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FINITE PERMUTATION GROUPS
WITH LARGE ABELIAN QUOTIENTS

L. G. KOVACS AND CHERYL E. PRAEGER

We show that if G is a group of permutations on a set of n points
and if \ G/ G'\  denotes the order of its largest abelian quotient, then
either \ G/ G'\  =  1 or there is a prime p dividing \ G/ G'\  such that
\ G/ G'\  <  pn/ p. Equality holds if and only if G is a p group which
is the direct product of its transitive constituents, with each of those
having order /?, except when p =  2 in which case one must also allow
as transitive constituents the groups of order 4, the dihedral group
of order 8 and degree 4, and the extraspecial group of order 32 and
degree 8.

1. Introduction. In this paper we obtain upper bounds on the orders
of abelian quotients of permutation groups in terms of the degrees of
the groups, and identify the groups which attain these bounds. F irst
we consider abelian / ^ quotients for a given prime p.

Recall that a constituent of a permutation group is the restriction
of the group to some union of orbits, the restrictions to single orbits
being the transitive constituents. By a transitive non p' constituent we
mean a transitive constituent whose order is divisible by p. The largest
pf constituent is the restriction to the union of those orbits (if any) on
which the group acts as a / ?' group.

TH EOREM . If G is a group of permutations on a finite set and if
kp denotes the number of points moved by a Sylow p subgroup of G,
then the largest abelian p quotient of G has order at most pk. This
maximum is achieved by G if and only ifG is the direct product of its
largest p1 constituent [if any) and of its transitive non p1 constituents,
each of the latter being from the following list of groups:

(i) Cp> of order and degree p\
(ii) C 4, C2 x C2, and D& of degree 4, and the central product Z>8 DS

of order 32 and degree 8, when p = 2;
(iii) the affine groups AGL(1,3) and AGL(1,5), when /? =  2;
(iv) the affine group AG L(1, p + 1), when p +  1 is a power of 2.
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COROLLARY. If G is a permutation group of degree n and if\G/ O\
denotes the order of its largest abelian quotient, then either \G/ O\  =  1
or \G/ O\  has a prime divisor p such that \G/ O\  < pn/ p. Consequently,
\G/ Gf\  < 3"/ 3. Given a prime p, one has \G/ O\  =  pnlp if and only ifG
is the direct product of its transitive constituents and each constituent
is as in (i) or (ii) above (so in particular G is a p group).

The original motivation for this investigation came from a prob
lem in [2] about the minimal {faithful) degree of an abstract group.
Let µ(G) be the least integer for which G has a faithful permutation
representation of degree µ(G).

Conjecture. If G/ N  is abelian, then µ{G/ N) < µ(G).

Our theorem implies that this holds whenever G/ N is an elementary
abelian /? group. Indeed, in that case, if \ G/ N\  =  pr then µ(G/ N) =
rp. Consider G a permutation group of degree µ(G) and denote by kp
the number of points moved by a Sylow p subgroup: then obviously
kp <  µ(G). By the theorem we have pr =  \ G/ N\  <  pk so r <  k, and
hence µ(G/ N) =  rp <  kp <  µ(G). Further, the theorem enables one
to identify the groups G and the elementary abelian p quotients G/ N
for which µ(G/ N) =  µ(G). In general, the conjecture remains open.

A second motivation came from a question of L. Babai, who asked
(in a private communication) for an upper bound on \ G/ O\  for transi
tive G of degree n. The bound provided by the corollary is exponential
in n\  is there a better one for transitive groups? We expect there is
one which is exponential in n(logn)~1/ 2. For examples showing that
one cannot hope for improvements beyond that, see Audu [1], Kovacs
and Newman [5].

Finally, we note that \ G/ G\ <  pnlp may hold for more than one, yet
need not hold for all, prime divisors p of \ G/ O\ . For example, when
G is C2 x C3 x C5 of degree 2+ 3+ 5, one has

3IO/3 =  95/ 3 >  85/ 3 =  210/ 2 > | G / G : / | >  510/ 5

2. Preliminaries. We shall need some elementary facts concerning
(sub)direct products of (abstract) finite groups. For a fixed prime p
and each finite group G, write G* =  OOP(G), so the largest abelian
/ ^ quotient of G is G/ G*. Let pψ  ̂ denote the maximum of the orders
of the abelian / 7 sections of G (that is, of the abelian p quotients K/ L
where L <K <G). Let G be a subdirect product of A and B: that is,

(1) G<AxB =
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It is clear that for the mutual commutator subgroup [AnG, A] we have

(2) [AnG,A]<An&,

and that

(3) if A <  G then G =  AxB.

Obviously, ψ(A) +  ψ(B) <  ψ(A x 2?), and it is easy to see that in fact

(4) ψ(A) +  ψ(B) =  ψ(A x B).

Indeed, let G be a subgroup of Ax B such that

\ j) p I ^ v  ̂I

towards showing that \ G/ G*\  <  pψ(A)+ψ(B), we first replace A and B
by A D BG and by AGπ B, respectively, so (1) holds, and then argue
as follows. Note that

(AnG)G*/ G* ^(AΠG)/ (AnG*),
G/ {A Π G)G* =  G/ (GΠAG*) s AG/ AG* =  AB/ AG* ss B/ (AG* n B),

(AnG)* <  AΠG*,
{BnG)*<BnG*;

so (see Figure 1)
pψ(A)+ψ(B) <  pψ(AxB) _ \ G/ G*\

=  \ (A n G)G*/ G*\  \G/ (A n G)G*\
=  \ {A n G)I(A n G*)\  \B/ (AG* Π.

AG*

Ax B

AG*

AG*nB

FIGURE 1
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It follows that all these inequalities are in fact equalities: so (4) is
proved, and as a bonus we get that (1) and (5) together imply that
(6) (AnG)* = AnG*>
(7)
(8)
(9)
By symmetry, they also imply that
(60 (BnG)* = B
(T) \ (BnG)/ (Bn
(80 A*=AnBG*,
(90 \A/ A*\  = p^A\

We shall also need some facts concerning permutation groups. The
Sylow p subgroup of the symmetric group of degree p2 is sufficiently
well known (the wreath product of two groups of order p):
(10) in this, no transitive subgroup has an abelian quotient of

order pp except when p =  2, in which case C4, C2 x C2,
and Dg are the relevant examples.

In the holomorph of Dg, the left and the right translations form
two copies of Dg which centralize each other and meet precisely in
their common centre; their product is the extraspecial group
D%YD$. In any holomorph the two translation groups have a common
complement, namely the automorphism group: here that is abstractly
isomorphic to Z)8 The involution (in the symmetric group on the set
of the elements of the original group) which inverts each group ele
ment always normalizes the automorphism group and interchanges the
two translation groups; an order count shows that here the holomorph
and that involution generate a Sylow 2 subgrouρ P of the symmetric
group of degree 8 (on the set of elements of the original D^). We leave
it to the reader to establish the following.
(11) The only transitive subgroup of P which has an abelian

quotient of order at least 16 is the product Z>g Y Z>8 of
the two translation groups.

(12) Let A and A\  be groups of permutations on the same
set, with A\  <  A. Suppose that either A is one of the
transitive groups listed in the theorem or A\  is one of
the nilpotent groups listed there. lϊ[A\ ,A\  <  A\  and,
for the relevant prime, ψ(A\ ) >  ψ(A)9 then A\  =  A.
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(13) If G is a transitive group of permutations on a set Ω
and if the stabilizer Ga of a point α, as group of permu
tations on Ω \  {α}, is one of the transitive groups listed
in the theorem, then either G is one of the affine groups
listed there or \G/ G\  < 2 and a Sylow 2 subgroup of G
moves more than 2 points.

In verifying (13), it is convenient to distinguish two cases: under the
hypotheses either Ga is nilpotent of class at most 2 so G is soluble
(Deskins, Janko, Thompson; see H uppert [3], IV.7.4), Ω is a vector
space, and Ga acts on Ω faithfully as an irreducible linear group, or
Ga is sharply 2 transitive, so G is sharply 3 transitive, in which case
\G/ G'\  < 2 (Zassenhaus; see H uppert and Blackburn [4], XI.2.1 and
XI.2.6).

3. Proofs. First we prove the theorem for ^ groups. In this case, it
has the following simpler form.

(14) If a j9 group G is a permutation group of degree kp,
then \G/ G\< pk. Equality holds if and only if G is the
direct product of its transitive constituents and each of
these is one of the groups listed in (i) and (ii) of the
theorem.

In fact we shall show by induction on k that iϊ\G/ G\> pk then G
is the product of its transitive constituents and each of these is one of
the groups listed: \G/ O\  = pk is then automatic. The claim is obvious
when k — 1. For the inductive step, suppose k> 1.

Consider first the case of intransitive G. Let A be a nontrivial tran
sitive constituent of G, and B the restriction of G to the union of the
other orbits: then (1) holds. Say, the degree of A is lp\  then the de
gree of B is {k  l)p, and the inductive hypothesis gives that ψ{A) < / ,
ψ{B) <k  / . By (4) we can now conclude that

pψ(AxB) <  pk < \G/ G\  < pΨ(A*B)y

so in fact ψ(A) = / , ψ{B) = k  / , (5) holds and hence (6) (9') are
also available. In particular, \A/ A'\  = pι by (9') and then the inductive
hypothesis gives that A is one of the listed groups. By (2), (7), and
(12) with Ax =AΠG, we have AnG = A: so G = AxBby (3). As (9)
gives \B/ B'\  = pk~ ι, the inductive hypothesis applied to B completes
this case of the inductive step.

Suppose next that G is transitive. For this case (10) and (11) provide
a more generous initial step: so we now assume not just k > 1 but
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k >  p and kp >  8. Let H be a maximal subgroup of G containing
a point stabilizer: then H is a normal subgroup of index p\  it has p
orbits, which are permuted transitively by G, each having length k\
of course now A: is a power of p: set k =  mp. Let A be a transitive
constituent of if (the other transitive constituents being (j conjugates
of A), and B the restriction of H to the union of the other orbits: then
H is a subdirect product of A and 5.

Consider the case \ (A n / f)/ (Λ Π / Γ)| > / ?m. From the inductive
hypothesis we get that ψ(A) =  ψ(AΓ)H) =  m; in particular ( 4̂n/ / )' =
AnHf so by (2) we have

(2') [AnH,A]<(AnH)';

moreover AπH is the direct product of its transitive constituents. As
AπH is normal in the transitive A, these constituents are all conjugate
in A: this contradicts (2') unless AnH is transitive. In that case AπH
is one of the listed groups, so (2') and (12) with A\  =  AnH yields
A Π H =  A, whence H =  A x B by (3). Now H is the product of
the (/ conjugates of A which in the abelian GjO have common image
AG/ G, hence H/ G =  ̂ <7/ <7 and so

< \G/σ\  =  pµa/G  =  pµ/ (Λ n (7)| <  P\A/ A'\  <
which is impossible under our assumption that mp =  k >  p and
kp> 8.

In the remaining case, that is, when \ (A Π H)/ (A n / / ;)l <  P m
5

 w e

have that
\ H/ H'\  >  \ H/ G'\  >  pmp~x

while Figure 1 (read with H in place of G and taking advantage of
O*(H) =  1) yields that

\ H/ H'\  =  |(iί Π H)H'/ H'\  \ H/ (A n fT)^;|
=  |(^ n / r)/ (^ n H')\  \B/ (AHf n

It follows that

m\ B/ B'\  >  \ B/ (AH'nB)\  >  pmp ι/ pm, so \ B/ B'\  > pmp

As the degree of B is (mp  m)p, the inductive hypothesis gives that
B is the direct product of its transitive constituents (which we know
are (/ conjugates of A) and each constituent is one of the groups listed
under (i) and (ii). The only option consistent with mp =  k> p and
kp >  8 is p =  2, k =  8, A =  5 =  D% Y Z)8. As ̂ t Π / /  and fin^
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are disjoint conjugate subgroups of G, we must have \ O\  >  \ B n H\  =
\ H\ I\ A\ \  hence

2*

This contradiction completes the inductive step, so (14) is proved.

Proof of the Theorem. We shall use induction, firstly on the degree
of G and secondly on the order of G. Accordingly, the inductive hy
pothesis will consist of two parts: the theorem is true for all groups
whose degree is smaller than that of G, and also for all proper sub
groups of G. As the theorem is a tautology when G is a p' group and
is valid by (14) whenever G is a p group, the initial step presents no
problem. Indeed we can assume that G is neither a p group nor a
/?' grouρ.

The first sentence of the theorem is an immediate consequence of
applying the inductive hypothesis to a Sylow p subgroup of G. The
"if' part of the second sentence is obvious. To deal with the "only
if" part, suppose that \ G/ GOP(G)\  =  pk: the task is to prove that G
has the required structure. Note that, since a Sylow /7 subgroup of a
subgroup of G cannot move more than kp points, by the inductive
hypothesis we have that

(15) a proper subgroup which supplements OOP{G) in G
must have the required structure and its Sylow p sub
group must move precisely kp points.

The case of intransitive G can be handled by adapting the corre
sponding step from the proof of (14): the relevant preliminaries in §2
had been prepared with this in mind. The only extra point is that now
a transitive non p' constituent should be chosen as A.

The next case we consider is that of a transitive G whose degree
is divisible by p. Then a point stabilizer cannot contain any Sylow
p subgroup of G\  equivalently, a Sylow p subgroup P of G can fix no
point: so the degree of G is kp. It follows that all proper supplements
of GOP{G) in G are p groups: for, by (15), they must have the re
quired structure but now can have no affine constituents. Let q be
another prime divisor of \ G\ \  by the Frattini argument, the normalizer
N G( ( 2) of a Sylow ̂ subgroup Q supplements OOP{G)\  by the previ
ous sentence, NQ(Q) cannot be a proper subgroup: so Q is normal in
G. By a similar argument, PQ =  G. As Q is normal, its orbits form
a system of imprimitivity; in particular, they have a common length,
say qb. The degree kp being divisible both by qb and by p, neither P
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nor Q is transitive. Let Γ and P be distinct P orbits and ∆ a Q orbit.
Since PQ =  G, each coset of P meets each coset of Q and so each
P orbit meets each Q orbit: consequently ∆  ̂Γ and we can choose a
δ in P Π ∆. Since P is the direct product of its transitive constituents
(by (15)), the point stabilizer Pδ is transitive on Γ. Now we use that
∆ is a block of imprimitivity for G: it must be fixed (setwise) by Pδ

because δ e ∆, and cannot be fixed by Pδ because it meets but does not
contain the Pδ orbit Γ. This contradiction shows that the case under
consideration cannot arise.

It remains to consider transitive G of degree prime to p. Our first
aim is to show that in this case G is primitive. Take any point stabilizer
Ga, any Sylow /7 subgroup P of G contained in Ga, and any maximal
subgroup M containing Ga. Assume that Ga <  M: we shall show that
this leads to a contradiction. Consider the corresponding system of
imprimitivity, and let m denote the common length \ Ga : M| of its
blocks: note that p does not divide m, so no P orbit Γ can be a union
of blocks. If a block ∆ meets two P orbits Γ, P without containing
both of them, we get a contradiction as at the end of the previous
paragraph. If a block ∆' meets only one P orbit Γ, then of course
∆' c Γ so Γ must also meet some block ∆ which it does not contain;
in turn, that ∆ must meet another P orbit P as well, and the previous
sentence applies. In the remaining case each block is a union of P
orbits, that is, P fixes each block setwise: P lies in the intersection, say
N9 of the conjugates of M. Note that NOP(G) =  G. Since N is normal
in the transitive G, the transitive constituents of N are all (/ conjugate:
in particular they are all isomorphic so none of them can be a pf

group, and hence N is their direct product by (15). As GaN < M <  G,
there is more than one transitive constituent; thus if A is any one of
them, a Sylow ^ subgroup of A cannot move as many as kp elements,
and the inductive hypothesis gives that \ A/ A P(A)\  <  pk. On the
other hand, N being the product of the conjugates of A implies that
AG/ O =  NG/ G whence AGOP(G) =  NGO?(G) =  G, and then

pk >  \ A/ A p(A)\  >  \ A/ (An(?Op(G))\
=  \ G/ G p(G)\  =  pk

is the desired contradiction.
This has proved that G is primitive. The next aim is to show that G

is 2 transitive. By 18.4 in Wielandt's [6], no transitive constituent of
Ga except that on {a} can be a /?' group, so by (15) we know that Ga

is the direct product of its transitive constituents. Let Γ be a Ga orbit,
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other than {α}, of shortest possible length, say, d. Choose a point γ
in Γ and an element h in G such that ah =  γ; let ∆ be the G rorbit
Γλ, and ∆ ' the G rorbit paired with ∆: that is, ∆ ' consists of all the
γg with g e {g e G\γ e Ag}. By 16.3 in [6], the length of ∆ ' is also
d, while a e Af because a =  γh~ ι and γ e Γ =  (Γh)h~ ι =  Ah~ ι.
Since Ga is the direct product of its transitive constituents, Gaγ acts
transitively on each Ga orbit other than Γ: hence all the G ^ orbits of
length less than d lie in {α}uΓ. On the other hand, {γ} U∆' is a union
of Gy orbits; as this set has d +  1 elements of which two, a and y, are
fixed by Gaγ, it is a union of Gaγ τbits each of length less than d.
Consequently {γ} U ∆ ' C {a} U Γ; as both sets have cardinality d + I,
they are in fact equal. It follows that this set is fixed (setwise) by Ga

and by Gγ, so it is fixed by G and is therefore the whole set, say Ω, on
which G acts. In particular, Ga is transitive on Ω \  {α}.

By (15) it follows that Ga is one of the transitive groups listed, so
(13) is applicable, and the proof of the theorem is complete.

Proof of the Corollary. Since the function xχlχ is decreasing when
x > e,

3 I / 3 > 4 I / 4 =  2 l / 2 > 5 I / 5 > . . .

and so only the first sentence of the corollary needs additional justi
fication. Suppose that is false. Let n be the least integer for which
counterexamples of degree n exist, and let G be a degree n counterex
ample of minimal order. For a prime p dividing |G |, let P be a Sylow
p subgroup of G. By the F rattini argument applied with the normal
subgroup PC, we have that NG(P)G/ =  G so GjG is a homomorphic
image of NG(P)/ NG(P)': as \G\  is minimal, this can only happen if
N G ( P ) =  G. Thus all Sylow subgroups of G are normal: G is nilpotent.
By the theorem Gφ P, so G =  P x β with a nontrivial subgroup Q.
Of course, G/ O = (P/ Pf) x (Q/ Q'). Any orbit of a direct product of a
/7 group P and a / ?' grouρ Q may be viewed as the cartesian product
Γ x ∆ of a P orbit Γ and a Q orbit ∆. If there were a G orbit Γ x ∆
on which both P and Q acted nontrivially, one could replace it by the
disjoint union Γ U ∆, obtaining a smaller set on which G still acted
faithfully, and this would contradict the minimality of n. Thus if a
denotes the number of points moved by P and b the number moved
by Q, we have

a +  b =  n.

By the minimality of n we have \P/ P'\  < pa/ p and |β / β ' | < qb/ q for
some prime divisor q of |β / β ; | : then \G/ G'\  < palPqbl<*. Finally, by
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the last two displayed lines, pa/Pqb/v cannot be larger than both of
pnlp and qnlq, so G is not a counterexample after all.
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