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1. Discussion*)

Some theorems on wreath products

By L.  G.  KOVAC S (Canberra)

The Embedding Theorem constructs, for each group G and each subgroup H
of index n in  G, embeddings 9  o f  G in the (unrestricted, permutational) wreath
product H  Wr S„ o f  H  by the relevant symmetric group. Such wreath products
have a functorial property which gives for each homomorphism a: H—A a  homo-
morphism a  Wr S
n
:  H W r  
S
n
- A  
W r  
S , ,  
•  
T h
e  
c o m
p o s i
t e s  
a
t  
o
f  
(
p  
a
n
d  
a  
W
r  
S
„

are of fundamental importance. For example, if  n is finite and A is a general linear
group, GL, say, so a is a linear representation o f H, then at (composed with the
obvious inclusion of G L
k  W r  S
„  i n  
G L , „ )  
i s  
t h e  
i n d u
c e d  
r e p r e
s e n t a
t i o n  
o
f  
G
.  
I
n

this sense at least, the Embedding Theorem goes back all the way to Frobenius.
(For recent expositions, see § 5 in COSSEY, KEGEL, Koviics [1] and § 4 in ROBINSON,
WILSON [4].)

The first question considered here is : how does one recognize whether a homo-
morphism S „  is one of the embeddings given by that Theorem? What
distinguishes these embeddings from others?

Towards an answer we must emphasize first that the Theorem gives not just
one embedding but a whole lot: one for each of the I
H I "  t r a n s v e r s a l s  
o f  H  
i n  G .  
S e c o n d ,

the symmetric group which really occurs in the Theorem is that acting on the set
of all cosets of G modulo H, while the functorial view demands that we think of S.
as the symmetric group on some set given without reference to G or H: so we have
to choose one of the n! possible identifications of these two sets. A ll told, we have
n! IHIn options. I t  is not hard to see that the resulting embeddings differ precisely
by inner automorphisms o f  the wreath product: i f  we let Inn  (HWr S
n
) a c t  o n
Hom (G, H Wr S„) by composition, they form a single complete orbit of this action.
(In general, there are some coincidences so we get fewer than n! IHIn distinct embed-
dings : we shall return to this point later.)

More notation is needed before we can proceed. I t  will not be assumed that
n is finite. Throughout, I  shall denote a fixed set of cardinality n, and for emphasis
we shall often write S
/  r a t h e r  
t h a n  
S  
T h e  
w r e a
t h  
p r o
d u c
t  
A  
W
r  
S
/  
i
s  
t
h
e  
s
e
m
i -

direct product of S
/ a n d  
t h e  
g r o u p  
A
I  
o f  
a l
l  
f u n c
t i o n
s  
I —
A .  
[ P e
r m u
t a t i
o n s  
a
n
d

*) A  condensed, preliminary version o f  this paper was presented at  the International Col-
loquium on Group Theory held in memory of  Tibor  Szele (1918-1955)  at Debrecen (Hungary),
16--20 September 1985.
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functions will be written on the left and composed accordingly. The action of S
/on A '  is defined in terms of this composition but written exponentially: so

fP(i) =  f(p i) whenever f E A
I
,  p E S
1
,  i E L 1

The natural projection of A  Wr S
/ o n t o  S
/  w i l l  
b e  
d e n o t e d  
i t  
( o r  
7 E
A  
w h e
n  
a  
d i s t i
n c -

tion appears necessary). Given W = A  Wr S, and an i  in I
,  t h e  e l e m e n t s  p f  
o f  W
such that p i= i  fo rm a subgroup, W
i  s a y ,  w h i c h  
h a s  
a n  
o b v i o u s  
d i r e c t  
d e c o m p
o s i -

tion A X (A  Wr S
/
\
{ i
} )  :  
t h e  
c o r r e s
p o n d i n
g  
p r o j
e c t i
o n  
p f
, f
( i
)  
w
i
l
l  
b
e  
c
a
l
l
e
d

7t1 (or w h e n  appropriate). [Homomorphisms will be written on the right and
composed accordingly.] The answer to the recognition problem above may now be
expressed as follows.

Theorem 1. A  homomorphism (p : G - -W= H Wr  S
/ i s  o n e  o f  
t h e  
e m b e d d i n g s

given by the Embedding Theorem i f  and only i f
(a) G97r is transitive (as subgroup of S
i
),  a n d
(b) there is an element O in I  such that

(b1) the stabilizer of O in G with respect to the permutation representation
97r is H, and

(b2) the restriction 94: H— W, followed by 7r
0 i s  a n  i n n e r  
a u t o m o r p h i s m

of H.

It must never be forgotten that here W  is the group concretely constructed
above, with a distinguished copy (the "top group") o f S
/ a n d  a  d i s t i n g u i s h e d  
c o p y
(the "base group") o f  H '  as semidirect factors, and equipped with it  and the 7t1
Changing to a different wreath decomposition o f  this group may easily spoil the
result. For example, let G be a nonabelian group of order 6 and H  a subgroup of
index 3 in G. Then the base group has two conjugacy classes of complements in W,
one being the class containing the top group; it  is easy to verify that the relevant
embeddings are precisely those whose whose images fall into the other class. This
illustrates the sensitivity of Theorem i to the slightest change in the wreath decom-
position: one cannot even replace the top group by another (nonconjugate) com-
plement of the base group, without upsetting the conclusions.

This recognition problem has an obvious variant: given a  homomorphism
y: G—W=A Wr S
i
,  h o w  
c a n  
o n e  
t e l l  
w h e t
h e r  
y =
o c
t  
f
o
r  
s
o
m
e  
s u
i t
a b
l e  
o
c
?

Theorem 1'. Let y :  W = A  Wr S, be any homornorphism. There is a sub-
group H in G (o f index equal to the cardinality o f  I) and a hornomorphism
such that ott=y (f o r a suitable identification of I with the set of the left cosets of G
modulo H, and for a suitable transversal of H in G), (fand only i f

(a) Gy7c is transitive (as subgroup of S
I
),  a n d
(b) there is an element O in I  such that

Gy ( G y n W
0
) 7 r
0  W r

Of course here (Gy fl W
o
) n ,  W r  S
/  i s  
t h o u g h
t  
o f  
a s  
a  
s u b g
r o u p  
o
f  
A  
W
r  
S
/

[embedded via 13 Wr S
/ w h e r e  1
6  i s  
t h e  
i n c l u s
i o n  
o f  
( G y
fl  W
o
) n
o  
i
n  
A
l  
N
o
t
e  
t
h
a
t

(a), (b) do not involve y directly, only its image Gy. Also, once (a) is assumed, the
inclusion in (b) holds either for all elements o f  I  or for none at all.
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The second question o f this paper also comes in two versions. One, what is
the cardinality of the set of all embeddings 9 constructed by the Embedding Theo-
rem for given G and H? The discussion above leads to the conclusion that it is the
index in  H W r  S
i o f  
t h e  
c e n t r a
l i z e r  
C
( G
)  
o
f  
t
h
e  
i m
a g
e  
o
f  
a
n
y  
o
n
e  
o
f  
t
h
e
s
e

embeddings, so the real question is to determine C
w
( G 9 ) .

Theorem 2. Let H  be a subgroup o f  index n in  a  group G, and 9 :  G--.W=.
= H  Wr S
n 
a n y  
o n
e  
o
f  
t
h
e  
e m
b e
d d
i n
g s  
g
i
v
e
n  
b
y  
t
h
e  
E
m
b
e
d
d
i
n
g  
T
h
e
o
r
e
m
.  
T
h
e
n

C „ , ( G 9 )
-
- C
G
( 1 1 ) .  
I f  
G  
i
s  
fi n
i t e
,  
t
h
e  
n
u
m
b
e
r  
o
f  
d
i
s
t
i
n
c
t  
9  
o
f  
t
h
i
s  
k
i
n
d  
i
s  
t
h
e
r
e
f
o
r
e

— 1)! I H j "
-
' 1 G : C
G
( H ) 1 .

The second version asks : given G, H, and a: w h a t  is the cardinality of
the set of all homomorphisnas a l:  W r  S„ "induced" by this a? An argument
similar to the discussion above yields that it is the index in W of any one C
w
( G ( a t ) ) ,
except that W must be taken as (Ha) Wr S
n
,  n o t  a s  A  
W r  S „ .  
I n  
p l a c e  
o f  C
G
( H ) ,

the answer will involve the subgroup C
G
( H / k e r  a )  
d e fi n e d  
a s  
t h e  
s e t  
o f  
t h o s e  
e l e -

ments g of G for which the mutual commutator [H,  i s  contained in ke r cc: that
is, those g which normalize both H  and ke r a, and whose (conjugation) action
on Hike r cc is trivial. Of course when A -= H and a is the identity map, this is just
C
G
(
H
)
,  
a
n
d  
t
h
e  
a
t  
a
r
e  
j
u
s
t  
t
h
e  
(
p  
o
f  
T
h
e
o
r
e
m  
2
.  
T
h
a
t  
r
e
s
u
l
t  
i
s  
t
h
e
r
e
f
o
r
e  
a  
s
p
e
c
i
a
l

case of the following.

Theorem 2'. Let H  be a subgroup o f index n in a group G, let a :  b e  a
homornorphism, and a t : W r  S, any one of the homomorphisms induced by a.
Set W=-(11a) Wr S
n
:  t h e n  C
w
( G ( a t ) ) -
-
C
G
( H l k e r  
a ) /
k e r  
a
.  
I
f  
G  
i
s  
fi n
i t
e ,  
t
h
e  
n
u
m
-

ber of distinct a t  induced by the given a is

(n— i)! Wain C
G
( H / k e r  
a ) l •

It may be worth noting that the proofs o f  Theorems 2 and 2 ' yield explicit
isomorphisms, not just the existence of isomorphisms.

2. Proofs
Theorems I and l '  depend on the answer to a related question: how can one

recognize whether two homomorphisms y ,  y': G—W=A Wr S
i a r e  t h e  s a m e  
u p
to composition with an inner automorphism of W? In turn, this is an extension of
the familiar question: how can one recognize whether yn and y'n  are equivalent
as permutation representations G  S
I
?  T h e  
a n s w e r  
t o  
t h a t  
i s  
o f  
c o u r s
e  
c l a s s i c
a l ,

the essential case being that of transitive representations. Accordingly, let us narrow
down our question: after correction by an inner automorphism of W induced by
an element of the top group S
i
,  w e  a s s u m e  
t h a t  
y n  
a n d  
y '  
I C  
a r e  
e q u
a l  
a n
d  
t r a n s
i t i v e
,

and ask whether y and y' differ only by an inner automorphism of W induced by
some element of the base group A/. The answer is : if  and only if (y )n
o  a n d  ( y ' O ndiffer only by an inner automorphism of A. Here O is any element of I, and
are the restrictions o f y, y
t
,  
r e s p e c t i v e l y ,  
t o  
W
o  
w h e
r e  
H  
i
s  
t h
e  
s t a b
i l i z
e r  
o
f  
O

with respect to yn. This is contained in the Uniqueness Theorem of [2], which may
be conveniently paraphrased as follows.
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Uniqueness Theorem. Let y and y' be homomorphisrns of a group G into a wreath
product A  Wr S
I
,  s u c h  
t h a t  
V I C  
y '  
n  
a n
d  
G
y
n  
i
s  
t r a
n s i
t i v
e  
a
s  
s u
b g
r o
u p  
o
f  
S
I  
C
o
n
s i
d
e
r

= {
f
E  
1  
=  
y  
(
i
n
n  
f
)
}

= {fEA
1  I  
g y '  
f
- 1
( g
y ) f  
f
o
r  
a
l
l  
g  
i
n  
G
}
,

B =  {bEA 1 ( y ' ) n
o  =  ( ) O r
o  
( i n n  
b ) )

= -PEA! hy' n
o b
-
q h y n
o
) b  
f o
r  
a l
l  
h  
i
n  
H
)
.

Then n
o  
m a
p s  
F  
o n
e -
t o
-
o n
e  
o
n
t
o  
B
.

Addendum. The inverse of this bijection may be described in terms of a trans-
versal of H in G but is of course independent of that. To each i in I  choose a t
i i nG such that ( t
i
y n ) 0 = i  
[ e q u i v
a l e n t l
y ,  
( t
i
y '  
n )
0 =
i ] .  
W
r i
t e  
t
i
y  
a
s  
p
i
f
i  
w
i
t
h  
p
i  
f
r
o
m

the top group S
i a n d  f
i  
f r o m  
t h e  
b a
s e  
g r
o u
p  
A
'
;  
s i m
i l a
r l y
,  
s
e
t  
t
i
y '  
= p
i
f
i
' .  
T
h
e  
i
n
v
e
r
s
e

bijection maps an element b of B to the element f  of F defined by
f (i) =  f
i
( 0 ) b f
i
'  ( 0
)
- 1  
f
o
r  
a
l
l  
i  
i
n  
I
.

Proof of Theorem 1. The "only if "  claim comes straight f rom the proof o f
the Embedding Theorem and we shall not spell it out: the reader can easily elaborate
details from the sketch given on p. 216 of [1]. Take O as the element of I  identified
with the trivial coset of H in G; the inner automorphism of H in question is induced•••
by the representative of this coset in the transversal chosen.

For the " if "  part, suppose (a) and (b) hold; let t
o  b e  a n  e l e m e n t  
o f  H  
w h i c h

induces the inner automorphism (9 0 n
0
.  F o r  e a c h  
i  i n  
I  
o t h e r  
t h a n  
t h i s  
0 ,  
c h o o s
e

a t
i 
i
n  
G  
s
u
c
h  
t
h
a
t  
(
t
1
9
n
)
0
=
i
:  
t
h
i
s  
g
i
v
e
s  
a  
t
r
a
n
s
v
e
r
s
a
l  
o
f  
H  
i
n  
G
.  
I
d
e
n
t
i
f
y  
I  
w
i
t
h

the set of the cosets of G modulo Hby matching each i to t
i
l l .  L e t  9 '  b e  
t h e  e m b e d d i n g

constructed with this choice o f  transversal and identification. I t  is obvious that
p7t= 9' n and that ( q ) ) n
0
= i n n  t
o  =  
( 9 '  O n
o
.  
I n v o k
e  
t h e  
U n i q u
e n e s s  
T h e
o r e
m  
w i
t h

9, 9', H
i n  
p l a
c e  
o
f  
y
,  
y
'
,  
A
,  
n
o
t i
n
g  
t
h
a
t  
n
o
w  
l
E
B
:  
h
e
n
c
e  
F
i
s  
a
l
s
o  
n
o
n
e
m
p
t
y
.  
T
a
k
e

any f  in F: then 9  =9'(inn f  -1
), a n d  o f  
c o u r s e  
9 ' ( i n n f
- 1
)  
i s  
j u s t  
a n  
e m b e d
d i n g

constructed from a different transversal [namely, from that with t
i
f ( i )
- 1  i n  p l a c e

of t
i
] .  
T
h
i
s  
c
o
m
p
l
e
t
e
s  
t
h
e  
p
r
o
o
f  
o
f  
T
h
e
o
r
e
m  
1
.

Proof of Theorem 1'. For the "on ly if "  part, we have to show that (a) and
(b) hold when y=a t .  Le t  a t  =9(a Wr S
i
) w i t h  a  9 :  
G - . I I W r  
S
i  
g i v e n  
b y  
t h e

Embedding Theorem, and 0 an element of I  such that (b i) and (b2) of Theorem 1
hold. The proof depends on the fact that it and I t
o  a r e  " n a t u r a l " .  
T o  e x p r e s s  
t h i s

we now distinguish e  from n
A  a n d  I C
1
0
1  f r o m  
7 4 ,  
b u t  
s i m p l
y  
k e e
p  
W  
a n
d  
W
o  
f o
r

the domains of n
A a n d  
n o '
l
,  
l e a v i
n g  
t h
e  
d o m
a i n
s  
o
f  
n
i l  
a
n
d  
7 r
6
1  
u n
n a
m e
d .  
T
h
e  
n a
t u
r a
l i
t y

of it means that (a  Wr S
I
) n '  = n
1 1  ;  
t h i s  
y i e l d s  
t h a t  
G ( a t ) 7 E l
l
= G 9 n
1 1
,  
s
o  
G
( a t )
n i
t

is transitive by (a) of Theorem 1. The naturality of n
o m e a n s  t h a t  ( ( a  
W r  S
i
) 0 7 t 6
4  =

=nt,' a fo r the relevant restriction (a  Wr :  th is yields that

0 0 0 4  =  (9 )((o tWrSt )0
7
4  =  
( 9 0 T r f f o c •

As H ( 9 ) 4
1
=  H  
b y  
( b 2
)  
o
f  
T h
e o
r e
m  
1
,  
w
e  
h
a
v
e  
H
( o
z N
)
m o
4  
= H
( 9
0 4
,
1
0 e
= H
o t
.  
O
f

course H(a t  = M a t ) ,  while  H(c(t )n
A  = 1 1 9 n H  a n d  
( b i )  
o f  
T h e o r e m  
1  
g i v e  
t h a t

H(cc1 )
-
G  
( a t )  
n W
o
:  
h
e
n
c
e  
b
y  
t
h
e  
c
o
n
l
u
s
i
o
n  
o
f  
t
h
e  
p
r
e
v
i
o
u
s  
s
e
n
t
e
n
c
e
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(G (at) n WO nod. In  view of G ( a ( )
-
: - ( H  W r  S
i
) ( a  W r  S
i
) =  
( H o c )  
W r  
S
i
,  
t h i s  
p r o v
e s

the inclusion claimed in (b).
The proof o f the " if "  claim depends on the Addendum to the Uniqueness

Theorem: so assume (a), (b), and define H  as the stabilizer (with respect to the
permutation representation r r
A
)  o f  t h e  
O  o f  
( b ) ,  
s o  
H y  
= G y  
n  
W
O
.  
D e fi n
e  
c c
:  
H
—
A

as (y1)7ro
4
; t h e  
i n c l
u s i o
n  
i
n  
(
b
)  
m
a
y  
t
h
e
n  
b
e  
w
r
i
t
t
e
n  
a
s  
G
y
-
. .
(
H
c
x
)  
W
r  
S
i
.  
B
y  
(
a
)
,

to each i in  I  one may choose a t
i i n  G  s u c h  
t h a t  ( t
1
r t
A
) 0 = i ,  
a n d  
t h e s
e  
f o r
m  
a

transversal of H in G. Define y' as a t  formed with respect to such a transversal and
the matching identification of i with t
i
l l ,  f o r  e a c h  
i  i n  
I .  
E l a b o r a t i n
g  
t h i s  
d e fi n i t i
o n

of y' shows that ( g y ' n
A
) i = f  m e a n s  
g t
i
H = t
i
l l ;  
b y  
t h
e  
d e fi n i
t i o n  
o
f  
H
,  
t h
i s  
i
s

equivalent to ( ( g t
i
) y e ) 0 = / .  
I t  
f o l l o w
s  
t h a
t  
y e = y
' n '
t
.  
D e
fi n
e  
f
i  
a
n
d  
f
i
i  
a
s  
i
n

the Addendum. We have seen that Gy W r  S
i
:  h e n c e  f
i
E ( H o t ) " .  
S i m i l a r l y ,

f
i
'
E
(
H
a
)
I  
b
e
c
a
u
s
e 
b
y 
i
t
s  
d
e
f
i
n
i
t
i
o
n 
y
'  
f
a
c
t
o
r
s 
t
h
r
o
u
g
h 
a 
W
r  
S
i
.  
L
e
t  
(
p 
b
e 
t
h
e 
e
m
-

bedding G J I W r  S
i u s e d  
i n  
f o r m i n
g  
a t  
:  
w e  
k n
o w  
f r
o m  
t
h
e  
p r
o o
f  
o
f  
T h
e o
r e
m  
1

that ((p)nt," =inn t
o
.  A s  
i t ,  
i s  
n a t u r
a l ,

(y/i)no
4 =  
( 9
0
( ( a
W r
S
1
)
0 7
t 6
1  
=  
(
9
)
7
t
g
o
t  
=  
(
i
n
n  
t
o
)
a  
=  
a
(
i
n
n  
t
o  
a
)  
=  
(
y
i
)
n
o
4  
(
i
n
n  
t
o  
a
)
.

In terms of the Uniqueness Theorem, this means that t
o
a E B ;  h e n c e  b y  
t h e  A d d e n -

dum the element f  of A' defined by

f (i ) = f
i
( 0 ) ( t
o
o e ) f
i
'  (
0 )
-
'  
f
o
r  
a
l
l  
i  
i
n

lies in F: that is, y  =y'(inn f
- 1
) .  F r o m  
t h e  
f o r e g o i n
g  
w e  
s e e  
t h a
t  
i n  
f a c
t  f
( i )
E H a

for all i, so f
-
l E ( H a )
/
.  
I t  
f o l l
o w s  
t h
a t  
c o m
p o s
i t i
o n  
w
i
t
h  
i
n
n  
f
-
1  
m
e
r
e
l
y  
c
h
a
n
g
e
s

y' to an a t  defined with reference to a different transversal. This completes the
proof of Theorem 1'.

Theorems 2 and 2' depend on the other result from [2] as strengthened in [3].
The relevant part may be paraphrased as follows.

Centralizer Theorem. Let y :  G—W=A Wr S, be a homomorphism such that
rc is a transitive permutation representation; let H  be the stabilizer in G o f  some
point, O say, o f  I; and let S denote the image of H in the (external) direct product
GXA under the embedding given by h
. - ( h , h y n
o
) .  T h e n  
t h e r e  
i s  
a  
h o m o m o r p
h i s m

of N
G x
A
( S )  
o
n
t
o  
C
w
(
G
y
)  
w
i
t
h  
k
e
r
n
e
l  
S
.

(Strictly speaking, the statement in [3] deals with the image R of Hy in GyXA
under h y l - -
,
- (h y ,  
h y t t
o
) ,  
a n
d  
g i
v e
s  
a
n  
e x
p l
i c i
t  
h o
m o
m o
r p
h i
s m  
V
/  
o
f  
N
G 1
,
x A
( R
)  
o
n
t
o

C
w
(
G
y
)  
w
i
t
h  
k
e
r
n
e
l  
R
.  
S
i
n
c
e  
S  
c
o
n
t
a
i
n
s  
t
h
e  
k
e
r
n
e
l  
(
k
e
r  
y
)
X  
1  
o
f  
t
h
e  
h
o
m
o
m
o
r
-

phism y  X1 o f  G  X A onto Gy X A and S (y  X 1)=R, the  composite o f  y  X 1
and that w i l l  serve in the present version.)

We have already noted that Theorem 2 is a special case o f Theorem 2'. For
the proof of the latter, one may assume without loss o f  generality that A=Hcx,
and then Wean be thought of as A  Wr S
i
.  F u r t h e r ,  
o n c e  a  
i s  
g i v e n ,  
t h e  
i s o m o r p h
i s m

type o f C
w
( G
( a t ) )  
i s  
i n d
e p e
n d e
n t  
o
f  
t
h
e  
c
h
o
i
c
e  
o
f  
a
t
,  
s
o  
w
e  
m
a
y  
a
s  
w
e
l
l  
t
a
k
e

an a t defined with reference to a transversal in which the trivial coset is represented
by 1, and to an identification which matches that coset to O. We know from (a)
of Theorem l'  tha t (a t)7 (
A i s  
t r a n s i t i v e ,  
w h i l e  
t h e  
p r o o
f  
o f  
t h
e  
" o n
l y  
i f
"  
p a
r t  
o
f
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Theorem I and the naturality of 7r yield that H is the stabilizer of O. We can there-
fore apply the Centralizer Theorem with 7  =at. B y an argument used in the proof
of Theorem l',  now 00'0 74,
4 = a ,  s o  
S  i s  
t h e  
i m a g e  
o f  
1 2
,
- ( h ,  
h a )
.  
I t  
i
s  
e a
s y  
t
o  
s
e
e

that if  (g, a )EN
G
„ A
( S )  
t h e n  
g  
m u s
t  
n o r m
a l i z
e  
b o
t h  
H  
a
n
d  
k
e
r  
c
r
,  
a
n
d  
t
h
e
n  
(
u
s
i
n
g

Ha= A) that NG x A (AS =  (
C ( 1 - 1 / k e r  
a )  X  
I )  
S  
w i t h  
( C  
( H /
k e r  
o r
)  
X  
1 )
fl  
S =
( k e
r  
o
r )  
X  
I
.

Consequently NG x A(S)/S
- C
G
( 1 / / k e r  a )
i k e r  
c t ,  
a n d  
s o  
t h
e  
C e n t r
a l i z e
r  
T h e
o r e
m

yields Theorem 2'.
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