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BISECTION OF A QUADRILATERAL
BY A LINE THROUGH A VERTEX

J.C.Burns
Australian Defence Force Academy
Campbell, Australia 2600.

I.G.Kovacs
Australian National University
Canberra, Australia 2601.

One of the Hungarian mathematical titi i
included the following progblem: compefitions in 1978

Given a convex quadrilateral, construct a line through
one of its vertices so as to cut the quadrilateral into
two parts whose areas are equal.

This problem appears in textbooks on elementa Euclidean geomet
(eg- [1]) and, with the restriction that glle quadrilatgeral th
convex, is simple enough to. solve.

However, as contestants in a mathematical competition are
encouraged to generalize, one should inquire whether the solution
can be adapted to deal with non-convex quadrilaterals. While
some difficulty could be expected in ensuring that all cases are
considered, it came as something of a surprise to us that in two
cases a completely different approach was required.

J.C.Barton of the University of Melbourne has drawn our
attention to [2] where, on pa%c 77, under the general heading of
a

;ﬁea constructions by equivalent triangles or parallelograms" we
nd: .

The b_iscctioq of a triangle by a line drawn from a
point in a side. The bisection of a quadrilateral by
a line from a corner ..is a nice extension og this.

This reference to a "nice extension” may imply that the solution
Is straight-forward, as indeed it is when the quadrilatergl is
convex. On the other hand, the choice of the adjective "nice"
rathe; ghaq, say, "simple" or "routine", may have been intended as
an indication that the extension is not without special interest
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of its own and as an invitation to the reader to pursue the matter
further. If this was the case, the authors of the Report at
least provided a clue, for, having referred as above to the
bisection of the quadrilateral, they went on to remark that

It is interesting to note that the obvious extension,
the bisection of a triangle by a line through an
external point, is specialist work, and hard at that,

It turns out that in order to provide a complete solution of the
quadrilateral problem we need to be able to carry out the
construction of a line through an arbitrary point to bisect a
given triangle. Although a solution of this latter problem was
evidently familiar to the authors of the Report, we have not been
able to find one in print and the problem is discussed at some
length in [3]. In the relevant part of [3], it is also required
that a particular vertex of the given triangle lie in a triangular
(rather than a quadrilateral) portion of the bisection, and that
the bisector not go through this vertex. The number of such
bisectors through a given point of the plane may be O, 1, or 2,
and [3] gives a construction for them.

Even if we assume the construction for bisecting the
triangle, the original quadrilateral problem has more to it than
appears at first sight and it seems worth while to offer a
complete solution.

We shall begin with a construction which is adequate for a
convex quadrilateral and then explore the possibilities of
applying it to non-convex quadrilaterals. Let the quadrilateral
be ABCD with vertex C opposite vertex A and let A be the
vertex through which the required line is to be drawn. In the
firfst instance we distinguish four types of quadrilateral: (A)
convex qudrilaterals and (B) non-convex quadrilaterals divided
into three® classes according to the position of the reflex angle
relative to the vertex A: (Bl) opposite 4, (B2) at 4, (B3)
adjacent to A. Later it will be necessary to divide each of the
classes (B2) and (B3) into three sub-classes.

We note first that if the diagonal AC bisects the diagonal
BD, then AC bisects the quadrilateral. As shown in figure 1,
this result holds for convex quadrilaterals and for non-convex
quadrilaterals when the reflex angle is either opposite to A or
at A . When the reflex angle is adjacent to A (B3), it is
impossible for AC to bisect BD . In what follows, it will be
assumed that the mid-point M of BD does not lie on AC .

The construction for the convex quadrilateral is of course
well-known. It is set out now in a form which allows it to be
used in other cases as well.



(A)

M D B M
(B1) (B2)

Figure 1.

Draw a line through the mid-point M of the diagonal BD
parallel to the other diagonal AC to meet one (and, as M is
not on AC , only one) of the segments BC, CD in a point P; and
name the vertices in such a way that P lies on BC (in fact,
strictly between B and C). Then the line AP is the required
bisector provided the segment AP lies wholly within the
quadrilateral ABCD and is the only part of the line to do so.
The construction is illustrated in figure 2 for cases (A). (B1)
and (B2). Case (B2), in which the reflex angle is at the “vertex
A , 1is divided into three categories (B2a), (B2b). (B2c),
according as BP is greater than, equal to, or less than BD’
where D’ 1is the point where DA cuts BC .

o
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In all these cases, the construction produces a segment AP
which lies wholly within the quadrilateral and, as we now show, ¥
divides the quadrilateral into two parts of equal area. Let the
line through D parallel to AC meet the side BC produced

beyond ¢ in E . Since MP and DE are parallel and M is
the mid-point of BD, BP = PE and it follows that area ABP =
area APE . Also area ACD = area ACE for the altitudes

corresponding to the common side AC of these triangles are
equal, being the distance between the parallel lines DE, AC
In all cases (A), (B1). (B2a), (B2p), (B2c) 1in figure 2 we now

B

have
area ABP = area APE
= area APC + area ACE
= area APC + area ACD '
= area APCD .
Since area ABCD = area ABP + area APCD , the segment AP

bisects the quadrilateral.

It will be noted that in case (B2c), the distinction between
the line AP and. the segment AP becomes important. In the
other four cases in figure 2, the only part of the line 4P to
lie within the quadrilateral is the segment AP so the
construction has produced the required line through A . This is
not so in (B2c) where the segment AP bisects the quadrilateral
but the line evidently does not. Further constructon is needed
in this case.

We note first that because area ABP = (1/2) area ABcD > '
(172) area 4BC, it follows that BP > (1/2)BC so BP > cP . In *
figure 3, we choose Y on BC so CY =BP . Then CY > CP ;
thus the order of points on BC is BYPD'C .

Draw the line through A parallel to BC to cut ¢D in X ;
choose Z so that X is the mid-point of ¢z . Three subcases
arise according as CZ is greater than, equal to or less than
CD;  we picture in figure 3 only two as Z = D can be handled as
a degenerate version of, say, the first. Even for these two
sub-cases, the arguments will not branch for a while.

The triangle CYZ has area double that of (YX -which,
because CY = BP and AX is parallel to BC, has area equal to
that of ABP and so to half that of the quadrilateral.

Figure 3.
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We shall prove that there exists a line QAR , with Q on
the segment YD’ and R on the segment (D, which bisects the
area of triangle (vZz. Then the area of CQR 1is half that of v
cYz or of the quadrilateral so the line also bisects the
quadrilateral; on the other hand, as a bisector of (YZ through
A ., the line (or perhaps two such lines) can be constructed by the
method of [3].

The first point is to observe that A always lies inside the
triangle (CYZ , else this triangle would be a proper part of the
quadrilateral in spite of their areas being equal. Let Y be
the intersection of YA and ¢Z; then Y lies on the segment
CZ, and also between ¢ and D because D’ is between C and
Y .  Moreover, area (YY’ > area (YA = area BPA (because (Y =
BP) = (1/2) area ABCD ; thus area CYY' > (1/2) area (YZ
Similarly, area (DD’ < area PCDA (because D’ lies between P
and C) = (1/2) area ABCD ; so area (DD’ < (1/2) area C(YZ.

(B3a)
Continuity now guarantees the existence of a point Q
between Y and D’ such that QA cuts CD in R between Y’
and D and area CQR = (1/2) area (YZ . When ¢z = ¢D (as in
figure 3a) , we have R on CZ so QAR bisects both the
quadrilateral and triangle CYZ and our aim has been achieved.

It remins to consider the case in which ¢z < D (figure 3b).

We define 2’ as the point where ZA cuts BC . Because (Z <
CD and A lies inside triangle CYZ , 2’ lies between D’ and
Y and Y’ therefore lies between ¢ and 2 . Moreover,

because X 1is the mid-point of CZ and AX is parallel to BC ,
A 1is the mid-point of 2z’

It is known [4]., pp 89. 122, that of all triangles with
vertex C , sides along CB and (D and base passing through 4,
the one with the smallest area is obtained when the base is
bisected by A . Hence area CDD’ > area €2z’

We have already shown that 1/2 area (CYZ > area CDD’ so we
now have 1/2 area (YZ > area Czz’ . As before, area CYY' >
1/2 area (CYZ so, by continuity, there is a suitable Q between
Y and 2z* and a matching point R between Y’ and Z so that
QAR bisects both the quadrilateral and the triangle as required.
This completes the investigation of case (B2c).

We turn now to case (B3) in which the reflex angle is
adjacent to the vertex A . The construction is carried out
exactly as before and is illustrated in figure 4. With D’
defined as before as the intersection of AD and BC , we this
time distinguish three cases (B3a), (B3b), (B3c) according as
BP is less than, equal to, or greater than BD’ .

Figure 4.
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In all three cases,

area ABP = 1/2 area ABE

1/2 (area ABED + area DEA)

1/2 (area ABED + area DEC)

1/2 area ABCD .

Hence, in cases (B3a), (B3b), AP 1is the required bisector. In
case (B3c) however, the construction is not achieved as the
segment AP does not lie wholly within the quadrilateral.

In case (B3c) we see that
area ABD’ € area ABP = 1/2 area ABCD .

Thus area DD’ > 1/2 area ABCD; hence there is a line ARQ
(figure 5) which bisects the quadrilateral, cutting ¢D in R
and BC and Q . We proceed to construct such a line.

This is easily done if we first construct as in the front
cover figure triangle DFC equal in area to the quadrilateral
ABCD by drawing AF parallel to DB and joining DF . Since
A 1is outside CDF , using the construction discussed in [3], we
obtain the unique line ARQ through A to bisect triangle DFC
and to cut ¢D in R and BC in Q . The triangle CRQ thus
produced has area equal to half that of triangle DFC and hence
to half that of the quadrilateral. The line ARQ is accordingly
the required bisector of the quadrilateral and the investigation
of case (B3c) 1is complete.

Our conclusion is that the construction described initially
for the case of a convex quadrilateral produces in all cases
except (B2c) and (B3c) a line AP which bisects the
quadrilateral and we have provided alternative constructions for
the required line in each of the two exceptional cases.

Finally, we remark that it is not difficult to find examples
of quadrilaterals ABCD for which we can draw more than one line
through the vertex A to bisect area ABCD . There is therefore
scope for investigating the number of bisectors through A and
the circumstances in which given numbers of bisectors occur.
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In his book [The Psychology of Mathematical Invention (1945),
Jacques] Hadamard [a famous French mathematician] tried to find
out how famous mathematicians and scientists actually thought
while doing their work. Of those he contacted in an informal
survey, he wrote "Practically all of them . . . avoid not only the
use of mental words, but also . . . the mental use of algebraic or
precise signs . . . they use vague images." (p.84) and ". . .the
mental pictures of the mathematicians whose answers 1 have
received are most frequently visual, but they may also be of
another kind - for example kinetic." (p.85)

Albert FEinstein wrote to Hadamard that "the words or the
language, as they are written or spoken, do not seem to play any
role in, my mechanism of thought. . . . The physical entities which
seem to serve as elements in thou‘g)ht are certain signs and more or
less clear images which can be ‘voluntarily’ reproduced and
combined. . . . The above mentioned elements are, in my case, of
visual and some of muscular type.Conventional words or other
signs have to be sought for laboriously only in a secondary stage
. . "(p-142) Several recent studies on the way in which
nonmathematical adults perform simple arithmetic seem to suggest
the same is true for non-mathematicians as well."

Philip J. Davis and Reuben Hersh : The Mathematical Experience,
Penguin, 1983.



