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GROUPS WITH UNIFORM AUTOMORPHISMS

L.G. Kovacs

1. In 1957 and 1958 Graham Higman [3] and Guido zappa [12], [13] published
independent proofs of the result that if a finite soluble group has a fixed-point-
free automorphism of prime order than the group is nilpotent;‘This seems to have
been folklore for some tiﬁe by then (Huppert and Wielandt [5] attributed it to
Witt; see also the first paragraph in Zappa [lﬂ ), but it was attracting atten-
tion again. The thesis of Thompson (see DO]) created a sensation by showing that
the result holds even if solubility is not assumed. Higman [3] relaxed finiteness
instead: he proved that there is a function k such that each locally nilpotent
group with a fixed-point-free automotphism of prime order p is nilpotent of class
at most k(p). On the other haﬁd, a free group of rank p has fixed-point-free
automorphisms of order p (any automorphism which permutes some free generating
set cyclically), so one cannét omit both solubility and finiteness. Indeed, the
infinite dihedral group has a fixed-point-free automorphism of order 2, so solu-
bility without some suitable finiteness condition is still not enough for nilpo-
tence. A

In 1958, Zzappa [13] proposed another way to avoid the assumption Bf finite-
ness. It is very easy to see that an automofphism o is fixed-point-free if and
only if the map x H-x_lxa is one-to-one. A map of a finite set to itself is
one-to-one if and only if it is onto. w;th this in mind, Zappa called an automor-
phism & of a group G. uniform if to each element g of G there is an x in

-1 o .
G such that x x = g . To this day, no-one seems to have found a nonnilpotent

group with a -uniform. automorphism of prime order. Zappa himself proved in [13]~
that all polycyclic groups which have such automorphisms must be .nilpotent. In
1960, Curzio [1] gave a series of similar theorems. In my 1961 thesis LB] , I

extended their results by proving that a group with a uniform automorphism of pri-
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me order must be nilpotent if residgally it is finitely generated soluble, or so-
luble with minimﬁm condition for subgfoups, or locally normal. However, these were
still assumptions in&vaing finiteness conditions which I thought unnecessary; the
theorem I really wanted to provg’tﬁen had eluded me unitil recently.

Recall that (in the terminology of kurosh [9]) an SI*-group is a group having
an ascending invariant chain with abelian quotiens: that is, a group all of whose

nontrivial quotients have nontrivial abelian normal subgroups.

Theorem 1. Every locally residually SI*-group which admits a uniform-automorphism

of prime order must be nilpotent.

This vindicates Zappa's approach by showing that a very weak solubility con-
dition (satisfied even by the free groups), without any kind of finiteness condi-
tion, is sufficient for the nilpotence of gfoups with uniform automorphisms of
prime order. As we have seen,. fixed-point-free automorphisms of prime order do
not restrict group structure in the same way. ‘

In view of Higman's theorem quoted above, one may also want to compare nil-
potent groups with uniform automorphisms of order p and nilpotent groups with fix=
éd-point-free automorphisms of order p. For example, da the former also have their
nilpotency class bounded by k(p)? The answer lies in considering ﬁilpoﬁent groups
G with an automorphism & of order p such that o is both fixed-point-free and
uniform. By Higman's theorem, the class of such a G is at most k(p). If H is an
a-admissible subgroup of G, then the restriction o+t H ‘ié obviously a fixed-point-
free automorphism of H. If N is an @-admissible normal subgroup of G, then the
automorphism induced by @ on G/N (which we shall denote hy @/N) is obviously

uniform.

Theorem 2. All nilpotent groups with fixed-point-free automorphisms of order p

occur as admissible sugroups H in such G, the relevant automorphism of H being

o ¥ H. All nilpotent groups with uniform automorphisms of order p occur as admis-

sible quotients G/N (even with central N) of such G, the relevant automorphism of

G/N being o /N.
It is a well known and almost trivial observation that every nilpotent group with a
fixed-point-free automorphism of order p is p-torsionfree (that is, has no element

of order p). We shall see that every nilpotent group with a uniform automorphism

of order p is p-radicable (that is, a group invwhickx each element has a pth

root). It follows that the Sylow p-subgroup of such a . group is central.
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2. To explain what was missing from the proof of Theorem 1 until recently,
let us say that an automorphism o of a group G is p-splitting if

.2 P-1
o o
ap =1, and g gag e g = 1 for all g in G.

What makes p-splitting automorphisms relevant here i§ that every uniform automor-
phism of order p is obviously p—splittihg. Moreover, the restriction of a p-split-
ting automorphism to an admissible subgroup is p-splitting, but restrictions of
uniform automorphisms need notrbe uniform. Splitting automorphisms have also occured
in the context of what became known as the Hughes problem or the Hp—problem. Buil-
ding on Thompson's [10} and on a paper [4] of Hughes and Thompson, Kegel [6] proved
that if a finite group has a p-splitting automorphism then it must be nilpotent.

I also proved this in [8] (using [10]but independently of [4] and [6]). Another
key reult in [8] was Theorem 6.1.2: if a locally SI*-group G has a p-splitting
automorphism, tﬁen G has a normal Sylow p-subgroup P , and G/P is nilpotent

of class at most k(p) . It is easy to see that if the p-splitting automorphism

of G is in fact uniform, then so is its reStfiction to P . Being a locally

SI* p-group, P is of course locally nilpotent [because any finitely generated .
subgroup of P is finite, as a routine induction on the SI*-length of that sub-
group shows]. The trouble was that I could say nothing more about P . This ti

deadlock was broken by a recent theorem of Khukhro [7].

Khukhro's Theorem. There is a function f such that all d-generator nil-

potent groups with p-splitting automorphisms have nilpotency class at most £(d,p).

This is a very deep theorem. (For example, since the identity automorphism
of a group of exponent p is p-splitting, it includes Kostrikin's celebrated
therem on the Restricted Burnside Problem). It enabled me to deduce from Theorem
6.1.2. of [8] a slightly weaker version of Theorem 1, namley one in which the

locally residually SI* aséumption was strengthened to residually locally SI* .

This paper was written while I enjoyed the hospitality of the Istituto,
Matematico "Ulisse Dini" at Firenze. In a discussion there, Dr. J.S. Wilson and
I observed that Khukhro's Theorem also allows one to strengthen Theorem 6.1.2

to the following.

Theorem 3. Every ‘locally residually SI*-group with a p-splitting automorphism

‘is locally nilpotent, and the quotient modulo its Sylow p-subgroup is nilpotent of
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class at most k(p) .
The present strong form of Theorem 1 makes use of this instead.

The proof of Thorem 3 will be given in the next section. The penultimate
section will then be devoted to the proofvof Theorem 1, and the last section will

contain a sketch of the proof of Theorem 2.

3. For the proof of Theorem 3, it is convenient to work with a species of
(universal) algebras other than. groups: namely, with groups which have an extra
unary operation and are subject to extra axioms which ensure that the extra opera-
tion is a p-splitting group automoréhism. Khukhro's Theérem means that is this va-
riety of algebras the locally nilpotent algebras form a subvariety: call that X .-
As for any variety, it is clear that if an algebra is residually or locally in X
then it belongs to 5. For the first statement of Theorem 3, it therefore suffices
to prove the nilpotence of a finitely generated - say, a d-generator - SI*-group G
with a p-splitting automorphism. Let X be the smallest admissible normal subgroup..
of G such that G/X lies in X. By Khukhro's Theorem, G/X is then nilpotent of class
at most f(d,p) , and the lower central series of G terminates in X . Thus X
is the normal closure of the left-normed commutators of weight 1+ f(d,p) with
entriés from a given finite generating set of G; If X #1, let M be maximal
among the admissible normal subgroups of G not containing X; then MX/M is a
minimal normal admissible subgroup in the SI*-group G/M, so MX/M. is abelian,
and G/M is a finitely generated abelian-by-nilpotent group with a p-splitting
automorphism. By a well known theorem of P.Fall [2], G/M 1is residually finite;
hence by the theorem of Kegel [6] (or by Theorem 7.1.6 of [8]), G/M is residual-
ly nilpotent; and then by Khukhro's Theorem G/M is nilpotent [of class at most
f(d,p)] . Thus in fact X=1, and G is nilpotent as required.

For the second statement of Theorem 3, note that the quotient of a locally
nilpotent group modulo its Sylow p-subgroup is p-torsionfree, and that a p-splitt-
ihg automorphism of a p-torsionfree group is always fixed-point-free: so the theo

rem of Higman [3] which we have quoted completes the proof.

4. My thesis [8] contained a number of results which had arisen in discus-
sions I had had with Dr. I.D.Macdonald. One of these was Lemma 3.4.2, of which we

shall need the following variant.

Lemma. Let H be a nilpotent group generated by two infinite sequences
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of elements

xf,“xz, and yl, y2

and having an automorphism B of order p such that

X = X b4 and y =y

for each positive ihteger i .
i+1 vy = i+ £ =

The H is p-radicable.

Proof. Suppose at first that H is actually abelian. Then -1 is sur-

jective andomorphism of H . Further, in the endomorphism ring of H one has that

(
l p(l -B) when p = 2 ,
8 - 1nP=1
1 i _i :
IPI.)z k8 (-nF * when p > 2
(i=1 i
where ki denotes the integer defined by ki = (p - 1)I/i! (p - i)! (exploiting

the fact that the relevant binomial coefficients are all divisible by p).

This shows that in either case (B - 1)p is the composite of h v hP and of
another .endormorphism of H . Since (B =~ 1)p is surjective, it follows that
h hp must also be surjective: that is, H 1is p-radicable.

In the general case, this first step shows that the factor group H/H' of
H over the commutator subgroup H' is p-radicable, and from this the p-radica-

bility of H follows by a standard result (Theorem 4.6 in Warfield [11]).

We are now ready to prove Theorem 1. Consider a locally residually SI*-group
G with a uniform aut&morphism o of prime order p . Then o is p-splitting,
so Theorem 3 gives that G is locally nilpotent, the elements of p-power order in

G form a normal subgroup P , and G/P is nilpotent of class at most k(p) .
Let x1 be any element of P and y1 any element of G . Since o is

uniform, one can choose two infinite sequences

ceen and y y

EEER

of elements of G inductively so that
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o o
X, = and y =y

141 xi+1xi ’ i+1 i#lyi for each positive integer i

For each such i , 1let Hi be the smallest a-admissible subgroup to contain

x, and y,: that is,
i i

p-1 p-1
o o . a o
Hoo= <X 0% peeerX, 2 P10 SETEERS S
Since Hi+1 is o-admissible and contains xi and yi , 1t contains ~Hi: so
the H form an ascending chain of subgroups. Let H denote the union of the

i
Hi . Next we claim that if i > j > 1 then
oni ‘ of
ceearX and ; ces .
*p € KXy yreearXy gD vy €KYy qeeen¥y gD

This clearly holds when j =1 , while if in fact i > 1 4+ j then it implies
that
i+1 i

o a0 )
x = (x, ) € <xi'xi—1"“'xi-j>

Qa

o o a
<xi'xi-1'“"xi—j >

>

< cee
< KER g Xy K (e

so the claim follows by induction on j . The point of it is that therefore

>

H < cee cee
P LTI INVES FR APTELEERS e

whenever i > p , whence <:x1,x2,...,y1,y2,... > contains all the H, and
- i
so contains H . 'The converse of the last inclusion is obvious, so wé have

that
<x1,x2,...,y1,y2,...> =H .

Recall that G 1is locally nilpotent, thus-by Khukhro's Theorem each Hi is
hilpotent of class at most £(2p, p) . and therefore so is H . By the Lemma
(applied with B = alH ), H 1is p-radicable. A well-known theorem of Cernikov
(Theorem 4.12 in Warfield [11]) says that in a radicable nilpotent group the
torsion subgroup is central. By the same argument, in a p-radicable nilpotent
group all’elements of p-power order are central. Thus x1 is central in H . We

conclude that the arbitrary element x1 of P commutes with the arbitrary
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element y1 of G, so P 1is central in G . Since G/P is nilpotent, this

proves the nilpotence of = G .

This argument has incideﬁtally also established that G is p-radicable and

its Sylow p-subgroup is central.

5. The first half of Theorem 2 is a special casé of Theorem 5.2.1 of [8].
From its proof, we shall need (special cases of) two steps. By Lemma 5.1.1 of [8],
a fixed-point-free automorphism of prime order p of a nilpotent group is
always p-splitting. By Lemma 5.1.3 of [8}, a p-splitting automorphism of a p-ra-

dicable nilpotent group is always uniform.

(The deduction of the first half of Theorem 2 from these steps may be
sketched as follows. If H is a nilpotent group with a fixed-point-free automor-
phism B of prime order, then H is p-torsionfree. Like each p-torsionfree
nilpotent group, H can be embedded in a certain p-radicable nilpotent group
G which one might call the Mal'cev p-completion (or the p'-localization) of H .
This G is determined by H up to isomorphism,.and each automorphism of H
extends uniquely to an automorphism of G . 1In particular, G has an automorphism
a of order p such that adH = B . Each nontrivial element of G has a nontri-
vial power in H, so a must be fixed-point-free. The two steps quoted then show

that a is also uniform.)

For a sketch of the proof of the second half of Theorem 2, let G be a
nilpotent group, say,.of class c¢ , with a uniform automorphism o of order p.
Let X be any generating set of G . Take a family of copies of the additive
group Z [1/p:[+ of the ring % [l/p] generated by the reciprocal of p , the
family being indexed by the cartesian product of ‘X and {o,1, ... , p-1} ,
and a corresponding family of homomorphisms of these groups into G so that the
image of the homomorphism with index (x,j) - contains xuj . This can be done
because G is p-radicable. Form the free productv F of this family of groups
and the homomorphism '¢ : F > G determined by this family of homomorphisms :
then ¢ is surjective. Moreover, F has an automorphism ¥ of order p which,
for each x in X , permutes.cyclically the free factors indexed by (x, 0),
(x,.l), eee, (x, p-1), and is such that . y¢ = ¢o . Let A Dbe the largest
rquotient of F which is nilpotent of class c¢ : then y induces an automorphism

m of order p on A , and ¢ factors through a homomorphism y of A onto
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G such that my = ya . In particular, the kernel C of vy is admissible under

m™ .

Since the free factors of . F are locally cyclic, F 1is locally free. 1In
a free group, if fn is a product of commutators of weight ¢ + 1 then so is f
itself. It follows that A 1is torsionfree. 1In a p-torsionfree nilpotent group,
xP = yp implies x =y (see Theorem 4.10 in Warfield [11]), so the quotient'modg
lo a p-radicable normal subgroup is p-torsionfree. The largest abeliaﬁ quotient of
A is obviously p-radicable, and therefore so is A (see Theorem 4.6 in Warfield
[11]). Of course A/C is isomorphic to G , so the 8ylow p-subgroup B/C of
A/C 1is central in A/C . Thus the mutual commutato¥ subgroup LA, B] is con-
tained in C ; it is p-radicable (see Corollary-Exercise 4;15 in Warfield [11}),
and hence A/[A, B] is p—tqrsionfree. Let D/|A, BI denote the unique largest
p-radicable subgroup of the abelian group C/[A, B] . Then B/D 1is abelian,

p-torsionfree, p-radicable, and C/D has no nontrivial p-radicable subgroup.

Of course B,[A, B], D all admit 7w . Consider the automorphism m/D
induced on A/D by 7. Clearly, (ﬂ/D)p =1 . Let E/D denote the sqbgroup
of A/D consisting of the fixed points of 7/D . If e€ E , then e_le"é D<C
so .eC 1is a fixed point of w/C ; on the other hand w/C is p-splitting
(because it corresponds to o under the isomorphism A/C 2 G induced by Y)
and therefore its fixed points have order dividing p; so eC € B/C . This proves
that E<B. If beB and B¢ E so ()" =P moa p, then (b b"Pe D
follows (becasue B/D is abelian), so b = bTr mod D (because B/D 1is p-torsion-

free) : that is, b & E . Thus B/E is p-torsionfree; as B/D is p-radicable,

it follows that E/D is p-radicable.

Suppose that E/D > 1 : we shall show that this leads to a contradiction.
Since C/D has no nontrivial p-radicable subgroup, now E/D i C/D , whence
EC/C > 1 ; being a homomorphic image of thé p-radicable E/D , this ECYC is
p-radicable. On‘the other hand, EC/C consists of fixed points of the p-splitting
automorphism m/C and so must have exponent dividing p . This is impossible,

so E/D =1 : that is, m/D is fixed-point-free.

We have reached the conclusion that G occurs as the quotient (A/D)/(C/D)
of a p-radicable nilpotent group A/D with a fixed-point-free automorphism m/D ,

with C/D central in A/D and o being (m/D)/(C/D) . All that remains. to see
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is that 7/D is also uniform, but that now follows directly from the two steps

quoted from [8] at the beginning of this section.

[1]

[2]

[3]

(4]

[s]

(]
(7]

[e]

(o]

[10]

(11]

[12]

[13]

REFERENCES
CURZIO M., "Sugli automorfismi uniformi nei gruppi a condizione minimale",
Riv.Mat.Univ. Parma (2) 1(1960), 107-122.

HALL P., "On the finiteness of certain soluble groups", Proc. London Math.
Soc. (3) 9(1959), 595-622.

HIGMAN G., "Groups and rings having automorphisms without nontrivial fixed
elements", J. London Math. Soc. 32(1957), 321-334.

HUGHES D.R. and THOMPSON J.G., "The H -problem and the structure of
Hp-groups", Pacific J. Math. 9(1959),p1097—1102.

HUPPERT B. and WIELANDT H., "Normalteiler mehrfach trasitiver Permutations-
gruppen", Arch. Math. 9(1958), 18-26.

KEGEL O.H., "Die Nilpotenz der H -gruppen", Math. Z. 75(1961), 373-376.
P

KHUKHRO E.I., "On locally nilpotent groups admitting a splitting automor-
phism of prime order", Mat. Sbornik 130 (172) (1986), 120-127 (Russian).

KOVACS L.G., "Groups with automorphisms of special kinds", PhD thesis,
University of Manchester, 1961.

KUROSH A.G., "Theory of groups", (Second Edition, translated and edited by
K.A.Hirsch), Chelsea, New York, 1956.

THOMPSON J.G., "Finite groups with fixed-point-free automorphisms of prime
order", Proc. Nat. Acad. Sci. U.S.A. 45(1959), 5787581.

WARFIELD ROBERT B.Jr., "Nilpotent groups", Lecture Notes in Mathematics
513, Springer-Verlag, Berlin Heidelberg New York, 1976.

ZAPPA G., "Sugli automorfismi privi di coincidenza nei gruppi finiti", Boll.
Un. Mat. Ital. (3) 12(1957), 154-163.

ZAPPA G., "Sugli automorfismi uniformi nei gruppi di Hirsch", Ricerche di
Mat. 7(1958), 1-13.

L.G.KOVACS )
AUSTRALIAN NATIONAL UNIVERSITY
GPO BOX 4

CANBERRA, A.C.T. 2601
AUSTRALIA



