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1. Introduction

IN a recent paper [2], M. F. Newman and the second author proved the
following.

THEOREM 1.0. There is a constant c such that for each positive integer d
(=2), each nilpotent transitive permutation group of degree d can be
generated by [cd/Vog d] elements. Moreover for each prime p there is a
positive constant c, such that whenever d is a power of p there is a
transitive p-group of degree d which cannot be generated by [c,d/Vlog d]
elements.

(For simplicity, in the sequel we usually omit the square brackets
indicating ‘integer parts’.) The aim of this paper is to explore the
corresponding questions concerning finite nilpotent irreducible linear
groups over arbitrary fields.

For the field of complex numbers, Isaacs [1] had done this long before
[2]. Let G be a finite irreducible linear group of degree d over the field of
complex numbers, such that the order of G is a power of a prime p. It
was shown by Isaacs [1] that there exist linear functions b of 4 such that
each such G can be generated by b elements. He wrote down one b
explicitly, namely

+1 2p—4
b="L"" 4+
plp-1 p-1

and constructed examples to show that the multiplicative constant
involved in a b cannot be as small as 1/(p —1). In particular, any
sub-linear bound proposed would be violated by infinitely many of his
examples: so the direct analogue of the first part of Theorem 1.0 is false,
and that of the second part is not good enough.

Our results will show that there is in fact a good analogue of Theorem
1.0 over fields which are ‘small’: for example, over each field which has
finite degree over its prime subfield. Even for the case considered in
Isaacs [1}, one can read off some small improvements. First, the
multiplicative constant in his b can be brought arbitrarily close to
1/(p — 1) (of course, only at the cost of increasing the additive constant).
Second, that multiplicative constant can be lowered all the way to

>

Quart. J. Math. Oxford (2), 44 (1993), 1-15 © 1993 Oxford University Press



2 J. D. DIXON AND L. G KOVACS

1/(p — 1) (but no further) if one is prepared to add to the linear b a
suitable constant multiple of d/Vlog d.

In addition to [2] and the examples of [1] mentioned above, we make
use of the determination of the Sylow subgroups of general linear groups
by Leedham-Green and Plesken [4]. Somewhat less than the full strength
of their results will suffice here; in particular, we can make do with just
two invariants of fields.

DerFinimion 1.1, For each prime p and for each field F whose
characteristic is different from p, let [F({/—l) denote the splitting field of
xP + 1 over F. Write f(p, F) for the degree of [F(</—1) over [, and let

I _ Vlogp
(p—Df(p, B p(p—Df(p. F)
Further, define e(p, F) by saying that the Sylow p-subgroup of the
multiplicative group of F(V—1) is a cyclic or quasicyclic group of type
C(per).

Note that f(2,F) is 1 or 2 and 2=<¢e(2, F) <o, while if p >2 then
f(p,F) is a divisor of p —1 and 1=<e(p, F)=<w. Neither invariant is
defined when the characteristic of F is p, but this is no loss because in that
case p cannot be involved in any finite nilpotent irreducible group over F.

For linear groups of prime-power order, our results can now be stated
as follows.

a(p, F)= and b(p, )=

THEOREM 1.2. There exists a constant ¢, (independent of p and ) such
that, for d > 1, each finite irreducible p-subgroup G of GL(d, ) can be
generated by

a(p,F)d +2b(p, F)c,d/Viogd +2
elements. If e(p, F) <, then each such G can in fact be generated by
((p — De(p, F) +2)b(p, F)c,d/Viogd + 4
elements.

The transitive p-groups of degree d constructed in [2] to prove the
second half of Theorem 1.0 will be shown to admit faithful irreducible
linear representations of degree at most d over any field of characteristic
different from p. In view of the monotonicity of the function x/Vlog x,
one may then draw the following conclusion (with the same constants ¢,
as in Theorem 1.0).

THEOREM 1.3. For each field t and for each prime p different from the
characteristic of F, there exist infinitely many positive integers d such that
not all finite irreducible p-subgroups of GL(d, F) can be generated by
c,d/Vlog d elements.
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In the negative direction, this is the best we can do in general. Under
appropriate assumptions on [, one can do better by exploiting the
examples of Isaacs [1]. He constructed there one finite p-group
for each prime power p” with n>0 which cannot be generated by
n+(p"—1)/(p — 1) elements but admits a faithful irreducible complex
representation of degree p”. We shall show that this group has a faithful
irreducible representation of degree p"f(p, F) over any F such that
e(p, )=n+1.

THEOREM 1.4. For each integer n such that 2<n +1<e(p, F), there is
a finite irreducible linear p-group of degree p"f (p. F) over F which cannot
be generated by n + (p" —1)/(p — 1) elements.

CoroLLARY .5. If e(p, F) =, then there exist infinitely many d such
that not all finite irreducible p-subgroups of GL(d, F) can be generated by

a(p, F)d + (logd)/(logp) — (p — 1)/p
elements.

This comes directly from Theorem 1.4, and matches the first part of
Theorem 1.2 quite well.
Let us turn to the general nilpotent case now.

DeriniTION 1.6. For an arbitrary field F, let mg denote the maximum of
a(p, F) as p ranges over the primes (different from the characteristic of [)
such that e(p, F) = «; if there is no such p, set mg=0.

CoroLLARY 1.7. Given a field F, to each positive € there is an N
(depending only on € and ) such that each finite nilpotent irreducible
linear group of degree d over b can be generated by (mg¢+¢e)d + N
elements.

For some fields F with my =0, the second half of Theorem 1.2 yields a
better result.

CoroLLARY 1.8. Let F be a field such that my =0 and such that
(p — De(p, B)b(p, F) remains bounded while p ranges over all primes
(other than the characteristic of F); for example, this holds for any field
which is of finite degree over its prime subfield. Then there is a constant c;
such that each finite nilpotent irreducible linear group of degree d over [
can be generated by c¢d/Vlog d elements.

Together with Theorem 1.3, this shows that the behaviour of finite
nilpotent irreducible linear groups over ‘small’ fields resembles that of
finite nilpotent transitive permutation groups.

We note one more consequence of Theorem 1.4.
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CoroLLARY 1.9. To each convergent sequence r(1),...,r(d),... of
positive real numbers with limit O, there is a field F of characteristic 0 with
mg =0 and infinitely many d such that not all finite nilpotent irreducible
subgroups of GL(d, F) can be generated by r(d)d elements.

The point of this may be best explained in different terms. For each
field & and for each positive integer d, let tg(d) denote the smallest
integer such that each finite nilpotent irreducible linear group of degree d
over [ can be generated by f¢(d) elements (Theorem 1.2 guarantees that
such numbers exist). Corollaries 1.5 and 1.7 together give that

lim sup tg(d)/d = mg. In particular, if mg =0 then lim t(d)/d = 0. Under
d—scc

d—m
the hypotheses of Corollary 1.8, t¢(d)/d converges to 0 at least as fast as
c¢/Vlog d does. By contrast, Corollary 1.9 means that for suitable F with
m; = 0 the convergence of 1(d)/d is arbitrarily slow.

It i1s natural to ask what happens to our theorems if the assumptions
are relaxed. To see that irreducibility cannot be replaced by complete
reducibility in the second part of Theorem 1.2 or in Corollary 1.8, one
only has to think of direct sums of copies of any one finite nilpotent
irreducible linear group. On the other hand, Isaacs [1] had shown that
each finite nilpotent completely reducible linear group of degree d can be
generated by 3d/2 elements, and G. R. Robinson and the second author
[3] showed recently that in this result of Isaacs the nilpotency assumption
is redundant. This encourages the hope that our present results, and also
those of [2], remain valid if the nilpotency condition is omitted.

The organization of the paper is as follows. Section 2 contains
preparatory material on Sylow subgroups of general linear groups and
on subgroups of wreath products. Section 3 gives the proof of Theorem
1.2, apart from one lemma whose proof is deferred to the last section.
The proofs of the other theorems and of Corollaries 1.7-1.9 occupy
separate sections.

2. Generating subgroups of wreath products

The aim of this section is to collect all but one of the preliminary steps
towards the proof of Theorem 1.2.

It is well known that if F is algebraically closed then each finite
irreducible p-subgroup G of GL(d, F) is monomial: d is a power of p,
and G is a subgroup of the (permutational) wreath product
C(p”)wr (Symd) of the relevant quasicyclic group with the relevant
symmetric group, such that the ‘top projection’ of G in Sym d is transitive
(as subgroup of that permutation group). Over an arbitrary field the
situation is rather more complicated; for the present purpose, it will be
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sufficient to have the following consequence of the conclusive information
provided by Leedham-Green and Plesken [4].

THEOREM 2.0. Let d > 1 and let G be a finite irreducible p-subgroup of
GL(d, F). Then there is a nonnegative integer n such that d = p"f(p, ),
and at least one of the following holds:

(i) G is a subgroup of C(p°”P)wr(Symp™) with transitive top
projection;

(i) p=2and f(2,F)=25s0d=2""", and G is a transitive subgroup of
Sym 27*2;

(i) p=2 and f(2,F)=2 so d=2""", e(2,F)>2, and there is a
non-negative integer m (=0 if e(2, F) =) and a group D with a
cyclic or quasicyclic subgroup C(2™***P) of index 2 such that G is
a subgroup of D wr (Sym 2"~"™) with transitive top projection.

We shall make repeated use of a basic fact.

LemMa 2.1. Let A be a submodule [or normal subgroup)| of a module
[or group] B. If each submodule [subgroup] of A can be generated by o
elements and each submodule [subgroup] of B/A can be generated by B
elements, then each submodule [subgroup) of B can be generated by o +
elements.

As in Kovacs and Newman [2], for each prime power p”, we let f(p")
denote the least integer such that each transitive permutation group of
p-power order and degree p" can be generated by f(p”) elements.
Further, we write M(p") for the coefficient of x!? =" in the polynomial
(14+x+---+xP7")" It was proved there (combine (3.2) and (4.1)) that
if P is a transitive p-group of degree p” viewed as a group of permutation
matrices over Z/p#, then each submodule of the natural module for P
can be generated by M(p") elements. The second half of the proof of
(2.5) there argued, in effect, that therefore each p-subgroup of
C(p) wr (Sym p™) with transitive top projection can be generated by
M(p™)+f(p") elements. Using Lemma 2.1, induction on e readily
extends this argument to a proof of the following.

LEMMA 2.2. If P is a transitive p-group of degree p" viewed as a group
of permutation matrices over Z[p°Z, then each submodule of the natural
module for P can be generated by eM(p") elements.

LeMMA 2.3. Each p-subgroup of C(p°)wr (Sym p™) with transitive top
projection can be generated by eM(p") + f(p™) elements.

Remark. These results will do here for n = e, but they are unlikely to
be best possible. Set (1+x + - -+ x"7')" =¥ u(m, n)x™, so in particular
M(p™")=u([(p —1)n/2], n). It seems plausible that in Lemma 2.2 one
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e—1
could replace eM(p™) by max ¥ u(k +i(p —1), n). This is certainly so
k=0

when e =1 (for then it is no improvement) and also when n <e (for then
it agrees with the next lemma). On the other hand, it is not hard to see
(considering elementary abelian P) that no stronger statement could be
hoped for.

LeMMa 2.4. If P is a transitive p-group of degree p" viewed as a group
of permutation matrices over Z/p°Z, then each submodule of the natural
module for P can be generated by 1+ (p" — 1)/(p — 1) elements.

Before proving this, we note that an obvious analogue of the deduction
of Lemma 2.3 from Lemma 2.2 will yield the following conclusion.

LEMMA 2.5. Each finite p-subgroup of C(p™)wr(Symp"™) with
transitive top projection can be generated by 1+ (p" — 1)/(p — 1)+ f(p"™)
elements.

Proof of Lemma 2.4. Let ( stand for the field of rational numbers and
Z,, for the localization of the integers at the prime p, and let U be a
nontrivial irreducible QC(p)-module. Then dim U=p —1. We shall
make use of the well known fact that each Z,,C(p)-submodule of each
finitely generated Z,,C(p)-submodule of U is monogenic in the sense
that it can be generated by a single element. [As we have not been able
to locate a convenient reference, we sketch a proof. Write R for the
quotient of Z,,C(p) modulo the kernel of its action on U, and g for the
image in R of a generator of C(p). Check that the ideal generated by
g — 1 is the only maximal ideal in R, and therefore argue that in this
noetherian ring each (nonzero, proper) ideal is generated by some power
of g — 1. Note that R has the same Z-rank as U, and that U is torsion-free
as R-module. Conclude first that all finitely generated R-submodules of U
are R-free, and then that all R-submodules of the latter are also R-free.
Finally, compare Z-ranks to see that no R-free R-submodule of U can
have R-free rank greater than 1.]

Next, let P be a finite p-group and V a nontrivial irreducible
QP-module. There is then a subgroup, C say, between P and the kernel
of the action of P on V, such that modulo that kernel C is central and of
order p. By Clifford’s Theorem, as QQC-module V is the direct sum of
(dim V)/(p — 1) nontrivial irreducibles. It follows that each finitely
generated Z,,C-submodule of V lies in a direct sum of (dim V)/(p — 1)
modules, each submodule of each direct summand being monogenic. By
repeated application of Lemma 2.1, one may now conclude that each
finitely generated £,,C-submodule of V can be generated by
(dim V)/(p — 1) elements. The same holds, of course, for all finitely
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generated £ ,,P-submodules of V, even if V is not irreducible, as long as
V has no trivial direct summand.

Finally, let P be a transitive group of permutation matrices of degree
p" over Z,,, and W the natural Z ,,P-module. Then W ®;,_ Q is a direct
sum of a 1-dimensional trivial QP-module and a QP-module which has
no trivial direct summand. As each Z,,P-submodule of W is a finitely
generated £ ,,P-submodule of W ®; Q, one more appeal to Lemma
2.1 yields that each Z,P-submodule of W can be generated by
1+(p"—1)/(p—1) elements. This property is clearly inherited by
W/p‘W. In view of Z,,,/p°Z,,,=Z[p°Z, the proof is now complete.

LemMa 2.6. If D is any group of order p* and G is a subgroup of
D wr (Sym p') with transitive top projection, then G can be generated by
kM(p") + f(p") elements.

Proof. Let E be a central subgroup of order p in D. The natural
homomorphism of D onto D/E has a natural extension to a homomorph-
ism of D wr (Sym p') onto (D/E) wr (Sym p'); the kernel, K say, of that
homomorphism is central in the base group, and as a module for the top
group (Symp’) it is the natural permutation module over Z/pZ. If
E = D, the claim is just the special case of Lemma 2.3 quoted from [2]
above, so we have the initial step for a proof by induction on k. From the
corresponding special case of Lemma 2.2 we know that, as a G-module,
GNK can be generated by M(p') elements; on the other hand, the
inductive hypothesis is clearly applicable to G/(G N K): so that proof is
complete.

LeMMa 2.7. If P is a subgroup of (Sym 2) wr (Sym 2"~™) with transitive
top projection, then P is isomorphic either to that top projection or to a
transitive subgroup of Sym 2"~

Proof. Consider (Sym?2)wr(Sym2"~7) a subgroup of Sym2*~"*!
with a system of imprimitivity consisting of blocks of cardinality 2. By
assumption, P permutes these blocks transitively, so each orbit of P on
the 2"~™*' points meets each block nontrivially. Thus if P has more than
one orbit, it must have precisely two orbits, each containing precisely one
point from each block: but then an element of P fixing each block setwise
must fix each of them pointwise, so in this case P is isomorphic to that
top projection.

LemMa 2.8. Let D be a 2-group with a cyclic or quasicyclic subgroup C
of index 2. If G is a subgroup of D wr(Sym2"™™) with transitive top
projection, then G can be generated by 2"~ + f(2"~™*") elements.

Proof. Write A for the direct product of the 2"~™ ‘coordinate copies’
of C in the base group of that wreath product. This A is a normal
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subgroup of the wreath product D wr (Sym2"~7™); set B=AG. The
quotient of that wreath product over A may be thought of as
(Sym2) wr (Sym 2"™™), in such a way that the top projection of B/A is
transitive. Obviously A NG, like every subgroup of A, can be generated
by 2"7" elements. From Lemma 2.7 we know that B/A is a transitive
2-group of degree 2"~ or 2"~"*! so it can certainly be generated by
f(2"~™*") elements.

3. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2 modulo one result whose
proof will be deferred to the last section.

LemMma 3.1. There is a constant c, such that M(p") <c,p"~'/Vn for
every prime p and every positive integer n.

Theorem 1.2 will be proved with ¢, = ¢, V6. Since (n + 1)/n <3 when
n =2, we can make use of Lemma 3.1 via the following.

CoroLLARY 3.2. If p is a prime and n =2, then
M(p"y<2M(p")<c,p"'|V(n +1).

Let G be as in Theorem 1.2. Then Theorem 2.0 applies; we take up its
notation and case distinctions. Note that from d = p"f(p, F) it follows
that

a(p, yd+2=p"/(p—1)+2 (1
and
b(p, F)d/Viogd=p ' /(p —1)V(n + 1) (2)

(because d < p™*' by the comments after Definition 1.1).

It is easy to deduce from Theorem 2.0 that if n =0 or if we are in case
(1ii) and n — m = 0, then either G is cyclic or G is a 2-generator 2-group.
Similarly, if n =1 or if we are in case (iii) and n —m =1, then either G
can be generated by 3 elements or G is a 4-generator 2-group. The
additive constants in Theorem 1.2 have been chosen generously enough
to ensure that, in view of (1), there is no work to be done in these
situations. For the rest of the proof we can therefore assume that n =2,
and in case (iii) also n —m = 2.

We shall use repeatedly that, by (2.1) of [2],

2
f(P")<p—_T M(p") whenevern=2. 3)

For case (i), Theorem 1.2 already follows from Lemmas 2.5 and 2.3 and
Corollary 3.2.
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Two other references will also be needed several times:
f(p)Y<f(p ")+ M(p"~") whenever n=2 (4)
by (2.5) of [2}, while
f(27)=<2""' whenevern=2 (5)

by Lemma 2.2 of Ronse [5].
In the remaining cases, p = 2 and therefore

e(p, )=2. (6)
Consider case (ii) next; then G can be generated by f(27*?) elements. In

view of (1) and (2), the first claim of Theorem 1.2 holds because
FQ<FETY+ MQTY) by (4),
<2"+ M2 by (5),
<2"4+¢2"/V(n+1) by Lemma3.1,
2"+ ¢2"/V(n+1).
The second case also holds, because
frH=<2M@m?) by (3),
<, 2" V(n+3) by Corollary 3.2,
<4¢; 2" '/V(n+1)
<(e(p, F) +2)c,;2"'/V(n + 1) by (6).

In case (ii1), we know from Lemma 2.8 that G can be generated by
2" + M(2"*") elements. In view of (1) and (2),

f@rh=2mM@2h by (3).
<2¢¢2"/V(n + 1) by Lemma 3.1,
<c,2"/V(n+1)
therefore proves the first statement of Theorem 1.2. For the proof of the
second statement, we apply Lemma 2.6 to deduce that G can be
generated by (m +e(2, F) + 1)M(2"™™) + f(2"7™) elements, and then use

(3) to conclude that (m +e(2, F)+ 3)M(2"™™) suitable elements will
generate G. From (3.1) of [2] we know that

M2 < (B)"M(2),
while of course
e, F)+2)B)"<e(2, F)+2
and
(m+1)(F)"<2<e,F)+2,
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so it follows that G can be generated by (e(2, F) + 2)2M(2") elements. In
view of (2) and Corollary 3.2, this completes the proof.

4. Proof of Theorem 1.3

We start by recalling the relevant construction from [2]. Let A be an
elementary abelian group of order p™ with n > 1; write R for the radical
of the group algebra F,A, and G for the semidirect product of A and R™
with m =[(p — 1)n/2]. The centralizer of R™ in A must be a characteris-
tic subgroup of A; and it cannot be A, for the largest trivial submodule of
F,A has dimension 1 while dim (R™/R”™*')=M(p")>1by (3.2) of [2]. It
follows first that R™ is its own centralizer in G, and then that the centre
of G has order p: so G has only one minimal normal subgroup.

In view of the paragraph introducing Theorem 1.3, our task is to show
that this G has, over any field F whose characteristic is different from p, a
faithful irreducible representation of degree at most p™*'. Since G is a
p-subgroup of C(p) wr Sym p”, over such an [ it has a faithful completely
reducible representation of degree f(p, F)p”. As we noted, f(p, F) =p. If
no irreducible constituent of this representation were faithful, their
kernels would all have to contain the only minimal normal subgroup of
G, so the direct sum of these constituents would not be faithful either. At
least one of these constituents is therefore a faithful irreducible repre-
sentation, and has degree at most p"*'.

5. Proof of Theorem 1.4

It will be convenient here to give a new construction for the relevant
examples of Isaacs [1].

Let F be an arbitrary field, p a prime different from the characteristic
of F, and n an integer such that 2=n+1=<e(p, F). Consider an
elementary abelian group A of order p”: then A has (p" —1)/(p— 1)
maximal subgroups B. In the integral group ring ZA, set

uA=Ea and uB=—uA+pzb.

aeA beB
It is straightforward to verify that
ui=piu, ¢P"+'ZA.
u%:p”uB ‘fPHHZA,
usup=ugug, =0 whenever B, # B,, and

uA+zuB=p".
B
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Let U denote the ZA-submodule generated in ZA by u, and the
(p" — 1)/(p — 1) elements ug (one for each maximal subgroup B of A).
The last displaced equation implies that U =p"ZA. Set V = U/p"*'ZA:
this quotient cannot be generated by any proper subset of the generating
set it inherits from U [for, the submodule generated by a subset excluding
ug+p"*'ZA, say, is annihilated by ug while uy + p"*'ZA itself is not].
The intersection of the maximal submodules can be omitted from each
module generating set, so the claim of the previous sentence also holds
for the largest semisimple quotient V/rad V of V. Since A and V are both
p-groups, V/rad V is an elementary abelian group with trivial A-action.
In such a module, the size of any irredundant generating set is the
minimal number of generators. We can therefore conclude that V /rad V
cannot be generated by (p" —1)/(p —1) elements. It follows that the
semidirect product, G say, of A and V has an elementary abelian
quotient which cannot be generated by n + (p” —1)/(p — 1) elements,
and so neither can G.

Consider the normal subgroup Q,(V) of G consisting of the elements
of V which have order at most p. As U=p"ZA, we have Q,(V)=
p"ZA/p"T'ZA. In particular, it follows that V is its own centralizer in G.
The map ZA— 2, ¥ z,a— z, yields a homomorphism @: V—Z/p"*'Z

aeA
which is nontrivial on €,(V); this ¢ is surjective, because
(ua +p"T'ZA)p =1+ p""'Z. 1t is easy to see also that Q,(V)Nker ¢
contains no nontrivial normal subgroup of G, and that the normalizer of
this intersection in G is just V.

Now let p: Z/p"*'Z— GL(f(p, F), F) be a faithful irreducible repre-
sentation, and consider the composite map ¢@p as an irreducible
representation of the normal subgroup V of G. The inertia group of ¢@p
in G is V itself, because that inertia group must normalize Q,(V) N ker ¢.
It follows that the representation of G induced from @p is irreducible.
The kernel of the induced representation intersects ,(V) in a normal
subgroup of G contained also in ker g, so this intersection is trivial. Thus
the kernel of the induced representation avoids the self-centralizing
normal subgroup V and therefore must be trivial.

This proves that the group G, which cannot be generated by
n+(p” —1)/(p — 1) elements, has a faithful irreducible representation of
degree p"f(p, F) over F.

6. Proof of Corollary 1.7

If each Sylow subgroup of a finite nilpotent group can be generated by
n elements, so can the group itself, Corollary 1.7 will therefore be proved
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if we show that to each positive € there is an N (depending only on ¢ and
f) which, for each prime p, has the following property:

each finite irreducible linear p-group of degree at most 4 over [
can be generated by (mg + €)d + N elements.

(P)

For, if G is a finite nilpotent group with a faithful irreducible repre-
sentation over [, then the restriction of that representation to a Sylow
subgroup is a direct sum of pairwise equivalent irreducibles which must
therefore all be faithful: thus by (P) each Sylow subgroup of G can be
generated by (mg + €)d + N elements.

Let F be an arbitrary field. It is immediate from Definition 1.1 that
b(p, F)=1 for all p. This, Definition 1.6, and the first half of Theorem
1.2, together yield that a number N will have (P) for all p with
e(p, F) =« provided

(me+ €)d + N=med +2¢,d/Vlogd + 2 for all positive d.

From Definition 1.1 we see that a(p, F)<1/(p — 1); hence the first half
of Theorem 1.2 also yields that N has (P) for all p with 1/(p —1)=<¢/2
provided

(me+ €)d + N = (¢/2)d +2¢,d/Viogd +2 for all positive d.

This leaves finitely many primes p with e(p, ) <o to consider. By the
second half of Theorem 1.2, N has (P) for such a p provided
(me+e)d+ N=((p—De(p, F)+2)b(p, F)c,d/Viogd + 4
for all positive d.
The three displayed conditions on N (the last being required for finitely

many primes) are clearly compatible: they all hold for all sufficient large
N.

7. Proof of Corollary 1.8

The only thing to prove is the claim that if F has finite degree over its
prime subfield then

e(p, F) Viog p
fp.®) p

has an upper bound which (may depend on F but) is independent of p. In
proving that a function of p is bounded one may disregard its value at
p = 2: this will be convenient later. Consider first the case of finite F; say,
of F with cardinality g. Then p**®) divides ¢/*'Y’ — 1 whenever p } g, so
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e(p, P)logp <f(p, F)log g and hence

e(p,F)Viogp __logqg _ logq
f(p,¥) p  pViegp 2Viog2

for every relevant p. Next, suppose that p >2 and F is a finite extension
of the rational field Q: as noted after Definition 1.1, then |F(</—1): Fl<
p —1. By that definition, this field contains a cyclic multiplicative
subgroup of order p**'*). The unique smallest extension of Q to contain
such a subgroup has degree (p — 1)p»'P~!: 50

(p—p O < FV-1): QI<(p-1)IF: QI

This proves that e(p,F)<1+ (log|F: Q)/(logp)=<1+ (log|F: Q))/
(log 2).

8. Proof of Corollary 1.9

Let @ denote Euler’s function, as usual. If m is a positive integer, then
there are precisely ¢(m) complex numbers of multiplicative order m, and
adjoining any one of these to the rational field Q gives a field Q(V1)
which contains them all and so depends only on m, and whose degree
over Q is ¢(m). From the multiplicative property of ¢ one can see that if
m is even and n is a multiple of m then @(m)<¢@(n) and so
Q(¥1) <Q(¥1). It follows that if m is even then the torsion part of the
multiplicative group of @(¥1) has order precisely m.

For each prime p, choose a positive integer e(p), subject at first only
to the condition that e(2) > 1. For each positive integer k, let m(k) =
I1 p=». Then each Q("“V1) has precisely m(k) elements of finite

p<k

multiplicative order, and these fields form an ascending chain. Let F be
their union: then clearly f(p,F)=1 and e(p, F)=e(p) for all p; in
particular, mg=0. If e(p)>1 for all p, then for each p there is, by
Theorem 1.4, a finite irreducible linear p-group of degree p‘?’~' which
cannot be generated by (p”’~' — 1)/(p — 1) elements. Given a sequence
r(1), ..., r(d), ... as in Corollary 1.9, restricting the choice of the e(p)
so that also r(p*”~')<1/(p — 1) will therefore yield a field F for which
the claim of that corollary holds.

9. Proof of Lemma 3.1
Since M(p) =1 and since it was shown on p. 369 of {2] that

M) _ L ’j"<sinpx)~dx

p" 2n 3 psinx




14 J D DIXON ANDL G KOVACS

it will suffice to prove the existence of a number C such that

ar

j (sm'px) dx <C/pVn wheneverp=2andn=2.
p sin x

0

To this end, set

sin ueu%

h(u) =

and verify that h is decreasing on the interval (0, 7/2], whence
h(x)=h(px) whenever p =1 and x € (0, 7/2p]. This yields that on the

latter interval
sm.px < e—(Pm 1
psinx

0<

and therefore

x

n2p A n
f (snnpx) dx<fe_"(”z_]”1/6dx
p sinx 3

1 [ -6 : — 2
=m!e dt with t=xV{n(p*-1)}

G . 2 f 2

<——- th C,=— e 7ds
pVn RRRVEY

whenever p =2. On the other hand, [sinpx| =<1 and 0 <sinx <2x/x on

(0, 7/2), so on this interval

sin px < 1 .
psinx| plsinx] 2px’
therefore
a2 N a2 N
[y T (20
nhy P SIDX s 2px
T T C,

= - <
2p(n—1) 2p"(n—1) pVn
with C, = n/V2, whenever p=1 and n =2.

This completes the proof of Lemma 3.1, and so also the proof of
Theorem 1.2.
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