising
since J. D. Dixon (see part A of [6 ] ,  for example) has shown that every
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solvable subgroup o f  S,  has order at most 2 4
( d -  I
" ,  w h i c h  i s  
a l r e a d y

smaller than 5 -
In Theorem 2.2 below, we will prove that if  d> 2, then every solvable

subgroup of Sd has at most ( A d -  I conjugacy classes. Before we do this,
we note a slightly more careful version of A2, which will be useful to us.

Let N  be a normal subgroup of the finite group G, and suppose that
every subgroup o f  GIN has at most i  conjugacy classes. Let x  be an
irreducible character of N. Then the number of irreducible characters of G
which lie over (a G-conjugate of) x is at most k(I(x)IN), where /(x) is the
inertial subgroup of x, so is at most t. Since the number of G-orbits on the
irreducible characters of N is the number of G-conjugacy classes of N, we
see that

A2'. #  (G-conjugacy classes of N).

In the context we are presently considering this is useful, since if  GIN is
a subgroup of S
a
,  t h e n  
o f  
c o u r
s e  
s o  
a r
e  
a l
l  
i t
s  
s u b
g r o
u p s
.

Before we can prove Theorem 2.2, we need to  carefully analyse the
primitive case.

LEMMA 2.1. L e t  Y be a solvable primitive permutation group of degree a,
and let X  be a subnormal subgroup of Y.

Then:
(i) I f  a> 4, k ( X )
\
1 2 " .
(ii) I f  a is prime, or a= 8, k(X),., a.

(iii) I f  a= 9, k(X ).1 1 .
(iv) I f  a> 2, k ( X ) ,
\
/ 3 "

Proof P a r t  (iv) follows immediately from part (i) if  a> 4, and is true
by inspection for a =  3 or 4.

Let V  be a primitive solvable permutation group of degree a= p", where
p is prime, and a> 4.

Then /
1
=  
T V
,  
w h
e r
e  
V  
i
s  
m
i
n
i
m
a
l  
n
o
r
m
a
l  
i
n  
Y
,  
o
f  
o
r
d
e
r  
a
,  
V  
=  
F
(
Y
)
,  
T

acts irreducibly on V, and T r  V  is trivial. Let X be a subnormal subgroup
of V. U=  X n V. Then U=  F(X). We may assume that a is not prime (and
even that 1 Ul is not prime), since k(X)._.1U1 if  I Ul is prime (by inspection
of the holomorph of C
p
) ,  a n d  
s i n c e  .
\
/ 2 " >  
a  
w h e
n  
a
>  
4
.  
H e
n c
e  
w
e  
a s
s u
m e

that n> 1, and that U has order greater than p.
In that case, X/U is a faithful p-solvable group of linear transformations

of U, and 0,,(X/U) is trivial, so that [ X  : t ]
t
, - . 1 / _ / 1
4
/
3  b y  A 4 .

Let W be a Hall p'-subgroup of X. Then k(WU)...11,11
2
14, b y  A 5 ,  a n d

k(X) [ X  : WU]  k(WU) by Al,  so that:
A8: k ( X  ) 1 (1 1 1 "
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Certainly, then, k(X),<, to13.
We wish to  prove that k ( X ) (
\
/ 2 ) " .  T h i s  
w i l l  
b e  
t r u e  
a s  
l o n g  
a s

(a+ 4)/2 1 0  l o g
2
( a ) / 3 .  
W h e n  
a  
? ;  
3 2 ,  
t h i
s  
i n e q
u a l i
t y  
i
s  
s a t
i s fi
e d .  
S
i n
c
e  
a  
i
s

a prime power, but is not prime, and since a > 4, we only need to consider
a e 18, 9, 16, 25, 271.

Case a = 8. I n  this case, there are only two possibilities for T. Either T
is cyclic of order 7, or T is a Frobenius group of order 21. Since X is sub-
normal in Y, we have X  = VT, or X— VO,(T), or else X  V .  In any case,
k(X)-.<, 8 by direct inspection.

Case a =  25. I n  this case, T  is isomorphic to a subgroup of GL(2, 5),
and T  is a  5'-group b y A4. Then k(X),,It_11,<., 25, b y  A5, so  that
k ( X )
,
< , , ,
/ 2
2 3
.

Case a =  27. N o w  ,
\
/ 2
2 7
=  
8 1 9 2  ,
\
/ 2 >  
1 1 ,  
3 0 0
.  
I f  
I  
U
l  
9
,  
t h
e n  
b
y  
A
8
,

k(X).,<..9
10 3
1 4  
< 9
3
=  
7 2
9 .  
H
e n
c e  
w
e  
m
a
y  
s
u
p
p
o
s
e  
t
h
a
t  
V
-
.
<
,  
X
.  
I
f  
1
3  
d
i
v
i
d
e
s

[X :  V], then X /V  is 13-closed by A6. In  that case IF(XIV)I 2 6 ,  on
consideration of the centralizers of elements of order 13 in GL(3, 3), and
setting M =  ( X / V ) / 0
2
( X / V )  w e  
s e e  
t h a t  
k ( M )
1 3 ,  
s
o  k
( X I V )
, < . . ,
2 6 ,

k(X),.<, 26. 27 < 729.
If 13 does not divide [ X  : V], then [ X :  V ]
3
,  3 2 ,  a n d  
[ X :  V ]
3
, - < ,  9  
b y

A4, so that I XI 2 7  -32 .9 <9000, and hence certainly k(X)<11, 300.

Case a =  9. I f  3 does not divide [ X :  Ul,  then k ( X ) 9  by AS. I f  3
divides [ X :  U], then  a s  X  i s  subnormal i n  Y ,  w e  mu st  have

V SL(2 ,  3) o r X  V  G  L(2, 3). In  these cases, we may check that
k(X)=  10, 11 respectively.

Case a= 16. I n  this case, (
\
/ 2 ) " =  2 5 6 .  
I f  I  
U l - ,
<
„  8
,  
t h e n  
k ( X ) -
< . . 8
1
"

(=256) by A8. Hence we may assume that V <  X.
In that case, consideration o f  the structure o f  GL(4, 2) shows that

I f (X 1 1
7
)1 e  
1 3 ,  
5 ,  
9
,  
1
5
1 .  
(
I
f  
7  
d
i
v
i
d
e
s  
I  
T
I
,  
t
h
e
n  
T  
i
s  
7
-
c
l
o
s
e
d  
b
y  
A
6
,  
b
u
t  
t
h
e
n

0
7
(
T
)  
h
a
s  
a  
n
o
n
-
t
r
i
v
i
a
l  
f
i
x
e
d
-
p
o
i
n
t  
o
n  
V
,  
c
o
n
t
r
a
r
y  
t
o  
t
h
e  
f
a
c
t  
t
h
a
t  
T  
a
c
t
s

faithfully and irreducibly on V).
If F(XIV) has order 3, then [ X  :
e V ]  6 ,  I X !  
9 6 .  
I f  F
( X / V )  
h a s  
o r d e
r

5, then k(XIV),<..5, so k (X )8 0 .  I f  F(XIV) has order 9, then X /V  is
3-closed and hence k(XIV),<, 9 by A5, so k(X),<, 144.

If F(XIV) has order 15, set L =  XIV, S L I 0
3
( L ) .  T h e n  C
5
( 0
5
( S ) ) ,

0
5
(
S
)
,  
s
o  
t
h
a
t  
k
(
S
)  
-
•
<
,  
5
,  
k
(
L
)
-
.
.
.  
1
5
,  
a
n
d  
k
(
X
)
,
<
,  
2
4
0
.

In all cases, then, k(X),<.. 256, as required to complete the proof of the
Lemma.

Now we can prove:
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THEOREM 2.2. L e t  d be a positive integer, G be a solvable subgroup of the
symmetric group S .  Suppose that G has a orbits of length 2 on {1, 2, ( l
} ,h orbits not of length 2. Then k(G),<, 2" • (,./3)d
- . 2 a  b .  I n  
p a r t i c u l a r ,  
i f  d >  
2 ,

then k(G),< A
N
/ 3 )
d

Proof Choose a  counterexample wit h  d  minimal. A s  i n  earlier
arguments, G is transitive. By inspection, d > 5. Let H = G t
. W e  fi r s t  c l a i mthat if  H < L<G, then either [G : L
] =  2  o r  
[ L  :  
H ] =  
2 .

For let [ G  : L ]  = f, [ L : H ] =  e, and suppose that both e and f  are
greater than 2. Let C=core,(L). Then H < CH L .  Let h = [CH:  H]  ,
, 5 e .Then C has eflh orbits on 11, 2, e a c h  of length h. I f  h> 2, then by
hypothesis, k ( C ) [ (
N
/ 3 )
1
?  , . . . (
N
/ 3 )
d  
A l s
o ,  
G I
C  
i
s  
i s o
m o r
p h i
c  
t
o  
a

subgroup o f  the symmetric group S
t
,  s o  t h a t  
b y  
h y p o t h e s i s  
k
( G I C ) ,

(
N
/
3
)
1 
H
e
n
c
e 
k
(
G
)
,
(
N
/
3
)
d 
c
o
n
t
r
a
r
y 
t
o 
t
h
e 
c
h
o
i
c
e 
o
f  
G 
a
n
d 
d
.  
T
h
u
s

h= 2, so that L >  CH. Hence d—[G : L ] [ L :C1 1 ] [CH : H]  4 f
But now C is an elementary Abelian 2
-
g r o u p ,  s o  
t h a t  k ( C )
2 " ,  
w h i l e

Ic(G C) (
N
/  3 )
1  
1  
( N
/  
3  
)
( i  
d
)  
H
e
n
c
e  
k
( G
) -
(
N
/
2 )
d  
•  
(
N
/
3
)
(
1
/
4  
d
)  
•  
B
u
t

we are assuming that k (G )>  (
N
/ 3 ) " ,  a n d  
t h i s  
i s  
e a s i l y  
s e e n  
t o  
b e  
a

( N 3 )
1  
4  
<  
N
/ 3
.

contradiction, as 2 "  • /
Now we have four possibilities to consider:

(i) H m a x  G.

(ii) H  max K max G with [G : K ] =  2.

(iii) H  max K max G with [ K  : H]  = 2.

(iv) H  max K max L max G, with [ K  : H ] = [ G  : 2 .

Case (i) is disposed of by Lemma 2.1.

Case (ii). L e t  [ K : H ] = a  (a  prime power). Le t C =  c o re
t
, (H ) .  W e

claim that a  < 5. Fo r suppose otherwise. Then fo r any x  in  G  — K,
C n C'  1 1 , 1 ,  as co re , (H) is trivia l. No w K I C and K I C a re  both
isomorphic to  primitive permutation groups o f  degree a, and CC'  is
normal i n  K ,  s o  b y  Lemma 2.1, w e  have  k (K I C) -  (
N
/ 2 ) a  a n d
k(CC' IC')•,•, (
N
/ 2 ) " .  
H e n c
e  k
( K ) . .
. < ,  
k
( K I
C )  
k
( C
I C  
n  
C
'
)  
2
.

Now k (G )2 k (K )(2 a +  B u t  we are assuming that k (G )›  (N/3)2a — I
so we have 2 N
/ 3  >  
( 3 / 2 ) a ,  
w h i c
h  
i s  
f a l
s e  
f
o
r  
a  
4
.

Since we know that d =2a> 5, we have a= 3 or a = 4. But if  a= 3, then
2 IK/C1
2 
7 2 ,  
w h
i l
e  
w
e  
a
r
e  
a
s
s
u
m
i
n
g  
t
h
a
t  
G  
h
a
s  
m
o
r
e  
t
h
a
n  
N
/
P

conjugacy classes, so at least 16 conjugacy classes. Now S, wr C2 has 9
conjugacy classes, so that IGI 3 6 .

Since G has at least 16 conjugacy classes, this is easily seen to force G
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to have order precisely 36 (for if  G has order 18 or 24, then G is forced to
be Abelian by elementary considerations). Then K has order 18, and C has
order 3. Thus CC' is a normal Sylow 3-subgroup of G. Since it is easy to
see that G can have no Abelian normal subgroup of order greater than 9,
F(G)= CC', and k(G) 9  by A5.

If a=4 ,  then in  the argument above, k ( K I C ) 5  by inspection, and
k(CIC 5  a lso , s o  t h a t  k(G),.•<, 50. W e  a re  assuming t h a t
k(G)„>-(, /3 )
2
"  I
,  s o  
k ( G )
2 -  
4 7
.  
T h
i s  
f o
r c
e s  
k
( K
I C
)
= -  
k
( C
C '
I C
' )
=  
5
,  
s
o

since KIC and K IC'  are isomorphic to primitive permutation groups of
degree 4, we see that KIC C  S 4 ,  and that G> K. Hence G is isomorphic
to the full wreath product S4 wr C2, which only has 20 conjugacy classes,
contrary to assumption.

Case (iii). L e t  [ G  : K
] - -  a ,  
a g a i n  
a  
p r i m
e  
p o w e
r ,  
C
=  
c o r e
,
( K ) .  
W
e

claim first that a 9 .  Fo r suppose that (125. Then C is an elementary
Abelian 2-group of order at most 2", and GIC is isomorphic to a primitive
permutation group of degree a, so by Lemma 2.1, k(G) / 2 )
3
" .

We are assuming that k (G )› (.,/ 3)
2
"  ' ,  s o  t h a t  
(  \ / 2 ) 3 "  
> ( \
/
3 )
2 a  
-  
a n d

hence (9/8)" <3. Since a is a prime power, this forces a 9 ,  as claimed.
If a  = 9, then we  have the sharper estimate k (G I C)1 1 ,  so  that

k(G).,I l  -2
9
,  
w h e r
e a s  
w e  
a r
e  
a s
s u
m i
n g  
t
h
a
t  
k
(
G
)
›  
(
,
/
3
)
2
,  
=  
3
9
/
s s
/
3 ,

which is easily seen to be a contradiction.
If a  =7 o r  8, then k (G I C)-a ,  so k ( G ) a  •2", and in  both cases,

(,./3)2a -'  > a2", contrary to assumption.
If a = 5, then as GIC is isomorphic to a primitive solvable permutation

group of degree 5, every subgroup of GIC has 5 or fewer conjugacy classes,
so by A2' we have the estimate k(G).‹., 5 #  (G-eonjugacy classes of C). Now
C has order 32 o r less, and G contains an element o f  order 5 which is
a product of two 5-cycles, so has a centralizer of order at most 10. Hence
there are at most eight G-conjugacy classes of C, and k(G)
,
<. ,  4 0 .  B u t  w e  
a r e

assuming that k (G )› (, . /3)
9
, a  
c o n t r a d i c t i o
n .

If a 4 ,  then k (G )›( / 3 )
7
,  s o  k ( G )  
4 7 .  
N o w  
G I C  
i s  
i s o m o
r p h i c  
t
o  
a

primitive permutation group of degree 4, so GIC is isomorphic to S, or A,.
We must have ICI -- 16, otherwise k(G)-- 40. Now G contains an element
x of order 3 which is a product of two 3-cycles, so that C
c
( x )  h a s  o r d e r
(at most) 4. Hence there are at most eight G-conjugacy classes of C. But,
using A2', we have the sharper estimate k(G)<., 5 #  (G-conjugacy classes of
C), since every subgroup o f GIC has at most 5 conjugacy classes. This
yields k(G)
,
.<. ._  
4 0 ,  
a  
c o n t
r a d i
c t i o
n .

If a= 3, then k(G)>- , /  3, so k(G) 1 6 .  Now G is isomorphic to a sub-
group (of order divisible by 3) o f the wreath product C2 wr S3, so has
order dividing 48. I f  G has order 48, then GL
,
' C 2  w r  S 3  
C 2  X  
S 4 ,  s o  
G

has 10 conjugacy classes, a  contradiction. I f  G has order 24, then G is
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easily seen to be Abelian, since G has 16 o r more conjugacy classes, a
contradiction, as G is a transitive permutation group of degree 6.

This concludes the elimination of case (iii).
Case (iv). L e t  [ L  : K ]  a  (a prime power). We claim that a < 5. For

suppose otherwise. Let C— core, (H), D co re ,  (K). For any x in G -  L,
C n C =  11,1. Then LID is isomorphic to a primitive permutation group
of degree a, and DIC is an elementary Abelian 2-group of order at most 2a.
By Lemma 2.1, k ( L I D ) (
\
/ 2 ) " ,  s o  
t h a t  k
( L / C ) - .  
( , / 2 )
3
" .  
N o
w  
s e
t

M =  CC'. Then k (M (
N
/ 2 )
a  b y  
L e m m
a  
2 . 1
,  
s o  
k
( M I
M  
n

( .
\
/
2
)
"
.  
H
e
n
c
e  
k
(
M
I
C
1
-
<
,
.
k
(
M
I
M  
n  
D
'
)  
k
(
M  
r  
D
7
C
"
)
<
.
.
.
(
\
/
2
)
3
"
,  
s
o  
t
h
a
t

k(C)-.. (
N
/ 2 )
3
" ,  k
( L
)  
2
3
a ,  
a
n
d  
k
(
G
)
.
.

We are assuming that k(G)>  (
N
/ 3 )
4
a  s o  
t h a t  
9 "  
<  
( 2  ,
/ 3 )  
•  
8 .  
T h i
s

forces a 9  once more, as a is a prime power.
If a= 9, we have k ( L I D )
,
1 1  a n d  k
( M I M  
n  
D ) ,
1 1 ,  
s o  
w e  
o b t
a i n  
t h
e

sharper estimate k ( L ) , 1 1
2
2 " ,  k ( G ) , . < ,  
1 1
2
2
1 9 .  
B u t  
w e  
a r e  
a s s u
m i n g  
t h
a t

k (G )›  (
\
/ 3 )
4
"
-  
T h
i s  
i
s  
a  
c o
n t
r a
d i
c t i
o n
,  
b
e
c
a
u
s
e  
1
1
4  
•  
2
3
'  
<  
2
5
2  
<  
3
3
5
.

If a =  8, we have k ( L I D ) 8  and k ( M / M D ) 8 ,  so we obtain the
sharper estimate k (L )  8
2
2
1 6
,  k ( G )  2
2 3
.  
B u t  
w e  
a r
e  
a s s u
m i n g  
t h
a t

k (G )›  ( \
/ 3 )
4
"  1
.  
T h
i s  
i
s  
a  
c o n
t r a
d i c
t i o
n ,  
b
e
c
a
u
s
e  
2
4
'  
<  
2  
.
3
"  
<  
3
3
1
.

If a =  7, we have k ( L I D )
7  a n d  k
( M I M  
n D ' ) , • < . ,
7 ,  
s o  
w e  
o b t a
i n  
t h
e

sharper estimate k(L ),<. . ,7
2
2
14
,  k ( G ) , 7
2
2
1 5
.  B u t  
w e  
a r e  
a s s u
m i n g  
t h
a t

k (G )› (
\
/ 3 )
4
"  1
.  
T h
i s  
i
s  
a  
c o
n t
r a
d i
c t i
o n
,  
b
e
c
a
u
s
e  
4
9
2
2
3
0  
<  
2
4
2  
<  
3
2
7
.

If a =  5, then, as in an earlier argument, there are at most eight L /C
conjugacy classes o f  DIC, and k ( L I C ) ,  40. Similarly, k (MI C ' ) ,  40,
so that k(L )• -
•  1 6 0 0 ,  
k
( G ) ,  
3 2
0 4  
T h
i s  
i
s  
a  
c o n
t r a
d i c
t i o
n ,  
s
i
n
c
e  
w
e  
a
r
e

assuming that k (G )›  . . \
/
3  y
f a  - I  
=  3
9

Thus a 4 ,  as claimed. I f  a 2 ,  then G is a 2-group of order dividing
128. We are assuming that G has more than (,./3)4"- I conjugacy classes,
so that k(G)?
, 4 7 .  
I f  
I G  
1  
<  
1 2 8
,  
t h
e n  
G  
i
s  
e a
s i
l y  
s
e
e
n  
t
o  
b
e  
A
b
e l
i a
n ,  
w
h
i
c
h

is a contradiction, as G is a permutation group of degree 8. I f  G has order
128, then G  is isomorphic to  C2 wr  C2 Wr C2, so that k(G)---- 20, a
contradiction.

If a =  3, then we are assuming that k(G)>  ( .
\
/ 3 )
1 1
> 4 1 3 .  B u t  L /
C  i s

isomorphic to  a  subgroup o f  C2 w r  S3, f rom which i t  follows that
k(LIC),<, 10 a n d  k (MI C ' ) , 1 0 ,  s o  th a t  k(L),•<,. 100, k (G ), .  200, a
contradiction.

If a = 4, then we are assuming that k (G )› (, /  3)
15 >  3 6 0 0 .  T h e  
a r g u m e n t

used i n  ease (iii) shows tha t  k (L I C) 4 0 ,  and  a  simila r argument
shows that k ( M I C ' ) 4 0 ,  so that k(L ), , .  1600, k(G) 3200, the final
contradiction.

Remark. L e t  d  be any integer greater than 1. Then there are non-
negative integers x and y such that d 3.1c + 2y (and these may be chosen
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so that y < 3). Then the symmetric group S,, has an Abelian subgroup A of
order 3'2 wh ich  has x orbits of length 3 on {1, 2, d } ,  y orbits of length
2. Hence for every d> I, there is a permutation group of degree d realising
the bound of Theorem 1.2.

3. ON THE k(GV) PROBLEM

The k(GV) problem is to prove that whenever G is a  group o f linear
transformations of the finite-dimensional vector space V (over a finite field
of characteristic coprirne to the order o f  G), then k(GV)-.1 VI. This has
been done independently when G has odd order by Gluck ([1 8 ] ) and
Krnirr (unpublished). I t  has also been done when G is nilpotent (or, more
generally, supersolvable), by Kno5rr ([11]).  In  general, though, the best
existing bound is not much better than I VI'. I f  we drop the assumption of
coprimeness, but assume instead that G is completely reducible in its action
on V. then the inequality k(GV )-IV I  does not hold in general.

One reason for interest in the k(GV) problem is that H. Nagao ([14 ])
proved that an affirmative solution would imply that whenever B  is a
p-block of defect d of the finite p-solvable group H, then k(B),,. p".

R. G o w ( [ 9 ] )  proved tha t  i f  p e
l  f o r  s o m e  
p r i m e  
p ,  
t h e n

k(G V) f ( d )  I VI, where f  is some fixed function on the natural numbers.
Gow's idea is as follows: " lif t"  G to a subgroup o f GL(d, C) and use

Jordan's theorem, which asserts the existence o f  an Abelian normal
subgroup, A, of G. of index bounded in terms of d alone. Then we have
k(G )  k ( G  I A) k(A V), and k(A V) I  VI is easily proved.

When G is solvable, L. Dornhoff (see part A of [6 ],  for example) has
shown that under the above circumstance G has an Abelian normal sub-
group A with TG : A] -..2(4d-3)13 •3(10d-3)/9, so that when G is solvable,
f (d ) may be replaced by 2
(
"
- 3 ) 1 3
•
3 ( 1 0 d - 3
" ,  a s  
n o t e
d  
i n  
[ 9 ]
.

In a  similar fashion, we have k(G V) k ( G I  F(G)) • k(F(G) V), and by
Knòrr's result, we know that k(F(G)•

Our main result in this section is:

THEOREM 3.1, L e t  G be a finite solvable group, p be a prime. Suppose
that IF(G)I= p', where r is a positive integer, Then k(G)=- 3 r
- i
p r .

Proof L e t  U  = (15(G). Th e n  F(G11.1) F(G)111, a n d  k ( G )
k(U)k(GIL I )IL I Ik(GIU),  so  i t  suffices t o  consider the  case tha t
U= 1 ,1 ,  and hence that G* =GIF(G) is a completely reducible group of
linear transformations of the elementary Abelian p-group F(G). Let F
2
( G )
be the full pre-image of F(G*) in G. Then F
2
( G ) - - =  X F ( G ) ,  
w h e r e  X
i s  a

nilpotent p'-group acting faithfully on F(G), so that k ( F
2
( G ) ) , o r  b y
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Kniirr's result. Now k ( G ) - _ k ( 1
.
2
( G ) ) k ( G I F
2
( G ) ) ,  p r k ( G * I F
( G * ) ) .  
B y  
t h e

Fong-Swan theorem (see [6, part B], for example), G* is isomorphic to a
subgroup of GL(r, C), so it is more than sufficient to prove:

THEOREM 3.2. L e t  G be a finite solvable subgroup o f  GL(r, C). Then
k(HIHn  F
(
G ) )  3
r  
I  
f o
r  
e v
e r
y  
s u
b g
r o
u p  
H  
o
f  
G
.

Proof. Choose G and r to violate the theorem with r  minimal. Let V be
the CG-module affording the given representation of G.

Suppose t h a t  V  i s  reducible, sa y  V  = W .  L e t  K =  CG(U),
L = C
G
( W ) ,  
A  
b
e  
t
h
e  
f
u
l
l  
p
r
e
-
i
m
a
g
e  
i
n  
G  
o
f  
F
(
G
I
K
)
,  
B  
b
e  
t
h
e  
f
u
l
l  
p
r
e
-
i
m
a
g
e

in G of F(GIL), s -  dim( U), t =dim( W). Then F(G)= A
n  B .  L e t  H  b e  
a n y
subgroup of G. We need to prove that k (HIHn  F(G))1..5 3 r
- I
.

Now k(H111 n A n B) k (1 1 1  n  A) k(H n AIH n A n B) =  k(HAIA)
k((H n A) BIB)ʻ, 3s -I  3 '  t
,  c o n t r a r y  
t o  
t h e  
c h o i c
e  
o f  
G .  
H e n
c e  
V  
i
s

irreducible.
Next we claim that V  is primitive. For suppose that V-1-- in 4 (U) for

some proper subgroup M  of G, some CM-module U. Let s = [G : M] ,
t = dim(U), X  = c o r e
G
( M ) ,  H  
b e  
a n y  
s u b g r o
u p  
o f  
G .

Then k(HIH n F(G))-k(HIH F ( X ) )  k ( H I H  n X) k(H n XIH n F
(
X ) ) .

Now HI H n X HX I X ,  which is isomorphic to a permutation group o f
degree s, so that k(HIH n X) <

Now Iles,?;( V) is a  direct sum o f  at least s  irreducible CX-modules
(counting multiplicities), so an argument like that used to show that G is
irreducible shows that k(H r XI H m F(X)).-<._ 3'('- l Since s w e  obtain
k(HIH F
(
G ) )  
<  
3 ' t  
T h
u s  
G  
i
s  
p r
i m
i t
i v
e .

We note here that the validity (o r otherwise) of the conclusion of the
theorem depends only on the isomorphism type of GIF(G).
We next claim that every non-central normal subgroup of G is irreducible.
For let N  be such a non-central normal subgroup of G. Then if  N is not
irreducible, (by standard Clifford theory) there is a finite group G* with
G*1Z(G*)-.1 GIZ(G) such that V =  U0  W as CG*-module, where both
dim(U) and dim( W) are greater than I .  But G* may be chosen so that
UO W is a  faithful CG*-module (and has dimension a t  most r,  with
equality if  and only if  U and W both have dimension 2).

By the choice o f  G and r  (and, i f  r =4, using the argument used to
show G irreducible), the conclusion o f  the theorem is valid fo r G*, a
contradiction, as G* I F
(
G *  )  G  
I  F
( G ) .

Now, adjoining scalars o r replacing G by a  supplement to  Z(G) as
necessary, we may assume that G is unimodular, and that Z(G),-.0(G).

There is a prime p such that 0 ,(G) is non-central in G. Hence O(G) is
irreducible, so  C
G
( 0 , ( G ) ) , . . .  
Z
( G ) - 0
( G )  
( u s
i n g  
u n i m
o d u l
a r i t
y ) ,  
a
n
d

F(G) is a p-group.

4,1 I N  2
-
1 2
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Let Z Z (G ) ,  M be a normal subgroup of G such that M/Z is a minimal
normal subgroup of GIZ. Then M  a n d  M  is irreducible. Hence

M. But it is well-known (see part A of [6], for example), that
O p(G)
-= 
Z E  
w h
e r
e  
E  
i
s  
a
n  
e x
t r
a -
s p
e c
i a
l  
p
-
g
r
o
u
p
,  
a
n
d  
b
y  
a  
r
e
s
u
l
t  
o
f  
P
.  
H
a
l
l
,

we have E ( E n  M)C „(E M),•<.. M, so that M = O
p
( G )  a n d  G l O
p
( G )  i s

an irreducible group of linear transformations of the elementary Abelian
p-group 0  p
( G ) I Z .Let r  = pm. Then E  has order p

.
' "  ,  a n d  
G I Z  
i s  
i s o m o r p h
i c  
t o  
a

primitive permutation group o f  degree p
2
" .  A l s o ,  b y  
t h e  F o n g -
S w a n

theorem, GIZE is isomorphic to a subgroup of GL(2m, C).
We claim that 2m ?„, p '  (which forces p = 2, m 2 ) .  I f  not, then the con-

clusion of the theorem is valid for G* G I O  p
( G ) ,  r e g a r d e d  a s  
a  s u b g r o u p
of GL(2m, C). Let H be any subgroup of G. To derive a contradiction from
our current assumptions, we need to show that k(HIH n ZE),.<, 3' 1
.  S i n c eHIH n ZE I '  HZEIZE, we may as well assume that ZEL., H.

Let F
2
( G )  
d e
n o
t e  
t
h
e  
f
u
l
l  
p
r
e
-
i
m
a
g
e  
o
f  
F
(
G
*
)  
i
n  
G
.  
T
h
e
n

k(HIH n F,(G))= k ( H F
2
( G ) I F , ( G ) )  
( s i n c
e  
t h e  
c o n c l
u s i o n  
o
f  
t h
e

theorem is valid for G*).
Now w e  h a v e  k (H I F (G ) )  k ( H I H  n F
2
( G ) ) k ( H  n  F
2
( G ) I F ( G ) )

l
k
(
H 
n 
F
2
(
G
)
I
F
(
G
)
)
.

Now H n F
2
( G ) =  
0  p
( G )  
Y .  
w h
e r
e  
V  
i
s  
a  
n i
l p
o t
e n
t  
p '
-
g r
o
u
p  
w
h
i
c
h  
a
c
t
s

faithfully on O
p
( G ) I Z ,  
s o  
b y  
K n ò
r r ' s  
r e s
u l t
,  
k
(
H  
F , ,
( G )
1 Z )
2
" .  
I
n

particular, k (Y ) ‹  p
2
m.

Hence we see that k (HI F(G ))< 3
2
"  1
1 3
2
" .  W e  
n e e d e d  
t o  
p r o v e  
t h a t

k(H/F(G)), Y
- 1
,  
w h e r e  
r =  
p "
.  
T h
i s  
w i
l l  
b
e  
s
o  
i
f  
2 m
- 1
+ 2
m  
l o
g
3
( p
) .
_  
p
'  
1
.

The only cases where this inequality is not satisfied (when pm > 2m, as
we are currently assuming) are when p = 3, m = 1 and p = 2, In= 3. I f  p = 3
and tn = 1, then GIF(G) is isomorphic to a subgroup of SL(2, 3), and all
subgroups of SL(2, 3) have 7 or fewer conjugacy classes, whereas 3' 9
in this case.

If p = 2 and In = 3, then 3' 1 =  37 = 2187. We derive a contradiction by
showing that no subgroup of GIF(G) has 2187 or more conjugacy classes.
For G* = G/F(G) is isomorphic to an irreducible subgroup of Sp(6, 2), so
its only possible prime divisors are 2, 3, 5 and 7.

If 7 divides 1G*1, then G* is 7-closed by A6. It follows easily that F(G*)
has order dividing 63 and that [G*:  F(G*)] 6 ,  so that G* has order less
than 400. Thus we may assume that 7 does not divide IG*1.

If 5 divides t h e n  G* is 5-closed, for otherwise F(G*) is a 3-group.
But a Sylow 3-subgroup of G* is isomorphic to a subgroup of C3 wr C3 ,
so none of its subgroups admits an automorphism of order 5, a contra-
diction. But now let T*  be a Sylow 5-subgroup of G*. Then T*  has a non-
trivial fixed-point in its action on F(G)IZ (which has order 64), contrary
to the fact that G* acts irreducibly on F(G)IZ and T*  is normal in G*.-
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Thus we may assume that G* is a  3 1 - g r o u p  and that F(G*) is a
3-group.

If F(G*) is elementary Abelian of order 27, then every proper subgroup
of G* has order less than 2187, while k(G*),... 729 by AS.

In any other case, F(G*) is generated by at most two elements, and a
Sylow 2-subgroup of G* has order dividing 16, so G* has order less than
2187, the required contradiction.

Thus p  =2, and m= 1  o r  2. Bu t  m  1  yields r  =2, and GIF(G)
isomorphic to  C3 o r S3, so every subgroup o f  GIF(G) has 3 o r fewer
conjugacy classes, contrary to the choice of G.

If m =2, then 3
r -  1  
= 2 7 .  
I n  
t h i
s  
c a s
e ,  
G
*  
=  
G I
F
( G
)  
( w
h i
c h  
i
s  
i s
o m
o r
p h
i c

to a subgroup of Sp(4, 2)) is 5-closed by A6. Choose Hs
If 5 divides the order of G*, then (upon consideration of the centralizer

of an element of order 5 in  GL(4, 2)), IF(G*)I divides IS, G* has order
dividing 60. I f  5 does not divide the order of H in this case, then H  has
order at most 12. I f  5 does divide the order of H, then k ( H I 0
3
( H ) ) , „ 5 ,  s o
that k(H),<,, 15.

If G* is a f
t  2 ,  
* g r o
u p ,  
t h
e n  
G
*  
h
a
s  
a  
S
y
l
o
w  
3 -
s u
b g
r o
u p  
o
f  
o
r
d
e
r  
a
t

most 9, which is F(G*). I f  9 divides t h e n  F(H)=F(G*),  so k(H),., 9
by AS. Otherwise, since H / 0
3
( H )  i s  
i s o m o r p h i c  
t o  
a  
s u b g r o
u p  
o f  
a  
s e m
i -

dihedral group of order 16, we have k ( H 1 0
3
( H ) ) . ,  8 ,  k ( H ) , < ,  
2 4 .

This completes the proofs of Theorems 3.2 and 3.1.

Remark. Th e  last result has proved something a little stronger. Fo r
when V  p
( G )  
i s  
e l e m
e n t a
r y  
A b
e l
i a
n  
o
f  
o
r
d
e
r  
p
t  
a
n
d  
G
I  
V  
i
s  
a  
fi
n
i
t
e

solvable completely reducible group o f  linear transformations o f V, A2'
yields that k(G),<,.. 3' 1 #  (G-conjugacy classes o f  F
2
( G ) ) ,  s i n c e  e v e r y
subgroup of G / F
2
( G )  h a s  
a t  
m o s t  
3
- 1  
c o n j
u g a c
y  
c l a
s s e
s .

By arguments similar to those of Gow [9 ] ,  we also obtain:

COROLLARY 3.3. L e t  G be a .
fi n i t e  s o l v a b l e  
g r o u p ,  
p  
b e  
a  
p r i m e
,  
B  
b e  
a

p-block of G of positive defect d. Then k(B),<„3
d- ' p
d
.  I n  p a r t i c u l a r ,  
i f  p > 7 ,

then k (B )‹  f
p  3 d  
1 ) / 2  
• 4. ON THE k(GV) PROBLEM IN THE INSOLUBLE CASE

In this section, we imitate the arguments o f  the previous section to
prove:

THEOREM 4.1. There  is a fixed constant c (independent o f  the prime p,
and of the integer r) such that whenever G is a finite p-solvable group with
IF*(G)I= pr >1, then k(G),...cr
- ' p r .
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We may argue as before to reduce to the case that GIF(G) is a faithful
completely reducible group o f  linear transformations o f  the elementary
Abelian p-group F*(6). Again by the Fong—Swan theorem, G* G I F(G ) is
isomorphic to  a  subgroup of GL(r, C). Also, k (F , (G )),  p' by Kniirr's
result (though it  may be the case here that 17,(G)= F(G)), so it  suffices
to prove that k(G*IF(G*)),e  f o r  some fixed e. Thus it will more than
suffice to prove:

THEOREM 4.2. There  is a constant c (independent o f  the integer r) such
that whenever G is a ,finite subgroup of GL(r,C), every subgroup of GIF(G)
has at most e
r I  
c o n j u
g a c y  
c l a s
s e s
.

We do not attempt to suggest an optimal choice for c (indeed, some of
our estimates below are extremely generous) but we first show that, if e is
taken large enough, the proof of this last theorem may be reduced to the
case that G is a primitive linear group which has a unique component (that
is, quasi-simple subnormal subgroup), M  say, with C„(M)— Z(G).

More precisely, we prove:

LEMMA 4.3. L e t  c
o  b e  
a n y  
r e a l  
n u m b
e r  
g r e a
t e r  
t h
a n  
6
4
.  
S u
p p
o s
e  
t
h
a
t  
,
f
o
r

some integer r there is a ,finite subgroup L  of GL(r,C) such that some sub-
group of LIF(L) has more than c con jugaey classes.

Then there is an integer d, and there is a primitive finite subgroup G o f
GL(d, C) such that:

(i) G  has a unique component, M say.
(ii) C „ ( M ) = Z ( G ) .
(iii) G I Z(G ) has a subgroup with more than c o n j u g a c y  classes.

To prove this, we first require:

LEMMA 4.4. W e  have qm/log,„(e)?;
- 2 m  +  4  
f o r  e v e r y  
p r i m e  
q  
a n d  
e v e r y

positive integer m. Consequently, q
2
"
2 2
+
4 .
n  I  6 " ,  
w h e r e  
d  
q " ' ,  
f o r  
e v e r
y

prime q and every positive integer tn.
Proof. F o r  a  fixed positive integer m,  x "
1
/ l o g ,
6
( x " )  i n c r e a s e s  
f o r

x > e '
.
"
.  
W
h e
n  
m
=
1
,  
i
t  
s
u
f
fi
c
e
s  
t
o  
c
h
e
c
k  
t
h
e  
i
n
e
q
u
a
l
i
t
y  
f
o
r  
q  
=  
2  
a
n
d  
q  
-
-  
3
,

and the inequality is easily seen to be valid in those cases. When m > I, it
suffices to check the inequality fo r q  = 2. Hence we need to  show that
2"'illog,„(2)?; 2 m
2
+  z I n t  
f o r  
m  ?
. •  
2 .  
W h
e n  
i n
=  
2
,  
t h
i s  
i n e
q u a
l i t
y  
i
s  
s a
t i
s fi
e d

since log,,(2)—L But when x ?„ 2, 2(x + I )
2
+  4 ( x  +  I  ) < 2
( 2 x
2
+  4 x ) ,  
f r o m

which the desired inequality easily follows.

Proof of Lemma 4.3. W e  fix a real number c
o  6 4 .  S u p p o s e  
t h a t  L  
a s

in the hypotheses of the lemma exists. Then we may choose an integer d
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which is minimal subject to: there is a finite subgroup G of GL(d, C) such
that GIF(G) has subgroup with more than c
o
d  c o n j u g a c y  
c l a s s e s .  
F r o m

A7, d >  2. Hence c
o
d -  1 6 1
1
.

As in the proof of Theorem 3.2, (this time making use of Theorem 1.2),
we may argue that G is primitive. Also, as in that proof, we may deduce
that G is absolutely tensor indecomposable, that every non-central normal
subgroup of G is irreducible, and we may assume that G is unimodular,
and that Z(G)-ʻ_0(G).

We claim that F(G)=--- Z(G). For otherwise, there is a prime q such that
0,(G) is irreducible, and as in the earlier proof, d= qm for some integer in,
0 , (G)= Z(G) E, where E  is e x t r a
-
s p e c i a l  o f  
o r d e r  q
2
"
1
,  C , ( 0 ,
/
( G ) ) ,

a
(
G
)
,  
a
n
d  
G
1
0
,
(
G
)  
i
s  
i
s
o
m
o
r
p
h
i
c  
t
o  
a  
s
u
b
g
r
o
u
p  
o
f  
S
p
(
2
m
,  
q
)
.  
W
e  
d
e
r
i
v
e

a contradiction by showing that every subgroup of G10,(G) has at most
c
o
d 
c
o
n
j
u
g
a
c
y 
c
l
a
s
s
e
s
.

Let H  be a  subgroup o f  G containing O
g
( G ) .  T h e n  H I Z
( G )  i s  
a

q-constrained group, with  no  non-identity normal q'-subgroup, whose
Sylow q-subgroup has order dividing e t '

By A5, k ( H I Z ( G ) ) q
2
"
1 2
+
4 1
" , - .  l e  
( t h e  
l a s t  
i n e q u
a l i t y  
h o l
d i n
g  
b
y  
v i
r t
u e

of Lemma 4.4) -< , c
o
d -1  s o  
t h a t  
c e r t a i
n l y  k
( H 1 0 ,
, ( G ) )  
c
o
d -
'
,  
t
h
e  
d e
s i
r e
d

contradiction.
Next, we claim that the given representation of G is not tensor induced

(as a projective representation) from a projective representation o f  any
proper subgroup of G.

For suppose that the given representation is so induced (say from a sub-
group H  of index t  > 1) when viewed as a projective representation of G.
Let V  be the underlying CG-module.

Let X =  core,(H), and le t  L  be  any subgroup o f  G  containing
Z(G). Then k(LIZ(G)) k ( L I Z ( X ) )  k ( L I L  n X) k(L m XIZ(X)). Now
k(LILnX)r---- k(LXIX) 5 '  ' ,  as LXIX is isomorphic to a subgroup of the
symmetric group S,.

Hence we are done i f  X.,.Z(G). Suppose that X >  Z(X). Then X  is
irreducible, and V =  U, •  • • 0  U where  d im(U,)= d l
it  f o r  e a c h  i ,  
e a c h
U, affording an irreducible projective representation of X.

Now we may choose a  central extension, X * ,  o f  X, minimal such
that each U, has the structure of a CX*-module. Then U, •  • • G U
s i s  afaithful CX*-module, of dimension at most d, but is reducible, so we may
conclude, as in earlier arguments, that every subgroup of X*IF(X*) has at
most c
o
d -
I  
c o
n j
u g
a c
y  
c l
a
s s
e
s .  
O
f  
c
o
u
r
s
e
,  
X
*
I
F
(
X
*
)  
X
I
F
(
X
)
.

But F(X )=  Z(X) since F(G)---
- Z ( G ) .  
H e n c e  k
( L n  
X I Z
( X ) ) ,  
c
o
d  
- 1  
a n
d

k(L IZ(X))- c
o
d  -  t
.  
T h i s  
c o n t r
a d i c t
i o n  
s h
o w
s  
t
h
a
t  
V  
i
s  
n
o
t  
t
e
n
s
o
r  
i
n
d
u
c
e
d  
i
n

the above sense.
By Kovdcs [13], G has a unique component, so now all parts of the

lemma have been proved.
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Remark. F o r  the purposes of our Theorem 4.1, we only need to bound
k(GIF(G)) by Cr-  b u t  once the stronger version has been proved, we will
be able to  deduce as before that k(G)--..c' # (G-co n ju g a cy classes
of F
2
( G )
)  
w
h
e
n  
G
I
F
(
G
)  
a
c
t
s  
a
s  
a  
c
o
m
p
l
e
t
e
l
y  
r
e
d
u
c
i
b
l
e  
g
r
o
u
p  
o
f  
l
i
n
e
a
r

transformations of F(G).

The following result must be well known, and follows by arguments like
those of Section 1.

LEMMA 4.5. L e t  X  he a nilpotent subgroup o f  the symmetric group S,.
Then IX' 2 '

Now we return to the proof of Theorem 4.2: invoking Lemma 4.3, it suf-
fices to prove that i f  G is a finite primitive subgroup of GL(r, C), with a
component M  such that C, , (M)=  Z(G), then we find a constant c >  64,
independent of G and r, such that every subgroup of GIZ(G) has at most
C
r 
I  
c
o
n
j
u
g
a
c
y  
c
l
a
s
s
e
s
.

By the classification of the finite simple groups, there are three cases to
consider:

Case (i):  MIZ(M) Sporadic, or the Tits Group 2
F
4
( 2 ) ' .  W e  c a n  
d i s p e n s e

with this case by choosing C sufficiently large, since there are only finitely
many possibilities for GIZ(G).

Case (ii):  MI Z(M) an Alternating Group. I n  this case, i f  M/Z(M) is
isomorphic to the alternating group A t h e n  if  t>  7, we see that GIZ(G)
is isomorphic to A, or S„ (so that all o f its subgroups have 5 '  o r  fewer
conjugacy classes by Theorem 1.2), and that Z (M) has order dividing 2.
Also, r>  2 by A7.

By choosing c large enough, we can dispense with the exceptional cases,
so we suppose that t  >7. Then M has an elementary Abelian 3-subgroup
of order 3"  21 3 or greater, so by a theorem of Blichfeldt (see part A of
[6], for example) 3
1
'  <  
6 ' ,  
a n d  
s o  
c e r t
a i n l y  
t  
—  
1  
<
6
r  
5
.  
H
e n
c e  
i
n

this case, every subgroup of GIZ(G) has [ .
\
/ 5
1 3
] '  o r  f e w e r  
c o n j u g a c y

classes.

Case (iii):  MIZ(M) a Group of Lie Type. L e t  I be the characteristic of
M, and let Q be a Sylow /-subgroup of M. Set U=Q1Q r Z(M).  Then
inspection of [5 ]  shows that [ M:  Z(M)]  <1111
3 ( t h i s  o b s e r v a t i o n  
i s  r e a l l y
due to E. Artin).

Now Q has an Abelian normal subgroup (A say), containing Q nZ(M),
such that QIA is isomorphic to a (nilpotent) subgroup of the symmetric
group S,.. By Lemma 4.5, [ Q  : A]-.<„ 2 S i n c e  G is primitive, it  follows
from Blichfeldt's theorem that [A :  A n Z(M)]  < 6' H e n c e  U I  <12'
[M:Z(M)]<(1 7 2 8 )"
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Now GIMZ(G) is isomorphic to  a  subgroup o f Out(M/Z(M)),  and
lOut(M/Z(M)) U  (f rom [5 ] ,  again).

Hence [G: Z(G)] < (1 2
4
) '  ,  s o  
c e r t a i n l y  
a l l  
s u b g r
o u p  
o
f  
G I Z
( G )  
h a
v e

fewer than ( l 2
4
l t  
c o n j u
g a c y  
c l a s
s e s ,  
w h
i c
h  
s u
f fi
c e
s  
t
o  
c o
m p
l e
t e  
t
h
e  
p
r
o
o
f
.

We have, again arguing as in Gow [9 ] :

THEOREM 4.6. There  is a fixed constant c, independent of the prime p and
the defect d, such that whenever p is a prime and B is a p-block of positive
defect d of a finite p-solvable group G, then k (B ). , C
d -

I d

We remark that there is no direct analogue o f Theorem 4.2 for finite
general linear groups, even if we allow the constant e to depend on the size
of the field. For when n is even, GL(n, q) has an Abelian subgroup of order
e  4
. 
W
e  
s
u
g
g
e
s
t  
h
o
w
e
v
e
r
:

Conjecture. L e t  q be a prime power. Then there is a constant c = c(q),
depending on q (but independent o f n), such that whenever G is a sub-
group of GL(n, q), and H is a completely reducible subgroup of G, then
k(HI H F
(
G ) )  
e "

In fact, i t  suffices to  consider the case that G = GL(n, q), fo r letting
S(G) denote the subgroup o f  scalar matrices within G, and Z  denote
Z(GL(n, q)), HI  H F
(
G )  i s  
a n  
e p i m o r
p h i c  
i m a
g e  
o
f  
H
I  
H  
n  
S
( G
) ,  
w h
i c
h  
i
s

in turn isomorphic to  HZ/Z.  O f  course, unless both n  = 2 and q  <4,
Z = F(GL(n, q)) and by taking c > 3 these exceptional cases can be ignored.
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