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1. Our aim is to prove the following.
THEOREM. There is a constant c such that for each positive integer

d(^2), each nilpotent transitive group of degree d can be generated by
[cd(logd)~^] elements. Moreover for each prime p there is a positive
constant cp such that whenever d is a power of p there is a transitive
p-group of degree d which cannot be generated by [cpd(log d)~^] elements.

It is tempting to conjecture that this remains true with "nilpotent"
deleted. The group-theoretic part of our proof does not seem good
enough for an attempt to find the optimal constants, so we shall not
trouble to polish the calculus or extract precise numerical values from our
arguments.

2. For each prime power p", let f(pn) denote the least integer such that
each transitive p-group of degree p" can be generated by f(p") elements.
Further, let M(p") denote the coefficient of x

[(j>~1)nl2] in the polynomial
(1 + x + • • • +xp~1)n. The bulk of the paper will be taken up by proving
that

(2.1) -M(p")^f(pn)^-^—M(pn) whenever n > 1.
P P - 1

Since Af(2") is a binomial coefficient, Stirling's Formula yields that
M(2") is asymptotically a constant multiple of 2"n~^. We are grateful to
Professors Kurt Mahler and Sir Peter Swinnerton-Dyer for showing us
how to prove (for p odd) that
(2.2) M(p") is asymptotically a constant multiple of p"n~^.

In view of the first half of (2.1), this implies that suitable cp always
exist.

A simpler version of their argument yields that
(2.3) M(p")<2p"#rl for all p".
The existence of a suitable c then also follows. Indeed, let G be a
nilpotent transitive group of degree d, take a point stabilizer Go in G,
write the prime-power factorization of d as d = Upn(p), let Gp range
through the Sylow subgroups of G, and argue as follows. The group G is
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the direct product of the Gp, and Go is the direct product of the
intersections G0D Gp. The index \G:G0\ is d, and \GP: (Gon Gp)\ =pn(p).
Since Go is corefree in G, each Go D Gp is corefree in the relevant Gp.
Thus Gp has a faithful transitive permutation representation of degree
pn<J>), and hence it can be generated by f(pn(p)) elements. Consequently,
G can be generated by max /(/>"(#')) elements. Since d(logd)~^ is
monotone increasing, by (2.1) and (2.3) we have

It would be easy enough to improve (2.1) a little. Indeed, its first
inequality comes from the slightly sharper
(2.4) {n-l) l

in (2.1) we preferred to compare / and M "pointwise". The second
inequality in (2.1) is proved by induction on n, the critical step being
(2.5) f(pn)^apn-1)+M(p"-y.
this could also be used a bit more effectively. However, we feel that (2.4)
and (2.5) are already far too generous, anyway.

The inequality (2.4) is contained in the unpublished part of Audu's
thesis [2], with essentially the same proof as we give here. Our
"re-discovery" might have been inspired by our having heard of his work
in a 1983 lecture by Dr P. M. Neumann; we are indebted to him for this
reference. He has also drawn our attention to the paper [5] of Ronse, in
which it was shown that

3. The coefficients M(p") are relevant here because of the following
combinatorial interpretation. Set

(1 + x + • • • + x"~y = 2 u(m, n)xm,
so M(p") = u([(p — l)n/2], n). In the (commutative) polynomial algebra
2[xx, . . . , xH], consider the p" monomials which have degree less than p
in each indeterminate. Ordered by divisibility (in the multiplicative
semigroup of monomials), they form a poset Pn, which is a cartesian
product of the chains {1, x,, . . . ,x1~x). The subset consisting of the
monomials of total degree m is called level m of Pn; it is obviously an
antichain. The information we need is that no antichain in Pn is larger
than level [(p - l)n/2] (de Bruijn et al. [3]; see also Aigner [1] VIII.3); in
particular, no other level is larger. The sum of the elements of Pn is
II (! + *, + • • • +*f~1)> and the homomorphism Z[xu . .., xn]-*Z[x]
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which drops the subscript off each xt maps this polynomial to
(1 + x + • • • +xp~1)". This shows that level m of Pn consists of u(m, n)
monomials. Thus the result quoted above amounts to the following:
the longest antichain of Pn has size M(pn); and in particular M(p") =
max u(m, n).

We shall use this twice; first, in establishing that

(3.1) -M{pn+1)^M(p")^-^— M(pn+X) whenever n>0.

By the definition of u(m, n + 1),

u(m, n + 1) = 2) u(m —p + i, n):

hence
M(pn+1) = £ u([(p - 1)(« + l)/2] -p + i, n)

max u(m, n) =pM(p").
This proves the first inequality. A simple manipulation of binomial
coefficients proves the second when p = 2, so consider the case p =
2k +1. Then

M(pn+1) = u(kn + k,n + l)

= 2) u(kn -k-l + i,n)

= £ 2 «(*» - 3* - 2 + i +;, n - 1)

38 (* + 1) 2 "(*» - 2* - 1 + *, n — 1)
= (k + l)u(kn, n)

proves the second inequality.
The second application of the de Bruijn et al. result is the following.

(3.2) Let F be a field of characteristic p and FC£ the group algebra of an
elementary abelian group of order p". Each ideal of FC£ can be
generated, as ideal, by M(p") elements. The power R^-^nl2^ of the
radical R is an ideal which cannot be generated by fewer than M(p")
elements.

We only sketch the proof. Let gx, . . . , gn generate C"p: then X/>-»g/ — 1
defines a homomorphism of the polynomial algebra ¥[xr, . .., xn] onto
FCp, with kernel the ideal generated by x\, . . . , xp

n. Let us abuse
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language by identifying each element of ¥CP with its unique polynomial
pre-image not involving any xf, and then by viewing each of the
polynomials as an F-linear combination of the monomials in Pn. For each
nonzero polynomial, consider the monomials which it involves (with
nonzero coefficient); among these, take the first in lexicographic order,
and call that the leading term of the polynomial. A routine argument
shows that each ideal has a generating set consisting of polynomials
whose leading terms are pairwise distinct and incomparable in the partial
order by divisibility discussed above, so there are at most M(p") of them.
The radical R is generated by xi, ... , xn, and Rm is generated by level m
of Pn; this level is independent modulo Rm+1, so Rm cannot be generated
by fewer than u(m, n) elements.

4. We now come to the critical step of this paper.
(4.1) LEMMA. Let F be a field of characteristic p. If there is a finite
p-group G and an ¥G-module U of dimension p" having a basis permuted
transitively by G and having at least one trivial section of dimension t,
then the regular ¥Cp-module also has a trivial section of dimension t.

Proof. For fixed n and t, let S denote the set of all pairs (G, U)
satisfying the hypotheses: the claim is that if S is nonempty then
(C£, FC;) e 5. For each (G, U) in 5, take a basis of U permuted
transitively by G, and denote by Gv the stabilizer in G of one of the
elements of that basis.

The proof is based on a construction which yields, for each (G, U) in 5
and for each maximal subgroup H of G containing GUt an ¥(H X Cp)-
module V such that (H x Cp, V) e S. Once we have such a construction,
the lemma can be deduced as follows. Of all (G, U) in 5, consider those
with minimal \G\, and among these one with G having as large an
elementary abelian direct factor as possible. Say, G = Cpx B with B
having no direct factor of order p. The minimality of \G\ implies that G is
faithful on U: thus if B = 1 then U ss FG, the only faithful transitive
permutation representation of an abelian group being the regular one. It
remains to show that B > 1 leads to a contradiction. If B > 1 then G has a
maximal subgroup H containing Cp. The minimality of \G\ implies that
no proper subgroup of G can act transitively on the chosen basis of U. As
//-orbits correspond to GUt H double cosets, the intransitivity of H
demands that GV^H. Now C^=e//=eC^ x B yields that H=Ca

px(HnB)
so HxCpZ* C°p

+l x(HH B), and thus (// x Cp, V)eS contradicts the
choice of (G, U).

To prepare for the construction, we need to analyse an arbitrary
(G, U) in S in terms of a maximal subgroup H containing Gv. Let XlY
be a trivial section of dimension t in U. Since the GUt H double cosets are
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w,+w >•

W1 •>.

Fir,. 1

just the p cosets modulo H, the chosen basis of U is permuted by H in p
orbits: let Wlt . . . , Wp denote their F-spans. As G itself acts transitively,
an element g of G outside H must permute these orbits, and hence also
the W,, cyclically: say, Wg = Wl+i when 1 =ei =sp - 1 and Wpg = W,. By
the Isomorphism Theorem,

y_ xnwl xnwl

This is a somewhat degenerate special case, at i = 1, of a general fact
which holds for i = 1, . . . , p. Define W' by

W1 = 0, W2 = W2, W3 = W2 + W3, ... ,W = W2+--- + Wp,
and set Xt = (X+W')nWlt Y, = (Y + W')nWi. Figure 1 shows two
sublattices of the submodule lattice of UH (that is, of F//-submodules of
U): the first is the sublattice generated by X, Y, Wx + W', and W', while
the second is that generated by W', Wlt X,, and Yt. [As is well known,
every modular lattice generated by two 2-element chains "looks like" (a
possibly degenerate form of) the first picture.] Repeated applications of
the Isomorphism Theorem gives that, for i = 1, . . . , p,

[xn(w1 + w)] + Y^xf
K ' l) (xnw') + Y Yt'
Since X/Y is a trivial G-module, each subspace of X containing Y is
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g-invariant; in particular,

[x n (Wr + w')] + Y = [x n (w,g + w'g)] + Y,

so

This shows that the dimensions of the left hand sides of
(4.2.1),. . . , (4.2./?) sum to dim X/Y, whence also

(4.4)

On the other hand,

(4.5) X,*£Yi+1 whenever i<p
because

(A' + w') nwl^(x + w') n (w, + w')
i + W')] + W by modularity,

w')] + Y + W
) + Y+W' by (4.3)

This completes the analysis. For the case p = 5, the conclusions are
summarised in Figure 2.

The construction is now a fairly straightforward matter. Let V be the
H X Cp -module induced from the //-module W|. Transitive permutation
modules induce to transitive permutation modules, and dim V =
p dim Wx = dim U = p" as required. It remains to show that V does have a
trivial section of dimension t. To this end, view V as the outer tensor
product Wx # fCp of the F//-module Wx and the regular FCp-module
(every module induced from a direct factor is such an outer tensor
product). Let / denote the radical of FCP, and use the convention
J° = ¥CP. We claim that

gives a trivial section XIY of dimension t in V. Since X( > Yt, we certainly
have that X^Y. As H acts trivially on each X,/Yj (because the
isomorphisms (4.2.*) are //-isomorphisms), we also have that

[x, H] = 2 [x, #/'-•, //] = 2 [*/> #] #-/'"1« 2 s f'"1 = *
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X

[X' (W,+W4)1 + Y = (X r

[X (W, + W3)] + Y = (X' W4) + Y

[X i(W, + W2)| + Y = ( X n w V Y

[xnwl j+Y=(xr iw2)+Y

Y

FIG. 2

On the other hand, using J" = 0 and (4.5) we get

[X, Cp] = 2 [X, # J'~\ Cp] = 2 X, # [/'-\ Cp] = 2 X, # /'

So H x Cp acts trivially on X/Y, and all that remains is a dimension
count. Let 2o, • • . , zp be a basis for FCP chosen so that zh .. ., zp spans
Z'"1: then one may, as usual, write V= © (W, <8> z,); in that language,

whence X = © ( ^ ® z,), so dim X = S dim Xt. Similarly dim Y =
E dim Yt, and so by (4.4) one gets dim X/Y = t as required.

5. The proofs of the group-theoretic components of the Theorem are
now immediate.

Proof of (2.4). Let G be the semidirect product of C ; - 1 and Rm where
i? is the radical of the group algebra lpCn

p~x (over the field \fp of p
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elements) and m = [(p - l)(n — l)/2]. The commutator subgroup G' is
Rm+\ so GIG' is Cn

p-lxRmlRm+u. by (3.2), this elementary abelian
quotient of G has rank (n — 1) + Af(p"~1). On the other hand, there is
only one minimal ideal in the group algebra $pCn

p~x and so only one
minimal FpC^-submodule in Rm; a subspace-complement Go to that
submodule in Rm has codimension 1 in Rm and so index p" in G. This Go
is corefree in G, so the natural transitive representation of G on the set
of its cosets modulo Go is faithful.

Proof of (2.5). Let K be any transitive p-group of degree p", and Ko a
point stabilizer in K: then Ko is a corefree subgroup of index p". Since K
is a p-group, there is a subgroup / / such that K0<H ^ AT and \H: Ko\ =p.
By the Embedding Theorem (see Thtoreme 1 in §4 of Krasner and
Kaloujnine [4]), K embeds (as permutation group) in the permutational
wreath product CpwrG where G is the group of the permutations
induced by K on the set of its cosets modulo H (so in particular G is a
transitive p-group of degree p""1). Moreover, if U denotes the base
group of this wreath product then KU = GU. Set UC\K = X and
U D 4>(/Q = Y (as usual, we write 4>(K) for the Frattini subgroup of K):
then K/X^KU/U^G so K/X<f>(K) s G/<f>(G) and
A'/y whence

Set dimX/Y = t: by (4.1), the regular FPCP ^module also has a trivial
section of dimension t, so by (3.2) we have t ̂  M(p"~1). This shows that
the rank of K/®(K) is at most f(p"~l) + M{pn'1), as required.

Proof of (2.1). The first inequality follows directly from (2.4) and the
first half of (3.1). The second inequality is proved by induction on n. The
initial step is provided by direct calculation: /(p2) = 2, while M(p2) is p.
The inductive step is simple:

by (2.5)
2

P
2

( +1 )M(pn~1) by the inductive hypothesis,
\p — 1 /

- M{p") by the second half of (3.1).

6. We owe the first step towards the asymptotic expression (2.2) for
M(p") to Professor Kurt Mahler. We need only consider the case when p
is odd, say p = 2k + 1. Set

kn
)

V—* ' J-o



GENERATING TRANSITIVE PERMUTATION GROUPS 369

then M(p") = 2a0. Now
kn

j-o

Since

sin 0/2
it follows that

^=l_ f /rinpfl/2ydfl = 2 r / sinpu y ^
2n i \p sin 0/2/ n J \p sin u/

0
i \p sin 0/2/ n J

—ft 0
Thus what we need is an asymptotic formula for the last integral: we
leave that for the last section. Essentially the same argument shows this
equation also holds for p = 2 and n even.

Here we show how to deduce (2.3). It is easily shown in the next
section that

sinpu for
p sinu

Since u'1 sin u is decreasing on the interval (0, n/2) and p Ss 2,
sinpu sinpu 2u

-cosup sin u pu sin 2u
=s cos u for O^u^n

Hence
JI /2 # JI/2/J

J \p sin ul J

Using
n/2

(cos «)" dw « V2/(/i + 1)

gives (2.3) except for p = 2 and n odd; but then Af (2") = (M(2"+1))/2 and
(2.3) also holds in this case.

7. Professor Sir Peter Swinnerton-Dyer happened to be passing through
Canberra just at the right time and he kindly provided us with the
asymptotic formula

(7.1) f (™LBJi)n du = n-ty3n/2(pz - 1) + O(n"i):
J \p sm uJo ^
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in the light of the foregoing, this completes the proof of (2.2). His proof
of (7.1) is reproduced below.

It will eventually appear that

.,. sin u/o r

is precisely of order n~^, so in estimating it we can certainly throw away
terms which are o(n~J).

We know that u~xsinw is strictly monotone decreasing in (0,nil) . As
a first step this gives in ;r/2p ^ u =£ n/2

, - lsin pu
p sinu p sin u p sin n/2p n \ jr/2p /

since n Ip =s n/4
n\ JT/4 )

and this is equal to 2~i. So the contribution to the integral from
nllp =s u =£ nil is exponentially small and in particular is o{n~l).

In 0 < u < ;r/2p we have
d /sinpu\ _ p cospu sinu — sinpu cosu
du Vp sinu/ p sin2u

which clearly has the same sign as
tan u tan pu

u pu
But y ^ t a n y is monotone increasing in 0<y<n/l, so the last

displayed expression is negative and

sin pu . , . „ ..is monotone decreasing in 0 < u < ;r/2p.p sinu
Its value at u = n~\ is

using the power series for sin, so it lies between this and zero in
n~$<u<nip. In that interval we therefore have

= exp n{-i(p2 - l)n~l + O(«"l)} ^ exp {-
say, which is certainly o(n~l); so this interval too contributes o{n~l) to
the integral.
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There remains the interval 0 < u < n~i. In this we have

~1}"2 + 0 ( u 4 ) } " = e x p n{~

Hence
Jl/2

J \p sin u) J \p sinu/

= J exp{-i(

where 6a2 =p2- 1

since what the additional range of integration contributes is exponentially
small. But it is well known that

so we have
JT/2

e-'2dv = }**
6

Of course the error term is really 0(n~1+') for any e > 0.

REFERENCES
1. Martin Aigncr, Combinatorial theory. Springer-Vcrlag, Berlin Heidelberg New York,

1979.
2. Muhammed Salihu Audu, 'Transitive permutation groups of prime-power order',

D.Phil, thesis, Oxford, 1983.
3. N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk, 'On the set of

divisors of a number', Nieuw Arch. Wiskunde (2) 23 (1951), 191-193; MR 13-207.



372 L. G. KOVACS AND M. F. NEWMAN

4. Marc Krasner et Leo Kaloujnine, 'Produit complet des groupes de permutations et
probleme d'extension de groupes. II', Ada. Sd. Math. Szeged 14 (1950), 39-66.

5. Christian Ronse, 'On permutation groups of prime power order', Math. Z. 173 (1980),
211-215.

Department of Mathematics, I.A.S.
Australian National University
G.P.O. Box A
Canberra, A.C.T., 2601
Australia


