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Introduction
THE problem of finding a useful lower bound for the number of fixed-
point-free elements in a transitive p-group was suggested to us by a
question of Kantor about the existence of fixed-point-free 2-elements in
finite transitive groups.

THEOREM 1. A transitive permutation group P of order a power of a prime
p has at least (p |P|-l)/(p + l) fixed-point-free elements.
This theorem is a straightforward consequence of the following result on
abstract groups of prime-power order (which is proved below). Take P to
be G and a point stabiliser Pa to be H; note C\{Pl\xeP^=l.

THEOREM 2. Let H be a proper subgroup of a group G of p-power order
for a prime p, then

(p +1) II) {H* | g e G}| *s |G| + |n {H* | g e G}|.
Equality can hold in both theorems. Let R be a finite commutative ring

with 1 such that the only ideals of R are powers of its radical / and
\RJJ\ = p. For example, let R be the ring of integers modulo p" or the
polynomial ring Fp[y] modulo the ideal generated by yn. Let P be the
subgroup of the one-dimensional affine group over R consisting of
mappings (1 + /, r) with / in / and r in R defined by

z(l + j,r)=z{l + j) + r for all z in R.
Then P is a transitive permutation group on the set R and P has order
p2""1. Put J1) = R; then |Ji| = pB~' for 0=£i=£n. For r in J J \ / i + 1 the
permutation (1 + /, r) has no fixed point if and only if jeJi+1. Hence the
number of fixed-point-free elements in P is

I p"-'-1(pn-'-p""'-1) = (p2" - l)/(p + 1).
i-0

This gives equality in Theorem 1. Again taking G to be P and H to be
the stabiliser of 0 gives equality in Theorem 2.
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The above examples are not the only kinds of groups for which equality
holds. Note they have soluble length 2. There are some quite different
examples (for details see [1]) which are of maximal nilpotency class and
have soluble length up to the integer part of log2 (p +1). These two types
are the only examples we know. The analysis in the next section shows
that there are quite severe restrictions on the possible structure of the
groups with equality. Thus it seems reasonable to ask: given a prime p, is
there a bound on the soluble length of transitive permutation groups of
p-power order in which (p \P\ - l)/(p +1) elements act fixed-point-freely?

THEOREM IE. When equality holds in Theorem 1 and P acts on a set
with p" elements, then

(a) |P| = p2 n-1,
(b) the stabiliser Pa of a point a has p fixed points and p - 1 orbits of

length p' for each i from 1 to n — 1,
(c) the action of Pa on each such orbit is regular,
(d) for fi in a Pa-orbit of length p1 the stabiliser P^ fixes pointwise all

Pa-orbits of length at most p'.

This result is a straightforward consequence of the corresponding result
(Theorem 2E) which describes the situation when equality holds in
Theorem 2. That requires more notation and is, therefore, given (in parts)
during and after the proof of Theorem 2.

It is perhaps worth noting that conditions (a)-(d) characterise the
equality case.

Proof of Theorem 2
Let p" be the index, \G: H\, of H in G. Let G = Go> G t > •• • > Gn =

H be a chain of proper subgroups; so \G: G(| = p'. Let H, =
fl {H8 | g e G,}. Note Ho is normal in G and Hn_! = H.

THEOREM 2E. When equality holds in Theorem 2, then
(a) \Ht: H0\ = pi for 0=ej=Sn-l. (to be continued).

Theorem 2 and Theorem 2E (including (b) below) are proved together by
induction on n. In the course of this we consider several cases; when in
any one of these the inequality in Theorem 2 is proved to be strict, then
Theorem 2E holds vacuously. For n = 1 everything is obvious. For n ? 2
the inductive hypothesis applied to H as a proper subgroup of Gt gives to
begin with

(p + l) |LJ{H'lgeG1}|« |G1 | + |H1|. (•)

Clearly each term is divisible by |Hi|. When the inequality is strict



TRANSITIVE PERMUTATION GROUPS 275

and hence, since Gt has index p in G,

(p + l)IU{H«|geG}|sSp|G1| = |G|
as required. So it remains to consider equality in (*). The inductive
hypothesis gives in addition \Ht: H1\ = p'~1 for l « i = £ n - l ; and it fol-
lows that \G: H1\ = p2n~2. Let K denote Gn_j and K, = f\{K' I ge G,}
for 0«£i«n — 2. The inductive hypothesis applied to K as a proper
subgroup of G gives

Again when the inequality is strict

and hence

With equality the inductive hypothesis gives \K: Ko\ = pn~2 and hence
|l_r. A.o| — p

THEOREM 2E (continued),
(b) H^KQ for ns=2.
The proof is now divided into two cases,
(i) Hi^iQ,. Here we prove Theorem 2 with strict inequality. In this

case n=»3 and the inductive hypothesis applied to H, K in Gx yields
Ha^Kj . Put D = H1nK0; note |H,: D\ = p and \K0: D\ = p2. It follows
from the inductive hypothesis applied to H in G2 that

so, since G2 has index p2 in G,

Next consider H2\X0. It is a union of p2—p cosets of D. Of these p - 1
make up H^\K0 which is normalised by d , and the union of the other
p 2 - 2p + 1 cosets is normalised by G2 since H2 is. Hence

Finally

so

Combining the above three inequalities gives
(p + l ) | lKH«|geG}|«s |G|

as claimed.
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(ii) Hx ss K0. It follows from (•) that

so

The indices of Hlt Ko in G which have been determined yield that H\ is
maximal in Ko. Hence KJH0, being a subdirect product of the KJH\, is
elementary abelian and centralised by Gx: so KJH0 is acted on by the
group G/G^ of order p. No non-trivial element of the maximal subgroup
HJHQ of KQJH0 can be fixed by this action, since such an element would
generate a non-trivial central subgroup of G/Ho in H/Ho, which is
impossible. The following lemma with V = KJH0, W = HJH0 and (x) =
GIGX yields

(p +1) |U {Hf | g e G}\« p2 |H,| + |H0|
with equality only if |H,: H0| = p. This completes the proofs.

LEMMA. Let V be a non-trivial elementary abelian p-group (written
additively) acted on by a group (x) of order p, and let W be a maximal
subgroup of V containing no non-zero element fixed by x. Then

with equality if and only if \W\ = p.

Proof. The result is easily checked for | V|=e p2. We shall assume,
henceforth, that | V| = p' with s 3=3. Regard V as a vector space over the
field Fp of order p. Identify x with the linear transformation representing
it on V. Set y = x — 1; note y" = x" - V = 0. By assumption, ker y avoids
the maximal subspace W, so the dimension of ker y must be 1. Therefore
the Jordan normal form of the nilpotent linear transformation y consists of
a single (indecomposable) block; that is, V has a basis of the form
v,vy,..., vy'~l (with of course y' = 0 and s *2p). Consider the equation
denning W as a hyperplane with reference to such a basis: for suitable
v0, • • •, f,_, in Fp,

Y.Kvy'eW if and only if £ ^ = 0

(with summation always over i from 0 to s —1). For u = £Aiuy' in V we
have that uy' e W if and only if £ vl+iki = 0 (where vi+i = 0 for i + j 5= s).
The 5 — 1 equations obtained with j = 0,..., s — 2 form a homogeneous
linear system in the s unknowns AO> . . . , A,^ and so have a non-zero
solution (f i 0 , . . . , fi.-O. Put w =X mvy\ then w, wy,..., wy'~2e W. As
Wnkery = 0, even wy'~l^0. It is easy to show {w, wy,..., wy1"1} is
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also a basis of V. The equation of W with respect to this basis has only
one non-zero coefficient. Let 0 « f c ^ p - l . As yxk = y(y + l)k, the bino-
mial theorem yields that the coefficient of wy1"1 in Q]Alwy')xk is

X( .jAj (with the usual convention that ( ) = 0 for j>k\. So

£ A.,wy' e Wx~k if and only if

It is easy to see that for 1=st=£ 3 the solutions of each t of the p equations
(x) in the unknowns Ao,. •. , A,_x form a space of dimension s-t (see also
the remark below); in other words the intersection of each t of the Wx~k

has order p*~'. Thus by the inclusion-exclusion principle

It is easily checked that the right-hand side is strictly smaller than
(p*+1 + l)/(p + l) for all odd primes p. Since p ^ s > 3 this completes the
proof.

Remark on the proof of the Lemma. Let alt..., a, be integers pairwise
non-congruent modulo p. It is well-known that the determinant of the
matrix with (i, ;)-entry a{-1 is (up to sign) the product of the differences of
the a, (with the convention that a° = 1 even when at = 0) and hence is not
divisible by p; this is the so-called Vandermonde determinant. A less
known variant, easily derived from this, is that the determinant of the

matrix with (i, j)-entry I . I is also prime to p. It follows that the set of

solutions of each t of the equations (x) above is a subspace of V of
codimension min (s, t). Thus the principle of inclusion-exclusion would
enable us to calculate ILHW** |0=£fcsSp-l}| precisely.

Remark on equality in Theorem 2. Let T, be a transversal of G( in Gt-i.
It is straightforward to check the following additional claims.

THEOREM 2E (continued).
(c) \G/H0\ = p2"-\
(d) the union of 1 + p + • • • + pn 1 subsets

H0U U (U {(H.+AH,)8 | g e T 1 + 1 } | 0 « « ^ n - 2 } is disjoint,
(e) Gj is the normaliser of Gl+1 in G for 0 =£ i ^ n - 1 , and so

G, Gi,..., Gn_i, H are the only subgroups of G containing H,
(f) Hr\Hi = Hifor all g in GAG1+1 and
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