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GENERATING FINITE COMPLETELY REDUCIBLE 
LINEAR GROUPS 

L. G. KOVACS AND GEOFFREY R. ROBINSON 

(Communicated by Warren J. Wong) 

ABSTRACT. It is proved here that each finite completely reducible linear group 
of dimension d (over an arbitrary field) can be generated by L 3 d] elements. 
If a finite linear group G of dimension d is not completely reducible, then its 
characteristic is a prime, p say, and the factor group of G modulo the largest 
normal p-subgroup O.p(G) may be viewed as a completely reducible linear 
group acting on the direct sum of the composition factors of the natural module 
for G: consequently, G/IOp(G) can still be generated by L3d] elements. 

1. INTRODUCTION 

The aim of this paper is to prove the following: 

Theorem. Each finite completely reducible linear group of dimension d can be 
generated by LId] elements. 

If a finite linear group G of dimension d is not completely reducible, then its 

characteristic is a prime, p say, and the factor group of G modulo the largest 
normal p-subgroup OP (G) may be viewed as a completely reducible linear 

group acting on the direct sum of the composition factors of the natural module 

for G: consequently, G/IG (G) can still be generated by LId] elements. 

By a linear group G we mean a group of nonsingular linear transformations 
on a finite dimensional vector space V over a (commutative) field IF; the di- 

mension of G is the dimension of V. As usual, for any real number x we 

denote by Lxi and [x] the integers defined by Lxi < x < Lxi + 1 and 

[x] - 1 <x [x] . 
The case of a group whose order is prime to the characteristic of the field can 

be dealt with relatively easily. Isaacs had shown [9] that each finite completely 
reducible linear p-group of dimension d can be generated by LIdj elements. 

Lucchini [12] and Guralnick [6] have recently proved that any (abstract) finite 

group can be generated by n + 1 elements provided each of its Sylow subgroups 
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can be generated by n elements. With a little care, one can combine these two 
results (and Maschke's theorem) to get what we want. 

This plan cannot possibly work without the coprimality assumption: for ex- 
ample, the 2-dimensional irreducible linear groups SL(2, pn) have Sylow sub- 
groups which need n generators. Instead, we show that in any finite completely 
reducible linear group of prime characteristic p, the difficulties arising from 
possibly large Sylow p-subgroups can be contained within the components (that 
is, the quasisimple subnormal subgroups) of G: then these difficulties can be 
overcome by using that all quasisimple groups are 2-generator groups. 

For the latter fact, and for information on outer automorphism groups of 
simple groups, we depend directly on the classification of finite simple groups. 
Use of the work of Guralnick and Lucchini already made us indirectly depen- 
dent on that. It will be convenient to exploit the 2-generator nature of simple 
groups via an easy variant (which we take for granted) of Lemma 2 of Wiegold 
[14]: any direct product of r nonabelian finite simple groups can be generated 
by 2 + Flog60 r] elements. 

If F is any field which has an element of multiplicative order 4, then GL(2, F) 
has an irreducible subgroup of order 16 which needs 3 generators. The direct 
sum of m copies of this group gives a 2m-dimensional linear group which 
cannot be generated by fewer than 3m elements. In this sense, our theorem is 
optimal. 

A result similar to the coprime case of our theorem but involving a constant 
2~~~~~~~~~~~~~ multiple of d / log d in place of the present L4dJ had been given by Fisher 

in [4]; the noncoprime case was also considered there. We are indebted to 
Professor J. D. Dixon for drawing the problem to our attention. 

2. THE COPRIME CASE 

As complete reducibility of finite linear groups is unaffected by field exten- 
sions (see ? VII. 1 in [8]), F can always be assumed as large as we wish. 

The plan for the coprime case outlined in the Introduction directly proves 
the theorem with L3dJ + 1 in place of L3dJ . The way to improve on this lies 
in considering transition in both directions between GL(V) and PGL(V), the 
factor group of GL(V) modulo the group Z of all the scalar transformations. 

First, let p be any prime different from the characteristic of F, and H a 
Sylow p-subgroup of G. Extend F if necessary, to ensure that Z has a finite 
p-subgroup P which is not contained in H. Of course P contains H n Z, 
so HZ/Z ' HP/P. Further, P is not contained in the Frattini subgroup of 
HP, and so HP needs more generators than HP/P does. From the theorem of 
Isaacs applied to HP, one can therefore conclude that HZ/Z can be generated 
by L3d] -1 elements. The coprimality assumption ensures that this argument is 
available for all relevant primes, and so the theorem of Lucchini and Guralnick 
yields that GZ/Z can be generated by L3dJ elements. 

Next, let M be a subgroup of G minimal with respect to MZ = GZ. By 
a familiar argument, M n Z is then contained in the Frattini subgroup of M, 
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so M/(M n Z) ? MZ/Z = GZ/Z means that M can be generated by L3d] 
elements. Moreover, every elementary abelian quotient of M is isomorphic to 
a quotient of GZ/Z, so we can further conclude that M/M' can be generated 
by L3d] - 1 elements. A well-known result of Gaschdtz [5] now allows us to 
combine these conclusions as follows: M is generated by L3d] elements one 
of which can be chosen within M'. On the other hand, by Dedekind's law we 
have G = M(G n Z), and of course G n Z is cyclic. On replacing a generator 
of M lying in M' by its product with a generator of G n Z, the L[d] -element 
generating set of M becomes a generating set of G. This completes the proof 
of the coprime case. 

3. FIRST STEPS TOWARDS THE GENERAL CASE 

The proof of the general case will occupy the rest of the paper. Throughout, 
F denotes a field, V an F-space of dimension d, and G a finite completely 
reducible subgroup of GL(V); we also retain the convention that Z stands for 
the centre of GL( V) The coprime case having been dealt with, we now assume 
that the characteristic of F is not 0. Standard results on changing fields (see 
? VII. 1 in [8]) ensure that one can change first to the algebraic closure of IF, and 
then to any finite subfield which is a splitting field for G. We take advantage 
of this by assuming that 

F is finite and contains all roots of xexpG -I 

(here exp G stands for the exponent of G). For ease of expression we also 
assume that 

G > Z. 

This can be done without loss of generality. Indeed, it is an elementary exercise 
to show that if a central product of an arbitrary finite group G with a finite 
cyclic group Z can be generated by n elements, then so can G itself. On 
the other hand, while the exponent of GZ may be larger than the exponent of 
G, it is easy to see that if IF contains all solutions of xex G = 1 then it also 
contains all solutions of xex GZ =1 

Our aim in this section is to prove the theorem under the additional hypoth- 
esis that G has an irreducible quasisimple normal subgroup K. Of course now 
F is a splitting field for K, so CG(K) = Z, and hence the generalized Fitting 
subgroup F* (G) is just KZ. (The reader is assumed to be familiar with the 
terminology and basic results in ? X. 13 of [8].) In particular, F* (G) can be 
generated by 2 elements. In view of the theorem of Lucchini and Guralnick, it 
will therefore be more than sufficient to prove the following. 

Lemma. If G has an irreducible quasisimple normal subgroup, then for all primes 
p the sectional p-rank of G/F*(G) is at most A3di - 3, except when p = 2 
and d = G/F*(G)l = 2. 

Proof. Now G/F* (G) is isomorphic to a subgroup of Out K. If an auto- 
morphism of a group is trivial on the central factor group, it must fix each 
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commutator: since K is perfect, this makes it easy to see that in turn Out K 
is isomorphic to a subgroup of Out (K/Z(K)) . From the description of the 
outer automorphism groups of the simple groups given in the Atlas [2], one read- 
ily sees that they all have sectional p-rank at most 3, for all p . As [ 3 dj - 3 > 3 
when d > 4, we need only be concerned with the cases d = 2 and d = 3. 

All irreducible but imprimitive linear groups of dimension at most 3 are 
obviously soluble: hence now our G is primitive. All primitive linear groups 
of dimension at most 3 are explicitly known, so it is just a matter of checking 
lists (Bloom [1], Hartley [7]). Not quite: some lists restrict attention to the 
unimodular case. To overcome this hurdle, consider a finite extension E of F 
in which each equation xd = f with f E F has a root, and denote the centre 
of GL(d, E) by Z*: then G < SL(d, E)Z*. Put H = GZ* nSL(d, E); then 
K is a normal subgroup of H so H is primitive and therefore listed, while 
H/F*(H) and G/F* (G) are isomorphic to the same subgroup of Out K and 
so it suffices to check on H/F*(H). C 

(In fact, one finds that IG/F*(G)l < d whenever d < 3.) 

4. IRREDUCIBLE LAYER 

The aim of this section is to prove our theorem under the assumption that 
the layer E(G) of G is irreducible. 

Lemma. If K1, ... , Kr are the quasisimple subnormal subgroups of G and if 
the (normal) subgroup E they generate is irreducible, then the sectional p-rank 
of G/F*(G) is at most [3dj - 2r - 1 + [L], except when r = 1, p = 2, and 
d = IG/F*(G)l = 2. 

Proof. The case of r = 1 is just the lemma of ? 3 so suppose that r > 2. 
As E is irreducible, CG(E) = Z, and so F*(G) = EZ. For each i, choose 
an irreducible Ki-subspace ViJ, and denote by Ki1 Vi the restriction of Ki 
in GL(Vi). The linear span of Ki is a subalgebra of EndF V; let Li denote 
the normalizer of Ki in the group of units of that subalgebra, and N the 
intersection of the normalizers NGL(V)(Ki). Of course, Z < Li < N > G. 
By Corollary 2 in ? 4 of [10], we know that N/F*(G) is the direct product 
of the Li/KiZ. Of course F*(Li) = KiZ, restriction to Vi is an (abstract) 
isomorphism on Li, and the lemma of ? 3 is applicable with Li1 t Vi, Ki1 V J in 
the roles of G, K: with di = dim Vi , the conclusion is that either the sectional 
p-rank of Li/KiZ is at most [3dij - 3 OR p = 2 and di = Li1/K,ZJ = 2. As 
di > 2 for all i and d = H di > E di, we can conclude that the sectional p- 
rank of N/F* (G) is at most [ 3 dj - 2r - 1 except perhaps when r = 2, p = 2, 
and di = ILi/KiZ I = 2 for i = 1, 2. The same holds then for (G n N)/F* (G) 
in place of N/F*(G). 

As {K1, ... , Kr} is the set of all components of G, conjugation gives a 
permutation representation of G on this set, with kernel GnN: thus G/(GnN) 
can be thought of as a permutation group of degree r. It follows from Kovacs 
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and Praeger [ 1 1 ] that the sectional p-rank of any permutation group of degree r 
is at most [L] . This completes the proof of the lemma, but for the exceptional 
case detailed in the second last sentence of the previous paragraph. In that case 
d = 4 and p = r = 2, so what we require of G/F*(G) is that its sectional 
2-rank be at most 2. When K1 and K2 are normal in G, this follows without 
further argument. If K1 and K2 are conjugate in G, then L, and L2 are also 
G-conjugate and so GN/F*(G) is a nonabelian group of order 8: consequently, 
the desired conclusion is still available. 0 

Under the hypotheses of this lemma, our theorem will now follow from the 
Lucchini-Guralnick theorem if we can show that F*(G) can be generated by 
2r - [L2 elements. (Recall that the case r = 1 has already been disposed of 
in ? 3.) In turn, this requires only that any direct product of r nonabelian 
simple groups be generated by the given number of elements. By the variant of 
a lemma of Wiegold [14] mentioned in our ? 1, any such direct product can be 
generated by 2 + Flog60 rl elements. Of course 2 + log60 r < r + 1 < 2r - [L2 
whenever r > 2, so we are done. 

5. MULTIPLICITY-FREE LAYER 

The final step in the first half of the proof of the theorem is now at hand. 

Lemma. Suppose that G is irreducible, that it does have quasisimple subnormal 
subgroups, and that the product E of these is multiplicity-free (in the sense that V 
as FE-module is a direct sum ofpairwise nonisomorphic irreducible submodules). 
Then G can be generated by [3d] elements. 
Proof. Let K, ... , K be the components of G, and let VIE = VI. ..e Vt 
with irreducible Vi. The case of t = 1 having been dealt with in ? 4, assume 
that t > 2. Of course each Ki I Vj is either trivial or quasisimple, and to each 
i there is at least one j such that Ki I Vj is nontrivial. For any one j, let r 
be the number of nontrivial Ki1 Vj: as G is irreducible, the Vj form a single 
G-orbit, so this r is independent of j; also, by the foregoing, s < rt. This 
may be the point to note that each Vj has dimension dt . 

Consider N = n NGL(V)(Vj) = GL(Vj). With Z1 standing for the centre 
of GL(Vj) , now CGL(V)(E) = E Zj, so CG(E) is a subgroup of a direct product 
of t cyclic groups. In particular, it follows that CG(E) = F(G), hence Z < 

F*(G) = ECG(E) < N. Of course G n N is a normal subgroup of G, so we 
also have F* (G) = F* (G n N). 

It is an elementary exercise that if X is a finite subgroup of a finite direct 
product H1 Yj with coordinate projections r H Y; Y- then F*(X) = X n 

H F*(X7rj) and so X/F*(X) is isomorphic to a subgroup of (Xxj1F*(Xxj)). 
Apply this with X = G n N and Yj = GL(Vj) to obtain that (G n N)/F*(G) 
is isomorphic to a subgroup of H(Gj/F*(Gj)) where Gj = (G n N) I Vj . We 
know that E I Vj is the product of r elementwise commuting quasisimple 
groups, that it is normal in Gj, and it is irreducible. By the lemma of ? 4, the 
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sectional p-rank of GI/F*(G1) is at most [3d| - 2r - 1 + rj, except when 
r = 1, p = 2, and d = Gj/F* (Gj) I = 2. Since the G. are quotients of G n N 
modulo G-conjugate kernels, either all Gj are exceptional in this sense or none 
of them is. When none of them is exceptional, we conclude that the sectional 
p-rank of (G n N)/F*(G) is at most 13dj - 2rt - t + LJt. 

On the other hand, G n N is the kernel of the permutation representation 
of G on the set { VI , ... , Vt}, so by a previous argument the sectional p-rank 
of G/(G n N) is at most I. It follows that, but for the exceptional case, the 
sectional p-rank of G/F*(G) is at most L2d] - q where 

q = 2rt + t - Lilt- LtJ. 

In the exceptional case, G/F*(G) is isomorphic to a subgroup of a (permuta- 
tional or nonstandard) wreath product of a group of order 2 with the symmetric 
group of degree t, and hence also to a subgroup of the symmetric group of de- 
gree 2t: thus in this case the sectional p-rank of G/F*(G) is at most t, for 
all p. Recall that in this case d = 2t and r = 1 . 

To complete the argument in the nonexceptional case on the pattern which 
must be familiar by now, we need to show that F* (G) can be generated by q - 1 
elements. We have already used special cases of Lemma 5.1 of Wiegold [13]: if 
a perfect group can be generated by m elements and an abelian group can be 
generated by n elements, then any central product of these two groups can be 
generated by max{m, n} elements. Now we know that E(G) is the product of 
at most rt components, so by the variant of that other lemma of Wiegold [14] in 
our ? 1, this perfect group can be generated by 2+ Flog60 rtl elements. Further, 
F(G) is known to be an abelian group which can be generated by t elements. Of 
course q- 1 > t always holds and, as t > 2, so does q- I > t+ 1 > 2+ Flog60 rtl 
when r = 1 . If also r > 2, then rt > r + t and hence 

q- 1 > 3rt- t -1 

,2 3r+t-l 

> 2+(r- 1)+(t- 1) 

> 2 + Flog60 rl + Flog60 tl 
> 2 + Flog60 rtl. 

To complete the argument in the exceptional case on the same pattern is 
much easier. One is required to show that each of E(G) and F(G) can be 
generated by 2t - 1 elements: but 2t - 1 > t and 2t - 1 > 2 + log60 t are 
obvious when t > 2. o 

6. THE INDUCTION 

We are now ready to prove the theorem in full generality, by induction on 
d. The assumption that F is a finite splitting field for all subgroups of G will 
be maintained; the characteristic of IF will be denoted by p. The initial case 
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d = 1 is obvious. The inductive hypothesis is that d > 1 and the theorem 
holds in all smaller dimensions. 
Case 1. G is reducible. 

Now V = UE W with FG-submodules U, W of dimensionless than d. By 
the inductive hypothesis, G l U and CG (U) I W can be generated by [ 3dim U] 
and [4 dim W] elements, respectively. On the other hand, G/OG(U) G U 
and CG(U) C G(U) 1 W, so it follows that G can be generated by [3d] 
elements. 
Case 2. G is irreducible and has a nonabelian normal subgroup H which is not 
multiplicity-free. 

Let t denote the number of the isomorphism types of the irreducible direct 
summands of V as FH-module; by Clifford's theorem, these summands have 
a common dimension, e say, and a common multiplicity, m say. Then d = 
emt, and CGL(V)(H) is the direct sum of t copies of GL(m, F). Being a 
subgroup of this direct sum, CG(H) has a faithful representation of dimension 
mt over F. Since ?p(CG(H)) = 1 , it follows that CG(H) has also a completely 
reducible faithful representation of this dimension. As H is nonabelian, e > 2: 
thus by the inductive hypothesis CG (H) can be generated by [4 mtj elements. 

On the other hand, H has a faithful completely reducible and multiplicity- 
free representation over IF, whose dimension is et and whose equivalence type 
is G-invariant: let p : H -* GL(U) be such a representation. To each g in G 
there exist elements g in GL(U) such that (g 1hg) p = g1 (hp)g for all h in 
H. In fact, the g with this property form a right coset module CGL(U) (Hp). 
The union of these cosets is a group G which is finite (because F is) and 
completely reducible (because now each H-admissible subspace of U has a 
unique H-admissible complement, and thus if this subspace admits G, so does 
that complement). By our assumption, m > 2: so by the inductive hypothesis 
G can be generated by [3et] elements. As G/CGL(U)(Hp) G/%(H), it 
follows that G can be generated by [3 mtj + e4etJ elements. Since e > 2 and 
m > 2, one has em > e + m, so this is good enough. 
Case 3. G is irreducible and CG(F(G)) < F(G) . 

Let P be a Sylow p-subgroup of G, and set H = PF(G). Since G is ir- 
reducible, GPO(G) = 1, and so P n F(G) = 1 . Because CG(F(G)) < F(G), it 
follows that GP (H) = 1; therefore H has a completely reducible faithful repre- 
sentation of dimension d over F. As H is soluble, the Fong-Swan-Rukolaine 
theorem (22.1 in [3]) now gives that one can also view H as a subgroup of 
GL(d, F) for a suitable field F of characteristic 0. Then P n Z (H) = 1 shows 
that the natural map to PGL(d, F) is one-to-one on P. By the argument in 
the first half of the proof of the coprime case, P can therefore be generated 
by [4dJ - 1 elements. Of course for Sylow subgroups of G corresponding 
to other primes, that argument is available already over F. The second half 
of that proof made no use of the coprimality assumption, so it can be used to 
finish off this case as well. 
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THE REMAINING CASE 

In the remaining case, G is irreducible and the layer E(G) of G is nontrivial 
and multiplicity-free: so that is just the case dealt with in the lemma of ? 5. f1 
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