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ABSTRACT

We give a description, in terms of twisted wreath products, of all finite groups G with a core-free
maximal subgroup H such that the socle of G is a non-abelian minimal normal subgroup of G,
and is complemented in G by H. Moreover, we deal with the problem of finding all subgroups
G* of these G such that firstly, their socle coincides with the socle of G and is also minimal nor-
mal, and secondly, G* " H is a (necessarily core-free) maximal subgroup of G*. .

A finite group G is called primitive if it has a maximal subgroup H such that
Coreg(H) = 1; here Coreg(H) = ﬁgeG He, the unique largest normal subgroup of
G contained in H. Of course, G is primitive in this sense if and only if it admits a
faithful representation as a primitive permutation group; however, our interest in
the present paper is in abstract groups and their structure: we will not be concerned
with the various permutation representations that primitive groups may have. A
partial description of the structure of (finite — this assumption will be made of all

groups in this note) primitive groups has been given by
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BAER [2]: If H is a maximal subgroup of a group G with Coreg(H) =1 then pre-
cisely one of the following three statements holds:
M  S(G)=Cs(S(G)) -« G — inthis case G=HS(G) and HNS(G) =1;
(I1) S(G) <G and C5(S(G))=1;
(1) S(G) =M, xM, where M; 4G and Co(M;))=M;; (i=12) — here
G=HM;, HnM;=1 and M;=; SH)=HN S(G) -<H (=1,2).
Conversely, if one of the following three conditions holds, then G zs dprimi-
tive group (and satisfies (I), (I), or (I1I), respectively):
(IY G is a semidirect product of a group H with a faithful irreducible H-
module S over some prime field,
(II') G has a non-abelian minimal normal subgroup S such that Cg(S) = 1;
(IIT') G is the semidirect product of a group H possessing a unique minimal

normal subgroup S, where S is non-abelian, with a copy of S.

(We have used the following notation: M -< G means that M is a minimal nor-
mal subgroup of G; and S(G)=(M | M - G), the socle of G. We will also write
H <- G to express the fact that H is a maximal subgroup of G.)

A primitive group G satisfying condition (I), (II), or (III) will be’called of
type (I), (I), or (III), respectively — this will be indicated by writing G e B,
Ge Py, Ge Py. For G in P or Py there is always a minimal normal sub-
group complementing some core-free maximal subgroup; in fact, this is true for all
minimal normal subgroups and all core-free maximal subgroups. The purpose of
this paper is to give a precise description of all those primitive groups of type II
where a core-free maximal subgroup is complemented by a non-trivial nbfmal sub-
group (which, by the above result, is necessarily minimal): these are the groups ad-
mitting a representation as a primitive permutation group with a single non-abelian
regular normal subgroup. (They are also the groups which were missing in the ori-
ginal version of the O'Nan-Scott Theorem as given in [4]; a correct version appeared

in [1]). Following Lafuente, we will denote the class of all such groups by Bj.



A first step towards our goal is the observation that — as a conséquence of the

Schreier conjecture — groups in P cannot have a simple socle, which is due to
ASCHBACHER-SCOTT [1]: Py does not contain any almost simple groups.

(Recall that an almost simple group is [a group isomorphic to] a subgroup of
the automorphism group of a non-abelian simple group containing all inner auto-

morphisms.)

In view of this lemma, the socle of a group in Py is -always a direct product of
at least two copies of a non-abelian simple group; since'it is.a minimal normal sub-
group, the simple direct factors are permuted transitively (via conjugation) by the
elements of any (core-free maximal) subgroup complementing the socle. Such

groups are always (non-trivial) twisted wreath products:

BERCOV [3], LAFUENTE [7]: Let G be a group and H, E < G. Assume that the nor-

mal closure EG of E in G is complemented in G by H, and is a direct product of
the H-conjugates Et of E, where t ranges through a right transversal T of Ny(E)

in H:

G =H(ES), HN (ES) =1, and EG=X TEt (=ET).
Set N =Nyx(E). Then
G=EWH,

the twisted wreath product of E and H (with respect to the action of N on E given
by conjugation); indeed, a suitable isomorphism maps EG to the base group and H

to its canonical complement.

It will be convenient to employ the following notation for twisted wreath pro-
ducts.

Let E and H be groups, suppose that A € Hom(N,Aut(E)) for some sub-
group N of H, and consider any right transversal T of N in H containing 1.



ET =X, 1 E!, where E'=E forall te T;

we will, in fact, always write a (distinguished) isomorphism from E to Et! by
et>et forall ec E
and require that for t=1 this is the identity.
An action of H on ET (thatis, acertain A* € Hom(H,Aut(ET)) may now be
defined by

(e)®) = (e forall e E, he H and te T,

where ne N and t'e T arerelatedto h and t by th=nt". (Often the homomor-
phisms A and A* will be omitted from our formulas, especially when the action is
understood from the context; then the above formula reads eth = ent)

The twisted wreath product of E and H (with respect to the action A of N on
E) is the semidirect product H(ET) formed with respect to the action A* of H on
ET. It will be denoted by E Y13y H (orby E Uy H, if the action of N on E is un-
derstood: note that the resulting group E Uy H does not really depend on the spe-
cific choice of a transversal T).

A (sufficient, yet not necessary) criterion for the base group ET of such a
twisted wreath product G (=E Yy H=E Y7y H) with E non-abelian éimple to

be the only minimal normal subgroup of G is derived from the following fact:

CG(ET) < Corey(N#*)ET,

where N#*={ne N | n induces an inner automorphism in E}.

Consequently,

Corey(N#*) = 1 implies that G € Py.

We conclude this introductory section by fixing some more notation and ter-
minology.

For any group E, E® (n € N) denotes the direct product EX ... XE of n co-
pies of E. The canonical diagonal subgroup of E® (isomorphic to E) is the group



A(E®™) = { (e,...c) | e€ E }.

If E® is given as ET as above (the isomorphisms from E! to E! égain being

written as ¢ > et for all e € E), the same term will refer to the subgroup

A(El')={l-[te1-et lee EJ}.

§ 1 Primitive groups with non-abelian regular nérmal subgroups

In view of Baer's Theorem, a regular normal subgroup of a primitive group is
necessarily minimal. Therefore, from the Bercov-Lafuente Proposition we get that
any such group G is isomorphic to a twisted wreath product of a non-abelian simple
group E with a group H. The following result gives a primitivity criterion for such
twisted wreath products.

(We would like to alert the reader that there is a misprint in the statement of this
result given in [5]. Furthermore, we would like to draw attention to a different
proof of this theorem, which will be given in [6] as part of a more general investiga-

tion. Here we present a direct proof.)

1.1 THEOREM. Let G =E Yt H, where T denotes a right transversal of the
subgroup N of H and A is a homomorphism from N into Aut(E) for some non-
abelian simple group E.
Put C =ker(A) = CN(E) and D =S(N mod C).
(a) The following three statements are equivalent in pairs:
(i H< G
(i) D/C =\ E, and if for some subgroup M of H, A M — Aut(E) ex-
tends A (i.e., N<M and N|y=A), then N'=A (i.e., N=M).



(iii) D/C =\ E, N = Ny(C) " Ny(D), and D <X whenever C<X<H
with N < Ng(X). |
(b) Assume conditions (i-iii) from (a) and suppose that Coreg(H)=1. Then
either G € Py and Corey(D)=1, orelse Ge Py and CoreH(D)= SH).

Proof. (a) (i) = (ii): Consider a proper subgroup K of H containing N. In T
there exist transversals R, S of, respectively, N, K in K, H. Then )
K(EX) = K(ER) = E g K.

Now, if K is not maximal in E gy K, say K <K* <EQg ) K, we can find a
non-trivial K-invariant proper subgroup B of ER, namely, B = K* N ER. In this
case 1#BH=BKS=BS=X,_¢Bs<ET and thus H< H(BH) < E Yty H. This con-
tradiction against (i) shows:

(*) K<-Egy K whenever N< K<H (R aright transversal of N in K).

Application of (*) with K=N yields maximality of N in NE (=NE!). Hence
NE/C is a primitive group with core-free maximal subgroup N/C complemented by
the simple minimal normal subgroup EC/C (= E). The Aschbacher-Scott Lemma
gives that NE/C € Py, and then Baer's Theorem proves the first claim in (ii):

D/C=qyE.

In order to verify the second claim in (ii) we assume that A:M — Aut(E) ex-
tends A, where N<M < H. From R # {1} for aright transversal R of N in M
we obtain that

B={IletW:rlecE}

reR

is a non-trivial proper subgroup of ER: it is obviously isomorphic to E. Hence it
will suffice to establish the M-invariance of B, for then M < MB < M(ER) = M(EM)
— a contradiction against (*), completing the proof that (i) implies (ii). Now, for
all re R and all m e M there exist n=n(r,m) € N and r =r'(r,m) € R such that

rm =nr’; and then for all e € E,

(e m = (e H)@r) = ek = e W@ )Y = (emM)a-HAr|



which means that BM=B.

(ii) = (iii): First consider M = Ny(C) N Ng(D) (2N ). The action of M on
its normal section D/C together with D/C =y E (via A) gives rise to an extension
A:M — Aut(E) of A. Therefore, from (ii) we infer that N = M, proving the
second assertion in (iii). The third statement is derived similarly, using that — asa
consequence of the simplicity of the socle D/C (= E ) of the almost simple group
N/C — NN X=C whenever C<X<H, N<NyX), D£X, and obséfvihg the
canonical isomorphism N/(N N X) = NX/X.

(iii) = (i): We must show that G* =G if H<- G* < G. Consider the minimal
normal subgroup L =G* N ET of G*. Let

L=L;X..xLy
be its decomposition into simple (not necessarily non-abelian) direct factors. Since
N = Nyx(E), the projection ®: ET — E (with kernel ETN1}) clearly commutes with
the actions of N on L and E. Moreover, L* =1 would contradict the transitivity
of the action (by conjugation) of H on { Et | te T} together with L < G*=HL.
It follows that L* = (LN)® = (L")N =E, the only non-trivial N-invariant subgroup of
E (=y D/C -< N/C). From the above decomposition of L as a direct product of
simple groups we now deduce that precisely one of the L; — say, L, — projects
onto E, while the others are contained in ETN1), In particular,
LizLi=@L)*=E, but L)r=1 (i=2,..,k).

Furthermore, N = Ny(E) must normalize L,: indeed, for each ne N, (L,)n

is some L; and (L™= (Lpm™. Thus
Ly=yE, NSN;=Nyx(L;) and C=Cy(E)< C, = CyxL)).
Since D/C acts faithfully on E, and therefore on L;, while L, is centralized by
C,, the last condition in (iii) gives that
C=¢C,.

D; =S(N; mod C) (>C) is normalized by N and so, by virtue of the third
condition in (iii), contains D. Since D/C inducesin L,; the group of all inner auto-
morphisms of L, (=yE =y D/C), we see that D/C=Inny ,(L;) < N;/C=N,/C,.
Hence N; < Nyx(C) " Ny(D) =N (by the first condition in (iii)). We conclude that



N =N,, from which G*=G follows: note that G*=L, i, H (by the Bercov-La-
fuente Proposition) with L, = E.

(b) Coreg(H) =1 together with H <- G yields primitivity of G, and implies
that Corey(C) = Cx(ET) = 1. Put K = Corey(D). By application of the last con-
dition in (iii) (with X = CK) we get that either K< C or CK=D.

If K< C then K < Corey(C) = 1. Further, G € Py, for otherwise S(H) <N,
and hence S(H)C/C < S(N/C) = D/C, would follow from Baer's Theorem — but
S(H) £ D would require that S(H) < Corey(D) =K.

Next observe that the above argument, when applied to any minimal normal
subgroup Y of H instead of K, shows that D < YC. Since D/C is isomorphic to
the non-abelian simple group E, only one such Y can exist: one checks that for any
two different minimal normal subgroups Y; and Y, of H one should have that

D'=[(DNY)C,DONY)CIS[Y,YLJCNYNCNYYC <C.
In fact, this argument proves:

(#) S(H) is a non-abelian minimal normal subgroup of H whose simple com-

ponent F has a section isomorphic to the simple component E of ET.

It remains to deal with the case when CK = D. In this case

(Mher KN CY=er Cy(B) = Cx(ED = 1.

Further, forany te T, .
K/ICk(EY=K/KNC)=K/(KNCr=K/(Kn C)=KC/C=D/C=E.
Combination of the last two statements shows that K is a subdirect product of groups

isomorphic to the non-abelian simple group E. It is well known that this implies
K=zEXx..XE.
In particular, the normal subgroup K of H is now a direct product of minimal nor-
mal subgroups of H, thatis, K < S(H). Hence (#) together with K # 1 yields that
S(H) =K = Corey(D).

Now for any t€ T, KET/Cg(EY)(XeT ES) = (K/Ck(EY)Et (the semidirect
product), where K/Cyx(E!) = DYCt induces in Et the group Inn(Et) of all inner
 automorphisms. We get that (K/Cy(EY))E! = Inn(EY)Et=E x E. An argument as
above gives that KET (= S(H)E’_I' J HET = G) is isomorphic to a direct product of



copies of E, and so is contained in S(G). Therefore, S(G) > ET is not minimal nor-

mal, and G € P follows from Baer's Theorem. 0

In the course of the proof of 1.1b (see (#) there) we have made the following
observation (some kind of analogue to what Baer's Theorem says about primitive
groups of type III), which was first deduced in Lafuente [8] as a consequence of the

above result.

1.2 COROLLARY. If G € B possesses a core-free maximal subgroup H com-
plementing S(G), then G/S(G) =H € By;. Moreover, if S(G)=E X ...xE and
S(H)=F x...xF with E and F simple, then E is isomorphic to a section of F.

~ (In fact, using the notation of 1.1, in 1.2 we have that D < S(H)C.)

The next two theorems will give an explicit method for constructing all groups
in A It will be convenient to distinguish the two cases E=F and E#F (where

notation is as in 1.2).

1.3 LEMMA. If R is a subdirect subgroup in the direct product G=E;x ... X E_
of the non-abelian simple groups E; (i = 1,...,n), then Ng(R)=R.

Proof. Since R is subdirectin G, sois N =Ng([R) = R. Because of the structure of
G this requires that
N =N, X... XNy with N; = E;; for suitable j(i) € {1,...n} (i=1,..,m).
Moreover, the normal subgroup R of N must be a direct product of some of the
N;, say, R=N; x..xNy (k<m). Hence N=R x Cy(R) =R x C5(R) and it
suffices to observe that Cg(R) = 1: indeed, this follows from
[B;CoR)™] = [R™,CoR)M] = [R,CoRIG=1 (= 1,....m),

where T; denotes the canonical projection from G to E,. 0
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1.4 THEOREM. Let He Py and assume that S(H) = E®™, where E is a non-
abelian simple group.

(a) Let S be a direct product of at least two of the simple components of S(H)
and consider a diagonal subgroup B (with respect to the direct decomposition of S
into its simple components); so B = E. Assume that N = Ny(B) acts transitively
(via conjugation) on the set of simple components of S (i.e., S -< NS = NSH)).

Then the canonical copy of H in G=E\wWH, the twisted wreath pronict with
respect to the action of N on E induced by the isomorphism E =B, is maximal in
G and complements the base group S(G) (=EMN)) of G; in particular, G € ‘B;.

(b) Conversely, if H occurs as a core-free maximal subgroup of the group G
and complements S(G), where S(G) is minimal normatin G and a direct product
of copies of E, then G =E W H, and the conditions stated in (a) are satisfied by H
and N (with respect to suitable choices of S and B).

Remark. Our proof will show that the groups S and B in 1.4b can be recovered
from G(=EMWH),H,N,C(=Cyx(E)),D(=S(Nmod C) ), E as follows:

S is the unique minimal normal subgroup of NS(H) not contained in C,

and B=DnNS.

Proof. (a) Put C=Cy(B)=Cy(B) and D =B x C. We will check that H, N, C, D,
E satisfy condition (iii) of 1.1a.

Clearly, D/C =y B =y E (and therefore, in particular, D = S(N mod C)) and
N =Nu(B) £ Nyg(C) n Ny(D). Using 1.3, we see that

S(H) =S X Cgy(B).

Since Cgqpy(B) =C N S(H) and D=B x C, it follows that D N S(H) =B x Cg(B).
Further, since Nyx(C) N Nyx(D) normalizes both C N S(H) and D n S(H), from
B=E and Cgy)(B)=E® (ke N) we now infer that NH(C) M Nu(D) £ Ny(B).
We have shown that N = Ny(C) N Ny(D).

Next, assume that C< X <H and N < Nyx(X). Since N/C is isomorphic to a
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subgroup of Aut(E) containing Inn(E), the normal subgroup (X N N)/C of N/C
either contains the unique minimal normal subgroup D/C of N/C oris 1. WeAhave
to exclude the latter case. First note that

XN SH) = (X N S) x Cgap(B),
(for Cgap(B)=C N S(H) £ XN S(H)) and that D £ X is equivalentto B £ X.
Therefore, as the simple subgroup B of N normalizes X andas B <SS, in the case
that X N=C we must have that BN (XN S)=1.

Let L be any simple component of S (i.e., any simple component of S(H)
contained in S); and let wt: S — L denote the corresponding projection map. Then
L (whichis B%, for B is subdirectin S) normalizes ()f N S)®, whence the latter
groupis 1 or L. It follows from N < Ny(X) together-with our hypothesis that by
conjugation with the elements of N the simple components of S are permuted tran-
sitively that, unless XN S=1, (XN S)*=L forall such L. In view of B <Ng(X)
together with BN (XN S)=1 we now obtain from 1.3 that X NS =1. Consequent-
ly, Csan(B)=XNSH) <X

Now consider the subgroup BX of H. Observe that

BX N S(H) = BX N SH)) = B X Cgap(B);
this last group is normalized by X. Since X also normalizes Cggy)(B), by an argu-
ment as before we see that X normalizes B; i.e., X < Ny(B) =N. Having assumed
that X M N =C, we obtain a contradiction against our assumption that C < X, thus
completing the verification of condition (iii) of 1.1a. Hence that result yields that H
is maximal in G = E 1y H.

Moreover, H cleary complements the base group, which is obviously minimal
normal in G. Also, D N S(H) = B(C N S(H)) = B X Cgq(B) < S X Cgapy(B) = S(H),
whence 1.1b yields that G € Py: note that Coreg(H) = Corey(N) =1 follows from
He P; and S(H) £ N — S(H) <N would require that S(H) < S(N mod C) =D.

(b) By hypothesis, G =HS(G) € P, where H is a maximal subgroup of G
such that HN S(G) =1 and S(G)=E®™ for some m € N. By the Aschbacher-Scott
Lemma, m > 1. Moreover, by the Bercov-Lafuente Proposition, G =E 1y H with
E asimple component of S(G) and N =Ny(E). Let C and D be asin 1.1a.
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From S(H) = E® with E non-abelian simple we deduce that S(H) is a direct
product of minimal normal subgroups of NS(H). If K denotes any one of these, we
may apply 1.1a to get that either K< Cn S(H), orelse D=C(K N D) — in which
case DN SH)=(C N SH))K ND) —: take X =CK in condition (iii) of 1.1a.
Since S(H) £ C (recall that Corey(C) < Corey(D) =1 by 1.1b), there is a mini-
mal normal subgroup S (< S(H)) of NS(H) not contained in C; and thus the per-
fectness of D/C (= E — cf. 1.1a) yields that the remaining minimal normal sub-
groups of NS(H) in S(H) are contained in C. Consequently,

CNSH)=(CNS)xS*,
where S* denotes the product of all minimal normal subgroups of NS(H) in S(H)
other than S. Now we note that CNS <D NS and that -S is a non-abelian minimal
normal subgroup of NS(H), whence Cn S =1 follows by means of an argument as
in the third last paragraph of our proof of (a); in fact, the argument from there also
shows that D N S is a subdirect subgroup of S. Thus C N S(H) = S* and
DN SH)=(CnSH))xB, where B=DNS.
Clearly,
B=(DnNSHEH)/(CNSH))=D NSH))C/C=D/C=E and S=E®,

In fact, B must be a proper subgroup of S, as follows from Corey(D) =1 (see
1.1b) together with S(H) =S x S* =S x (Cn S(H)). Hence S =E® with k> 1, and
B is a diagonal subgroup of S.

Now observe that C<SD<CS, CNnS=1 and B=DnNS YD yield that

D = C x B; in particular, C < Cy(B). »

Consequently, we may again apply an argument used in part (a) of this proof to
~ deduce that N (= Nx(CO) N Nyg(D) — see 1.1a) normalizes B; so it remains to
verify that Ny(B) < N. To prove that C = Cy(B), we apply condition (iii) of 1.1a
with X = Cyx(B) (= C); note that D£ X follows from D >B £ X. Finally, from
C=Cyx(B) and D=CxB we conclude that Ny(B) < Ny(C) " Ng(D) = N; and it is

now obvious that B = D/C = E. Q

As an analogue to the above result for the (easier) case when the simple compo-
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nent of S(G) is a proper section of the simple component of S(H) we record the fol-

lowing stronger version of Lafuente's Theorem from [9] together with a converse.

1.5 THEOREM. Let He Py with S(H) = F® for some non-abelian simple group
F, and let E be a non-abelian simple group isomorphic to a proper section of F.

(a) Let A< B<SMH) be such that B/A =E and put N = Ngx(A) N Ny(B).
Suppose that A* = A whenever A*<S(H) with A* "B =A and N < Ny(A¥*).

Then the canonical copy of H in G=E\WH, the twisted wreath product with
respect to the action of N on E induced by the isomorphism E = B/A, is maximal
in G and complements the base group S(G) (= EM:ND); ztn particular, G € P.

(b) Conversely, if H occurs as a core-free maximal subgroup of the group G
and complements S(G), where S(G) is minimal normal in G and a direct product
of copies of E, then G =E N\ H, and the conditions stated in (a) are satisfied by H
and N (with respect to suitable choices of A and B).

Remark. A section B/A of S(H) asin 1.5a can always be found provided only that
S(H) has some section B#/A* isomorphic to E: choose a subgroup A of S(H) ma-
ximal with respect to the properties that A* < A, B#¥ < Ngqqy(A), B#¥n A= A¥, and
set B =B#A.

Using ideas from the proof of Lafuente's Theorem from [9], the proof of 1.5 is
straightforward from 1.1.

In view of Lafuente's Lemma and the remark after the statement of 1.5, the fol-

lowing is immediate from 1.4 and 1.5.

1.6 COROLLARY. Let He P with S(H) = F® for some non-abelian simple
group F. Then G/S(G) =H for some G e Py satisfying S(G) = Em with E
non-abelian simple if and only if one of the following two conditions holds:

(1) E is isomorphic to a proper section of F;
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(i) E=F, n> 1, and there exists a (simple) diagonal subgroup B of some
non-simple direct factor R of S(H) such that the action of Ny(B) on the

set of simple direct factors of R (via conjugation) is transitive.

In particular, a primitive group H of type II is isomorphié to G/S(G) for
some G € By unless, perhaps, the simple component of S(H) is a minimal simple
group. In the latter éase, exceptions do occur, even when n> 1: for an ei’a:'nple of
a primitive group H of type II not satisfying condition (ii) above (with respect to

E=F and E minimal simple), but with n> 1, the reader is referred to [9].

§2 On the inclusion problem for Pj-groups

In this section we comment on the following

Question. If H<- G=E W\ H e By (with E, as always, non-abelian simple), what
are the proper subgroups G* of G containing S(G) such that H N G* <- G*?

(Observe that H N G* is automatically core-free in G*, provided only that
H N G* <-G* and S(G) < G*. Also note that, in the language of permutation
groups, this question asks for the primitive "permutation subgroups"” of the primi-
tive permutation group G, i.e., for those subgroups G* of G which are primitive
with respect to the "same" faithful permutation representation — namely, the one

on the cosets of H in G.)

Assume that S(G) < G*<G=E1\He P; with H<- G. Put H*=H N G*
and N*=Nn G*. Clearly, if H* <- G* then S(G) -< G* and G* = E 1y« H*, so

this question amounts to asking:
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When is H* <- E Vs H* and S(G) = S(E Wys H*)?

Consider a series of subgroups G* =Gy <: G, < ... <- G, =G with S(G) <G.
Clearly, if H* (=H N G*) <- G* then for i=1,....k, HN G; is a core-free maxi-
mal subgroup of G;. Conversely, if HN G; <- G; for i=0,1,....k, then G* isa
subgroup of G with the requested properties. Hence we may as well restrict atten-
tion to maximal subgroups of G; in fact, the answer to our question we a£é about to
give for maximal subgroups does not easily translate into a result for general sub-
~ groups of G, other than by saying that it provides a re‘cursive procedure to find
those subgroups G* of G we are interested in here.

In the remainder of this section we will deal with thé case when G* <- G. In or-
der that S(G) be minimal normal in G*, it is necessary that H* acts transitively on
the set of simple components of S(G), which means that H=H*N. From this obser-
vation together with 1.2 and 1.4 we obtain a criterion for H* <- G* in the case where

the simple components of S(H) and S(G) are isomorphic:

2.1 PROPOSITION. Suppose that
H<-G=EWHe By, where H (€ By) has E as simple component of S(H),

and define C and D interms of N and E asin 1.1. Assume that S(G) < G* <- G,
andput H*=HN G* (<-H) and N*=NNG*,
Then H* <- G* if, and only if, the following holds:
(i) H=H*N; (ii) D <H*C; (iii) H* e By
(iv) N* acts transitively (by conjugation) on the set of simple components of

S*, the product of all simple components of S(H*) not contained in N*.

For somewhat more detailed information we have to distinguish several cases
(for each of which we will give an example to show that it can actually arise). We

will retain the notation from the preceding Proposition.
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Case 1: S(H) < H*.
It is obvious from 2.1 and 1.4 that in this case H* <- G* if, and only if, in addi-
tion to (i) the following two conditions are satisfied:
(iii") S(H) is minimal normal in H¥*;

(iv') N* acts transitively on the set of simple components of S.

2.2 EXAMPLE 1. Take H as the (non-twisted) wreath product E % S, with
respect to the natural permutation representation of S, for some n >4, write its
base group as EM =E, x... XE, (E;=E for i=1,...,n), choose S=E; X..xE_,,
and let B be A(S), the canonical diagonal sub-group of S; clearly,
Nu(B) = S,.;(B X E,) with the point stabilizer S,.; of n in S;. Then the subgroup
of H defined by H* = A [E® satisfies (i,iii,iv'), for N*=A (B X E)).

Case 2: 1 <H*N S(H) < SH).

From 2.1 we get that in this case H* <- G* if, and only if, in addition to (i+ii+
iv) the following condition is satisfied:

(iii") H* N S(H) is minimal normal in H* (cf. the argument below);
Put T=H* N S(H). Clearly,
T=(H*NE*h | he H*),

where E* is a product of m of the simple components of S(H), and H* " E* isa
diagonal subgroup of E# isomorphicto E. Here T -< H*, and hence T =E® for

some n € N, requires that m > 1.

2.3 EXAMPLE 2. Consider the wreath product K=A 1, C, with C,={(c) of order
2 and A a group of outer automorphisms of a copy F of our given non- abelian
simple group E (i.e., A< Aut(F) and A N Inn(F) =1) such that I1Al=3. Write K

as semidirect product {c)(A x Ac). Form the corresponding twisted wreath product
H=F U K=F 1y [{c)(A X A°)].

By our remark towards the end of the introduction, this is a primitive group of type
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II with S(H) = FT (the base group) for the transversal T = A¢{c) of A in K.

We write T=T'UT" with T'=Ac and T" = Acc and define a subgroup H*
of H containing K by forming the canonical diagonal subgroup D of FT isomor-
phic to F and putting

H* =K(D x D¢);

note that D x Dc is a K-invariant subgroup of FT' x FT" (=FT), and that
H* = (AF) L {(c) (AF denoting the semidirect product);
in particular, H* € F; with SH*)=DxDc=EXE. |

Further, let B be the canonical diagonal subgroup of the subgroup F! x Fc¢ of

FT. Then B is c-invariant, whence 1.4 applies: setting
G=EU\H, where N=Ny(B) and E=yB,

provides us with a primitive group G of type Il such that H<- G and HNS(G)=1.

Moreover, by definition of B, N N FT comprises all components Ft with t
ranging through T\ {1,c}. Since D and D¢ are subdirect subgroups of FT and
FTe, respectively, from 1€ T' we infer that

FT = (H* N FT)(N N FT).

It follows that H = KFT = H*N. A similar argument shows that D < H*C &where D
and C are defined as before): indeed, BCgr(B) < FT = (H* N FT)Cgr(B).

Finally, put G* = H*S(G) and observe that N* (=N N G*) interchanges the
two factors E and E¢, for c is contained in both N and H*.

We have now verified all the conditions imposed on the groups E, H, G, H*, G*

by our remarks preceding this example.

Case 3: H*nS(H) =1.
In this case the conditions (i-iv) from 2.1 do not simplify any further.

2.4 EXAMPLE 3. Here we begin by choosing the candidate for H*. Let C, bea

cyclic group of order 4, take a copy F* of our given simple group E and set
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H* = F*1, C,, the standard wreath product.

To establish some notation, suppose that C,=(c) with ¢=(1,3,2,4) € S4, and
that F* % C4 is written as a semidirect product C,(Ff X F¥ x Ff x F¥) with F
being the i-th component of the base group (F*)® and S, acting on the latter in the
canonical manner by permuting the components. Furthermore, for I < {1,2,3,4},
A[X;e1 Ff¥] will always denote the canonical diagonal subgroup of X ; F*-isomor- |
phic to F*.

Observe that A[F¥ X F¥] x A[F¥ X F¥] is centralized by the subgroup C, of C,,

so the following is a subgroup of H*:

=

M* = C, x (A[F} x F§] x A[F¥ X F¥)).

Consider its normal subgroup K* = C, X A[F} x F}]. Since the corresponding quo-
tient is isomorphic to F*, we may take yet another copy F of E and form the twis-
ted wreath product

H=F Y H* )
with respect to the action of M* on F, withkemel K*, induced by F = A[F¥ x F¥]
and M*/K* = A[F{ x F¥] = Inn(A[F§ x F¥]). Clearly, both H* and H are mono-
lithic primitive groups: note that Coreys(M*) = 1.

We choose aright a transversal T of M* in H* containing 1 and c,'wn'te the
base group of H as FT, and use a similar convention for the "diagonal subgroup
operator” A as before. Nowlet B=A[F! xFc] (=F=E) and N = Ng(B) and note
that {c) <N. Hence 1.4 applies: the twisted wreath product G defined by

G=EH

is such that its canonical subgroup H complementing the base group is a corefree

maximal subgroup.

For a proof of H=H*N, first observe that B = A[F! x F¢] requires that

N < Ny(F! x F¢) = Ny« (F! x FO)FT = C4(A[F¥ x F¥] x A[F§ x F{])FT,



19

for
Np«(F! X Fe) = Nigu(F1){c) = M*(c) = C4(A[F} % F¥] x A[F¥ X F¥]).
Since obviously
| Cas X A[F¥ X F¥ x Ff X Ff] <N,
it readily follows that
NNFT=B X (X1 F) and N N H*=N*,
where
N* = C, x A[F} X Ff x F¥ x F¥].

However, one also checks that

A(F! x A[F¥ xFf]) <N.
Consequently,
H  H*FTI.IH* " NI IFTI-IH* N NI
[H:H*NI = = =
[H*NI [H*]-INI IN N FTIIN:N N FTl
IFTI-IH* N NI IEl

= < =1,

IN N FTLHN:(H* " N)(N N FDIIH* A NI |El

and we get that
H=H*N.
Next, we note that from
H* "N =N*=Cy x A[F} x F¥ x F¥ xF}]

we get that N* covers D/C: in fact, A[F§ x F¥ x Ff x F§] induces the grdup of all
inner automorphisms in B.

Finally, we observe that H* € P holds trivially, and N* (which contains c)
clearly acts transitively on {F1,Fc}, and so the group G* defined by

G* = E ly* H*

is a subgroup of G satisfying H* <- G*,

We leave it to the reader to carry out a corresponding analysis for the case when
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the simple component of S(G) is a proper section of the simple component of S(H).
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