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ABSTRACT 

Let G be a finite primitive group such that there is only one minimal normal 
subgroup M in G, this M is nonabelian and nonsimple, and a maximal normal 
subgroup of M is regular. Further, let H be a point stabilizer in G. Then 
H (1 M is a (nonabelian simple) common complement in M to all the maximal 
normal subgroups of M, and there is a natural identification ofMwith a direct 
power T m of a nonabelian simple group T in which H ~ M becomes the 
"diagonal" subgroup of T m: this is the origin of the title. It is proved here that 
two abstractly isomorphic primitive groups of this type are permutationally 
isomorphic if (and obviously only if) their point stabilizers are abstractly 
isomorphic. 

Given T m, consider first the set of all permutational isomorphism classes of 
those primitive groups of this type whose minimal normal subgroups are 
abstractly isomorphic to T m. Secondly, form the direct product S,~ × Out Tof 
the symmetric group of degree m and the outer automorphism group of T(so 
Out T = Aut T/Inn T), and consider the set of the conjugacy classes of those 
subgroups in S,~ X Out Twhose projections in S,~ are primitive. The second 
result of the paper is that there is a bijection between these two sets. 

The third issue discussed concerns the number of distinct permutational 
isomorphism classes of groups of this type, which can fall into a single abstract 
isomorphism class. 

The  a im  o f  this pape r  is to invest igate  p r imi t ive  p e r m u t a t i o n  groups G on 

finite sets fl ,  such that  G has a un ique  m i n i ma l  no rma l  subgroup M ,  this M is 

nonabe l ian  and  nonsimple ,  and  a m a x i m a l  no rma l  subgroup K o f  M is regular. 

Such groups a re -somet imes  called primitive groups o f  simple diagonal type. 

Let H be a poin t  stabil izer in such a G. Then  H N M i s  a (nonabel ian  simple) 

c o m m o n  c o m p l e m e n t  in M to all the m a x i m a l  no rma l  subgroups  o f  M ,  and  

there  is a natural  way o f  identifying M w i t h  a direct  power  T m o f a  nonabe l ian  

s imple  group T in such a way tha t  H M M becomes  the diagonal  diag T m. [Let 

K~ . . . .  , K~, be  the m ax i m a l  no rma l  subgroups  o f  M .  To  each e lement  x o f  M ,  
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let f :  {1, 2 . . . . .  m}----H N M be the function whose value f(i)  at i is the 
unique element o f H  n Mcongruent to x modulo K~. This function is constant 
if and only if x ~ H A M .  The map x ~ f i s  an isomorphism of M onto 
(H n M)".] This is the origin of the phrase "simple diagonal type". Since the 
normalizer Na(H n M) is H, one may identify f~ with the conjugacy class of 
H O M. in G; better still, exploiting also that HA1 = G, identify fl with the 
conjugacy class of diag T m in Tm. The uniqueness of M in G means that the 
centralizer C~(M) is 1; hence we may change our point of view once more, to 
have G (abstractly) embedded in Aut T m in such a way that the action of G on 

is the action of the relevant automorphisms of T" on the conjugacy class of 
diag Tm. In particular, the degree of G is I T I m - I. 

Of course Aut T m -- (Aut T) Wr Sm= Sm(Aut T)  m ; call this (permutational) 
wreath product W for short. Now M -- (Inn T) m and H n M -- diag(Inn T) m. 
It is easy to see that 

hence 

Now 

Nw(diag(Inn T) m) ffi S m X diag(Aut T)m; 

H = NG(H n M) = G n (Sin X diag(Aut T)~). 

G/M < W / M  = Out T m = (Out T) Wr S ,  = Sin(Out T) m 

and indeed 

G/M = H M / M  < S,, × diag(Out T) m ~ Sm × Out T. 

This embedding of G/M in Sm× Out T depended only on the choice of H 
(unique up to conjugacy in G), on the indexing bijection from { 1 . . . . .  m } to 
the set of maximal normal subgroups of M, and on the (implicit) isomorphism 
between H n Mand  T: hence the copy o f G / Min  S,, X Out Tis determined up 
to conjugacy in the latter group by the permutational isomorphism class of G. 
Moreover, G and H can be recovered from this copy of  G/M: namely, H as the 
complete inverse image in Sm X diag(Aut T) ~ of this copy of  G/M, and then G 
as H(Inn T)m. 

We shall show that the relevant subgroups of Sin X Out Tare precisely those 
whose projections in Sm (in the direct decomposition Sm X Out T) are primi- 

tive (as subgroups of Sin). In view of the foregoing, this will establish the first 
part of the following. 

THEOREM 1. There is a bijection between the set o f  permutational isomor- 
phism classes o f  those primitive groups G of  simple diagonal type whose unique 
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minimal normal subgroups are abstractly isomorphic to T m, and the set of the 
conjugacy classes of those subgroups o f  S m X Out T whose projections in Sm are 
primiti re. Two such G are abstractly isomorphic if  and only i f  the corresponding 
subgroups of Sin × diag(Out T) m are conjugate in (Out T) Wr Sin. 

REMARK 1. The set of these permutational isomorphism classes may be 
partially ordered by calling two of them comparable if a representative of one 
contains a subgroup belonging to the other. The set of the relevant conjugacy 
classes of subgroups of Sin X Out Tmay also be partially ordered in this way. It 
is clear that the bijection of Theorem 1 is then an order-isomorphism. 

For the "only if" part of the second statement of Theorem 1, consider the 
two G in question embedded in the same W; restrict to the (now) common M 
an abstract isomorphism of the two G, to obtain an automorphism of M; the 
corresponding automorphism of T m will conjugate one G into the other. The 
"if" part is obvious. 

The promised identification of the relevant subgroups of Sm× Out T lies 
much deeper. Let H be a subgroup of Sm ×diag(Aut T) m containing 
diag(Inn T)m; set H =Sm ~ H(Aut T) m, and define G as HM with M -- 
(Inn T) m. Transitivity o f / / ( a s  subgroup of Sin) is deafly equivalent to the 
minimality of M among the normal subgroups of G, so we may as well restrict 
attention to the H which satisfy this much. What we have to prove is that then 
the primitivity of H is equivalent to the maximality of H in G. Let K be a 
maximal normal subgroup (the direct product of all but one of the simple 
direct factors) of M, and N = N~(K). It is easy to see that the primitivity o f / t  
is equivalent to the maximality of N in G. On the other hand, HK = G is 
immediate from the definitions: so, by Lemma 4.1 of[4], in the terminology of 
that paper H is full in G (with respect to K). Lemmas 4.2 and 3.09 of [4] give 
that a full subgroup is maximal if, and obviously only if, it is maximal among 
the full subgroups. Theorem 3.03 of [4] now readily yields that H is maximal 
among the full subgroups if and only if N is maximal in G. This completes the 
proof of Theorem 1. 

COROLLARY (see Remark 2 on p. 6 of Cameron [ 1 ]). In a primitive group 
of simple diagonal type, the normalizers of the simple direct factors of the 
unique minimal normal subgroup are maximal subgroups. 

For if S is a simple direct factor of M, then CM(S) is a maximal normal 
subgroup K of M and S = Cz(K), so N~(S) = NG(K). 
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THEOREM 2. Two abstractly isomorphic primitive groups of simple diago- 
nal type are permutationally isomorphic if and only if  their point stabilizers are 
abstractly isomorphic. 

This is next in the natural order of results, but not in the logical" order of the 
present argument: so the proof must be deferred. 

A primitive permutation representation (of a finite group) is said to be of 
simple diagonal type if its image as primitive group is of simple diagonal type, 
and a maximal subgroup is said to be of simple diagonal type if the natural 
primitive permutation representation on the corresponding coset space is of 
simple diagonal type. A finite group obviously cannot have a corefree maximal 
subgroup of simple diagonal type unless it has a unique minimal normal 
subgroup M and that is nonabelian and nonsimple, and (cf. the Corollary 
above) unless the normalizer N of a maximal normal subgroup K of M is 
maximal in G: so suppose all these conditions hold. 

THEOREM 3. The set of conjugacy classes of corefree maximal subgroups of 
simple diagonal type in such a group G is bijective with the set of  all those 
homomorphisms G/M--, Out M/K whose restriction to N/M is the coupling 
belonging to the extension M/K ~ N/K--~ N/M. 

In view of our assumptions and the foregoing discussion, this is a straightfor- 
ward consequence of Theorem 3.03 of [4]. (Section 2 of that paper is a 
summary of the relevant facts on extensions.) In fact there is a "natural" 
bijection between the two sets in question, and this may be described as 
follows. The homomorphism G/M---Out M/K corresponding to a corefree 
maximal H of simple diagonal type is obtained from the coupling 

H/(H n M)--, Out(H n M) 

belonging to the extension 

H n M ~-, H--~ H/(H o M) 

via the natural isomorphisms 

H/(H n M) ~-- HM/M = G/M and H O M --~ (H n M)K/K = M/K. 

For  an alternative description in terms of the lead-up to Theorem 1, choose T 
as M/K, and the isomorphism of  H n M onto M/K in the obvious way [so in 
M-~ (M/K) m, x ~ f ,  f(i) is the coset of K containing the unique element of 
H O M congruent to x modulo Kd. The resulting embedding of G/M in 
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Sm× Out M/K, followed by the projection of this direct product onto its 

second direct factor, yields the relevant homomorphism. 

A measure of the strength of Theorem 3 is that it is not easy for homomor- 
phisms X of G/M to differ when they are required to agree on the maximal 

subgroup N/M. Let X~ denote the prescribed common restriction. With Z 

defined by Z/K = CN/r(M/K), we have ker ZN = ZM/M. Consider first the 

case when ZM/M is not normal in G/M. Then the normal closure of ZM/M 
supplements N/M and must lie in the kernel ofx:  so there is precisely one such 

X if that normal closure meets N/M in ZM/M, and there is no X otherwise. 

Suppose next that ZM/M is normal in G/M. Then ZM/M lies in the kernel of  

the permutation representation of G/M on its coset space modulo N/M, as 

well as in the kernel of  any Z of the required kind: hence also in the kernel of  

the embedding 

G/M ¢--, Sm X Out M/K 

that the H corresponding to such a X would give rise to. Thus there can be no 

such X except perhaps when ZM/M = 1 so Z = K: that is, when N/K is nearly 

simple. (Here, as in [4], a group is called nearly simple if it has only one 
minimal normal subgroup and that is nonabelian and simple.) 

Let us examine closely this exceptional case. Now there is precisely one X for 

each normal complement (if any) of N/M in G/M (with the normal comple- 

ment as ker g), and there may be other Z with trivial kernels. Of course N/M is 
soluble because Out M/Kis, the Schreier Conjecture having been confirmed by 

the classification of finite simple groups. If N/M does have a normal comple- 
ment in G/M then the primitive image P of  G/M in Sm (modulo the normal 

core of N/M) has a regular normal subgroup and its point stabilizers are 
soluble: so (by Theorem 1 of  Aschbacher and Scott [1 ]) it must be soluble, and 

hence G/Mis also soluble (being embeddable in P × Out M/K). Such a normal 

complement will be unique unless it is  N/M-isomorphic to some (minimal) 

normal subgroup of N/M, in which case its order, the index I G : N I ,  is a 

prime-power divisor of  I Out M/KI. Of course if there is a X with trivial kernel 
then it embeds G/M in the soluble group Out M/K, and again we have that 

I G: N [ is a prime power dividing I Out M/K[. We have proved the following. 

COROLLARY. A group G of the kind considered in Theorem 3 has at most 
one conjugacy class of corefree maximal subgroups of simple diagonal type 
except perhaps ifN/K is nearly simple, G/M is soluble, and m is a prime-power 
divisor of  I Out M/KI. 
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REMARK 2. TO each finite nonabelian simple group T, at most finitely 
many (isomorphism classes of) G with M/K _~ T can be exceptional in this 
Corollary (for they have to be subgroups of  Aut T m with m a prime-power 
divisor of I Out T I ). Given the classification, it should be a plausible exercise 
to list for each isomorphism type of T the exceptional G corresponding to it, 
and to count the conjugacy classes ofcorefree maximals of simple diagonal 
type in each G. (More conveniently, one would list the isomorphism types of 
the groups which occur as Out T: for each of these, the discussion would be 
uniform.) This would enable one to replace this Corollary by an entirely 
conclusive theorem of the kind: "Up to abstract isomorphism, the finite groups 
G with more than one equivalence class of faithful primitive representations of 
simple diagonal type are precisely those in the following list, which also gives 
for each such G all the relevant representations". 

Before proceeding we note without proof an elementary fact. 

LEMMA. Two embeddings of a nearly simple group into the automorphism 
group of the relevant simple group can only differ by an inner automorphism of  
that automorphism group. 

Now we are ready to turn to the permutational isomorphism problem for 
images of faithful primitive simple diagonal type representations of a given 
group G. There is no problem unless G is of the exceptional kind discussed in 
the Corollary of Theorem 3: we continue the discussion from the paragraph 
which led up to that Corollary. 

The kernel of the coupling belonging to H n M =-~, H--~H/(H n M) is 
X/(H n M) where X consists of those elements of H which induce inner 
automorphisms on H n M: that is, X -- (H n M) X CH(H n M). The kernel 
of the corresponding Z: G/M ~ Out M/K is the subgroup of G/M which 
matches X/(H n M) in the natural isomorphism H/(H n M ) ~  H M / M  = 
G/M: so ker Z = XM/M = Cn(H n M)M/M.  

In case ker X = l, we therefore have Cx(H n M) -- 1 so H is nearly simple; 

conjugation action on H N M embeds H in Aut(H n M), whence via the 
natural isomorphism H n M ~ (H n M)K/K = M/Kwe obtain an embedding 
/~ of H in Aut M/K, and this induces an embedding ofH/(H n M) in Out M/K 
which is the composite ofx with the natural isomorphism H/(H n M) ~-- G/M. 
Suppose now that/-/i, Zt,/h, are chosen similarly, and that ~ is an (abstract) 
isomorphism of H onto Hr. Then ~/z~ is another embedding of H in Aut M/K. 
By the Lemma, there is an inner automorphism a of Aut M/K such that 
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/~a -- ~0/z~. Let & be the inner automorphism of Out M/K obtained from o~, and 
~0 the automorphism of G/M obtained from ¢0 and the natural isomorphisms 
G/M ~-- H /H  n M and H~/H~ n M ~ G/M: then X& = {0Zl. As the homomor- 
phisms of G/M into Sm involved in the corresponding embeddings of G/M in 
Sm× Out M/K are equivalent as permutation representations (both having 
N/M as a point stabilizer), we conclude that the two embeddings have 
conjugate images. By Theorem 1, the images of the primitive representations 
of G on its coset spaces modulo H and H~, respectively, are therefore 
permutationally isomorphic. 

Consider next the case when ker X is a normal complement, Y/M say, of 
N / M  in G/M. This Y/M may be regarded an N/K-module via the natural 
homomorphism of N/K onto N/M and the conjugation action of N/M on 
Y/M. The natural isomorphisms 

N/K = (H N N)K/K ~ H N N 
and 

Y/M = X M / M  = Ch,(H n M ) M / M  ~-- CH(H n M) 

are coherent with this action of N/K on Y/M and with conjugation action of 
H n N on Cz(H n M). It follows that H is isomorphic to the (external) 
semidirect product of Y/M by N/K. In particular, now H is not nearly simple 
and so cannot be isomorphic to any H with ker Z = 1. 

To complete the proof of Theorem 2, it will suffice to show that if H~, X~ are 
chosen similarly (so kerxm is another normal complement of N/M in G/M) 

then the copies of G/M in S,, × Out M/K corresponding to H and H! are 
conjugate. We shall use once more that the two embeddings of G/M followed 
by projection into the first direct factor yield equivalent permutation represen- 
tations: so, at the cost of composing one embedding with an inner automor- 
phism of S,, × Out M/K induced by an element of Sm, we may assume that 
these two representations are one: call it p, say. The embedded copies of G/M 
now consist of the pairs (xp, xx) and (xp, xx~), respectively, with x ranging 
through G/M. As the restrictions to N/M ofx and X~ are equal and one-to-one, 
the two embeddings now agree on N/M and their common image, V say, 
avoids the first direct factor Sin. The image ofp is a soluble primitive subgroup 
of Sin, so it has a unique regular normal subgroup U; therefore the image of 
ker X in the first embedding, and that of ker X~ in the second, is this U. It 
follows that both embedded copies of G/M must equal UV. 

This completes the proof of Theorem 2. It may be worth noting a further 
consequence of this argument. 
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REMARK 3. If a finite group G has corefree maximal subgroups of simple 
diagonal type which are not nearly simple, then these subgroups form a single 
characteristic class of subgroups of G. Equivalently, if two primitive groups 
of simple diagonal type are abstractly isomorphic and their point stabilisers 
are not nearly simple, then the two primitive groups are permutationally 
isomorphic. 

To conclude the paper, let us consider some examples which show that the 
complications permitted by the results do in fact arise. For outer automor- 
phisms of simple groups, see the Atlas [3]. 

First, consider a simple Chevalley group T of type D4 over a field of odd 
prime-square order, so Out T--~ C2 × $4, and choose rn = 2. The relevant 
primitive groups G of simple diagonal type have the direct square of T as a 
subgroup of index 2. By Theorem l, the number of permutational isomor- 
phism classes of such G is the number of conjugacy classes of those subgroups 
of order 2 in $2 X (C2 × $4) whose projection in the first direct factor $2 is 
nontrivial: thus it is the number of conjugacy classes of elements of order 
dividing 2 in C2 X $4, to wit, 6. (Is this the largest one can have with rn = 2?) 
The next thing is to think of $2 × (C2 X $4) as $2 X diag(C2 X $4) 2, and verify 
that the six conjugacy classes fuse into one in the wreath product 
(Aut T) Wr $2 (because the relevant subgroups all complement the base group, 
and this happens to be a standard wreath product): so the six permutational 
isomorphism classes lie in a single abstract isomorphism class. An obvious 
representative is T Wr $2. By Theorem 2, we now expect to find 6 abstract 
isomorphism classes of corefree maximal subgroups of simple diagonal type in 
TWr $2; according to Remark 3, all but at most one of these must consist of 
nearly simple groups. As $2 × diag T 2 is corefree maximal of simple diagonal 
type and not nearly simple, we expect 5 nearly simple isomorphism types. 
Indeed: C2 X $4 has 5 conjugacy classes of subgroups of order 2, so there are 
precisely 5 abstract isomorphism classes of nearly simple groups containing a 
copy of T as a subgroup of index 2, and by the Embedding Theorem each 
of these is embeddable in T Wr $2. Finally we come to applying Theorem 
3. In G = TWr $2 we have N = M = T 2, so the number of conjugacy classes 
of corefree maximal subgroups of simple diagonal type is simply the 
order of Horn(S2, C2 X $4), that is, 20. These 20 will have to fall into 6 
sets, those in any one set consisting of (abstractly) isomorphic groups and 
the corresponding primitive representations of T WrS2 having permu- 
tationally isomorphic images. (The conjugacy class corresponding to 
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the zero homomorphism $2---" C2 × $4 consists of copies of $2 × T and is 
in one set by itself. The other 19 classes split into 5 sets matching the 
division of the 19 subgroups of order 2 in C~×$4 into conjugacy 
classes.) 

Next consider T = PSL(p, qP) with p and q odd primes and q ~- 1 mod p. 
The group of diagonal automorphisms of T now has order p; it is norma- 
lized by the group of field automorphisms which also has order p; and 
there is just one nontrivial graph automorphism: so Cp X Cp is a sub- 
group of index 2 in Out T, with Cp X 1 central and 1 × Cp normal but 
not central (so Out T ~ C p  ×D2p~--CpWrC2 with D~p dihedral of 
order 2p). Take m = p  and carry out the exercise on the above pattern: 
it is a shade easier. Dirichlet's Theorem ensures that there is no bound 
(independent of p) on the number of divisors of p -  1, so there is no 
such bound even on the number of soluble primitive subgroups of Sp: so 
Theorem 1 yields that there is no bound independent of T and m on the 
number of abstract isomorphism classes of primitive groups of simple 
diagonal type with unique minimal normal T m. As Out T has (p + 3)/2 
conjugacy classes of subgroups of order p, there are 1 + ( p  + 3)/2 
permutational isomorphism classes of primitive groups of simple diagonal 
type abstractly isomorphic to TWr Cp: so there is no overall bound on 
the number of permutational isomorphism classes of primitive groups of 
simple diagonal type in any one abstract isomorphism class (though 1 expect 
there is one if we exclude the case of the simple group being a projective special 

linear group). 
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