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The aim of this note is to establish the following.

THEOREM. Ler F be any field and N a subnormal subgroup in a {(not
necessarily finite) group G; let V be a finite dimensional simple FG-module on
which N acts nontrivially, and choose a nontrivial simple FN-submodule U in
V. Then dim H'(G, V)< dim H'(N, U).

Note that by repeated use of Clifford’s theorem V is semi-simple as FN-
module, so if N acts nontrivially on ¥ then such U always exist. Induction
on the subnormal defect of N shows that it suffices to prove the theorem
for normal N. For finite G with soluble G/N, this was done in 44 of
Aschbacher and Scott [1]. The proof we give below is in a sense dual to
theirs. This eliminates the solubility hypothesis from their 4.4, and so
removes one of the two points where [ 1] depended on the Schreier conjec-
ture and so indirectly on the classification of finite simple groups.

We mentioned above that we only have to prove the theorem for normal
N. The fixed point space ¥~ of N in V is then an FG-submodule, so since N
acts nontrivially and ¥V is simple as FG-module, V¥ =0. The inflation-
restriction exact sequence (Proposition 4 in Chap. VII of Serre [2]) now
shows that restriction provides an embedding of HY(G, V) into HY(N, V). It
is easy to see that restriction is 2 G-homomorphism and {(cf. Proposition 3,
loc. cit.) that G acts trivially on H'(G, V) so the embedding is into the fixed
point space HY(N, V)¢, Therefore our claim will follow once we show that
dim HY(N, V)¢ < dim H'(N, U).

We take H'(N, V) as the quotient of the F-space Der(N, V) of all
derivations (l-cocycles) modulo the space of inner derivations {(coboun-
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daries). If V=@ ¥, is a direct decomposition of V' as FN-module, there is
a corresponding decomposition H'(N, V)= @ H'(N, V;) obtained via the
obvious embeddings of the Der(N, V) into Der(N, V). For each g in G,
also V=@V,;g and H'(N, ¥)=@ H'(N, V,g), and it is readily seen that
the implied identifications are consistent with the action of G in the sense
that H(N, V,g)= H'(N, V)%

If U is a simple FN-submodule of V, there is an FN-submodule W which
complements it: ¥'=U@ W. Since (\,.c Wg is an FG-submodule in the
simple module ¥, this intersection must be 0. As V' is finite dimensional,
there are finite subsets R in G such that ), x Wr=0; chose R minimal
with respect to this propoerty. For each s in R, set W, =1, ., Wr; then
V=@ W,and Wr= &, W, follow by clementary arguments familiar in
the context of semi-simple modules. The comments made in the previous
paragraph may then be extended to yield that H'(N, V)= @ H'(N, W)
and @,., HY(N, W)= H'N, Wr)= H'(N, Wy. Therefore (} H'(N, Wy
= 0, whence we conclude that H'(N, W) cannot contain any nonzero FG-
submodule of H'(N, V). In particular, H'(N, W)nH'(N,V)°=0, so
dim HY(N, V)¢ <codim H'(N, W). On the other hand we also have
HYN,Vy=H'N, U@ H'N, W), so codim H'(N, W)=dim H'(N, U).
These results on dimensions combine to yield our claim.

We are grateful to Professors Aschbacher and Scott for the opportunity
to see a pre-publication copy of [1].
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