Generating finite soluble groups

by L.G. Kovács and Hyo-Seob Sim

Australian National University, GPO Box 4, Canberra 2601, Australia

ABSTRACT

We prove that if a finite soluble group G can be generated by s subgroups with pairwise coprime orders, each of these subgroups being generatable by r elements, then G itself can be generated by $r+s-1$ elements. No stronger conclusion can hold in general: we construct such groups, even with $s-1$ of the relevant subgroups actually cyclic, which cannot be generated by fewer than $r+s-1$ elements. We also show that if a finite soluble group G has a family of d-generator subgroups whose indices have no common divisor, then G can be generated by $d+1$ elements.

Let d be a positive integer, G a finite soluble group, U a simple G-module, $C_G(U)$ the kernel of the action of G on U, and $D_G(U)$ the intersection of the normal subgroups N of G such that $C_G(U)/N$ is G-isomorphic to U. The quotient $C_G(U)/D_G(U)$ is known as the crown of G corresponding to (the isomorphism type of) U; as G-module, this crown is a direct sum of isomorphic copies of U, with the number of summands called the U-rank of G. Of course U is finite and its ring of G-endomorphisms is a finite field: call the dimension of U over that field the absolute dimension of U. It is an immediate consequence of two theorems of Gaschütz (Satz 4.1 of [2] and Satz 4 of [1]) that G can be generated by $d+1$ elements if and only if the U-rank of G is at most $d+1$ whenever G acts trivially on U and at most d times the absolute dimension of U when the action on U is nontrivial. Since the absolute dimension of U is also the multiplicity of U as direct summand in the largest semisimple quotient of the regular G-module over the relevant prime field, this conclusion may also be phrased as follows.
LEMMA. \textit{A finite soluble group} \(G \) \textit{can be generated by} \(d + 1 \) \textit{elements if and only if} \(G/G' \) \textit{can be so generated and each crown of} \(G \) \textit{on which} \(G \) \textit{acts non-trivially can be generated (as} \(G \)-\textit{module}) \textit{by} \(d \) \textit{elements.}

Our aim here is to draw attention to another consequence of these ideas of Gaschütz. It answers a question which had been put to us by Professor Luis Ribes, and shows that the Grushko-Neumann Theorem has no simple analogue in the context of pro-(finite soluble) groups; for a discussion of the relevant issues, see Ribes and Wong \cite{6}.

Theorem 1. \textit{If a finite soluble group} \(G \) \textit{is generated by} \(s \) \textit{subgroups of pairwise coprime orders, and if each of these subgroups can be generated by} \(r \) \textit{elements, then} \(G \) \textit{can be generated by} \(r + s - 1 \) \textit{elements.}

Proof. If \(G \) \textit{satisfies the hypotheses, so does every homomorphic image of} \(G \). The claim is obvious when \(r = 1 \) or \(s = 1 \), and also when \(G \) \textit{is abelian}. In view of the Lemma, it suffices therefore to show that the crown of \(G \) corresponding to an arbitrarily chosen nontrivial \(U \) \textit{can be generated (as module) by} \(r + s - 2 \) \textit{elements}. In doing so, we may replace \(G \) \textit{by its quotient modulo} \(D_G(U) \) \textit{or, more conveniently, assume that} \(D_G(U) = 1 \). Write \(C \) for \(C_G(U) \). By Satz 5.1 of Gaschütz \cite{2}, \(C \) \textit{is then complemented in} \(G \); let \(K \) \textit{denote one of its complements, and} \(p \) \textit{the unique prime divisor of the order of} \(C \). Let \(H_1, \ldots, H_s \) \textit{be the subgroups provided by the hypothesis; arrange the listing of these subgroups so that} \(H_2, \ldots, H_s \) \textit{are all} \(p' \)-\textit{groups. If} \(H \) \textit{is a Hall} \(p' \)-	extit{subgroup of} \(K \), \textit{it is also a Hall subgroup of} \(G \), \textit{so each of} \(H_2, \ldots, H_s \) \textit{has} \(G \)-\textit{conjugates contained in} \(H \); \textit{therefore they have} \(C \)-\textit{conjugates contained in} \(K \). On replacing \(K \) \textit{by a conjugate if necessary, one can arrange that one of these subgroups,} \(H_2 \) \textit{say, is actually contained in} \(K \). That done, for \(i = 3, \ldots, s \) \textit{choose elements} \(c_i \) \textit{in} \(C \) \textit{so that} \(H_i^{c_i} \leq K \). Finally, \textit{choose a family of} \(r \) \textit{elements to generate} \(H_1 \), and \textit{write these elements as} \(x_1 y_1, \ldots, x_r y_r \) \textit{with} \(x_j \in K, y_j \in C \). Then \(G \) \textit{is clearly generated by} \(H_1, H_2, H_3^{c_1}, \ldots, H_s^{c_{s-1}}, c_3, \ldots, c_s \), \textit{and hence also by} \(K \) \textit{and} \(y_1, \ldots, y_r, c_3, \ldots, c_s \). \textit{It follows that} \(G \) \textit{is the product of} \(K \) \textit{with the} \(G \)-\textit{submodule of} \(C \) \textit{generated by the} \(r + s - 2 \) \textit{elements last listed. As} \(K \) \textit{and} \(C \) \textit{intersect trivially, that submodule must therefore be} \(C \) \textit{itself, and so we see that} \(C \) \textit{can be generated by the required number of elements.}

Given positive integers \(r \) and \(s \), it is not hard to construct examples, even with \(H_1, \ldots, H_{s-1} \) cyclic, such that \(G \) \textit{cannot be generated by fewer than} \(r + s - 1 \) \textit{elements}. When \(s = 1 \) \textit{there is nothing to do, and the case of} \(r = 1 \) \textit{will be left to the reader. In the remaining case, let} \(p_1, \ldots, p_s \) \textit{be distinct primes, and} \(q \) \textit{a prime which is congruent to} \(1 \) \textit{modulo} \(p_1 \cdots p_{s-1} p_s^2 \). \textit{Further, let} \(E \) \textit{be an extraspecial group of order} \(p_s^{r+1} \) \textit{when} \(r \) \textit{is even, or the central product of a cyclic group of order} \(p_s^2 \) \textit{with an extraspecial group of order} \(p_s^r \) \textit{when} \(r \) \textit{is odd. For} \(i = 1, \ldots, s-1 \), \textit{let} \(H_i \) \textit{be a group of order} \(p_i \) \textit{generated, say, by} \(h_i \). \textit{The direct product} \(H_1 \times \cdots \times H_{s-1} \times E \) \textit{then has a faithful simple module} \(U \) \textit{of order}
Any such \(U \) is absolutely simple even as \(E \)-module; the \(h_i \) and the central elements of \(E \) act on it as scalars or, in multiplicative terminology, as powering automorphisms. Let \(W \) be the direct product of \((r + s - 2)[r/2]\) copies of such a \(U \), and \(\{w_1, \ldots, w_{r+s-2}\} \) an \(E \)-module generating set for it. Form \(G \) as the semidirect product of \(W \) with the direct product acting on it, and let \(H_s \) be the subgroup generated by \(E \) and \(w_s, \ldots, w_{r+s-2} \). Using the Lemma, it is easy to see that \(H_s \) can be generated by \(r \) elements, and that \(G \) cannot be generated by fewer than \(r + s + 1 \) elements: so we shall be done if we show that \(H_s, H_{s+1}, H_s \) together generate \(G \). Let \(h_s \) be a nontrivial element in the centre of \(E \); for \(i = 1, \ldots, s \), let \(k_i \) be an integer such that the action of \(h_i \) on \(U \) is given by \(h_i: u \mapsto u^{k_i} \); note that \(k_i \not\equiv 1 \pmod{q} \). The outstanding claim now follows from

\[
[h_i^{w_i}, h_s] = [h_i, [h_i, w_i], h_s] = [w_i^{1-k_i}, h_s] = w_i^{(1-k_i)(k_i-1)}.
\]

The hypothesis of Theorem 1 may be seen as a weakening of the hypothesis of Theorem 2 in [4], which asserts that if each Sylow subgroup of a finite soluble group can be generated by \(d \) elements then the group itself can be generated by \(d + 1 \) elements. The examples just constructed show that Theorem 1 cannot be strengthened to provide a generalization of that result. Instead, one can readily establish the following.

THEOREM 2. If a finite soluble group \(G \) has a family of \(d \)-generator subgroups whose indices have no common divisor, then \(G \) can be generated by \(d + 1 \) elements.

The proof begins like that of Theorem 1, with a reduction to the consideration of \(C = C_1(U) \) for some \(U \) such that \(D(U) = 1 \), and of a complement \(K \) of \(C \) in \(G \). The coprimality assumption then ensures that one of the \(d \)-generator subgroups, \(H \) say, contains \(C \). In view of the Lemma, it will suffice to prove that \(C \) can be generated by \(d \) elements as \(H \)-module. By Nakayama's Lemma, this will follow if we show it for the largest semisimple quotient of \(C \) instead. Given a simple \(H \)-module \(V \), let \(M \) denote the intersection of those normal subgroups \(N \) of \(H \) which are contained in \(C \) and such that \(C/N \) is \(H \)-isomorphic to \(V \). The proof will be completed by showing that, for every choice of \(V \), the \(H \)-module \(C/M \) can be generated by \(d \) elements. To this end, note first that \(H \cap K \) complements \(C \) in \(H \), and that \(C_{H \cap K}(V) \) is normal in \(H \cap K \): thus \(C_{H \cap K}(V)N/N \) is normalized by \((H \cap K)N/N \). Of course it is also centralized by \(C/N \), so it is normal in \(H/N \). Thus \(C_{H \cap K}(V)N \) is normal in \(H \), and by an isomorphism theorem \(C_H(V)/C_{H \cap K}(V)N \) is \(H \)-isomorphic to \(C/N \) and hence to \(V \). It follows first that \(C_{H \cap K}(V)N \subseteq D_H(V) \), and then that \(M \subseteq C \cap D_H(V) \). Another appeal to an isomorphism theorem now yields that \(C/M \) is \(H \)-isomorphic to a section of the crown of \(H \) corresponding to \(V \). By our Lemma, that crown can be generated by \(d \) elements; hence so can \(C/M \), and we are done.

In conclusion, we note that recently the solubility hypothesis has been re-
moved from Theorem 2 of [4] by Lucchini [5] and Guralnick [3]. One is therefore encouraged to ask: can it also be removed from our theorems? Further, using that a nontrivial simple module can never have order 2, it is easy to see that Theorem 2 of [4] remains valid even if the Sylow 2-subgroup is allowed \(d + 1 \) generators; does that slight generalization also survive the omission of the solubility hypothesis?

REFERENCES