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*
L.G. Kovdcs

Abstract

=

The aim of this report is to describe (in as elementary terms as
possible) a reduction of the calculation of the first cohomology group
of a finite group with coefficients in a simple module, to the case
of faithful modules and groups with nonabelian simple socle. As
applications, estimates are derived for the size of the first
cohomology group, for the minimum number of generators of certain

semidirect products, and for the generation gap and presentation rank.

* The essential part of the work reported here was done, over ten
years ago, jointly or simultaneously with Dr John Cossey of this
University and Professor K.W. Gruenberg of Queen Mary College,
London. We hoped to write a joint paper for publication but so
far this has proved impossible. while the present version owes
much to their influence, the responsibility for its failings is
all mine.



1. Introduction

As is well known, if G is a group and V is a G-module, the
first cohomology group Hl(G,V) is bijective with the set of conjugacy
classes of complements of V in the semidirect product GV , and can
be defined simply (without any reference to the homology of cochain
complexes) in terms of the derivations of G into V . The first of
these points makes Hl(G,V) relevant even to those users of groups who
are neither interested nor experienced in cohomology, while the second
makes it possible to keep this exposition easily acqgssible to such
readers. No cohomology will be assumed (directly or indirectly) in
the main body of the paper, where the problem of d;termining Hl(G,V)
for finite G and simple V is reduced to the case of nearly simple

G and faithful V . (We call a finite group nearly simple if it has

only one minimal normal subgroup and that is nonabelian and simple.)

This reduction has been around for some time but deserves to be better

known, especially now that all nearly simple groups are believed to
have been "classified".

Except in Section 3, all G-modules considered will be righL
ZG-modules . Whether we call a (sub)module "trivial" or "nontrivial"
depends only on the action on it: we use “nonzero" or "proper" to
exclude the zero (sub)module or the whole module. Each simple module
is naturally an IFPG—module for some finite prime field ‘Fp ; we refer
to the relevant prime p as the characteristic of the module. [If one
wants cohomology with coefficients in a simple FG-module U for some
other field F , one notes that Hl(G,U) = 0 unless F contains some
Fp , in which case there is a unique simple :FpG-module vV such that

\Y ®F F is the direct sum of the Galois-conjugates of U , and then
p



Hl(G,V) ®F F is the direct sum of n copies of Hl(G,U) where n
p

is the number of isomorphism types of Galois conjugates of U . This

reduces the calculation of Hl(G,U) to that of Hl(G,V).]

In order to state the Reduction Theorem, we have to introduce
some technicalities. Let G be finite and V a simple G-module. The
G-endomorphisms of V form a finite field EndG vV, and Hl(G,V) is
a vector space over this field. Let C stand for the centralizer of V
in G (that is, for the kernel of the action of G on V). Choose a
chief series in G , and denote by k the number of chief factors in

this series that are G-isomorphic to V and complemented in G .

REDUCTION THEOREM. The dimension of Hl(G,V) over EndG\l is k ,
except perhaps when the following hold. There is only one minimal

normal subgroup in G/C , say N/C ; this is nonabelian and has order
divisible by the characteristic of V . Let S/C be a simple direct
factor of N/C ; write A and B for the normalizer and the centralizer
of S/C , respectively, so A/B is a nearly simple group with socle

BN/B (2S/C) ; and let W be the largest trivial (BﬂN)—subﬁbdule of V.

If W=0 or if B acts nontrivially on W , the dimension is still k .

123

Otherwise W is a faithful simple A/B-module with EndA/B W EndG v,

and the dimension is k plus the dimension of Hl(A/B,W) .

In the last case, V is W induced from A to G , and of
course it can still happen that Hl(A/B,w) = 0 so the dimension is k .
The proof of the theorem will not amount to a mere dimension count:
instead, it will be obtained in terms of certain homomorphisms which are
all "natural" in a strict technical sense (that will not be elaborated
here) . Naming these homomorphisms (in Section 5) makes the theorem

stronger than what can be made explicit in this Introduction.



After the first draft of this note was completed, we learned
that a forthcoming paper [l] of Aschbacher and Scott will contain a
variant of the reduction discussed here under the extra hypothesis that
c=1 (with‘different proof and motivation). We gratefully acknowledge

the opportunity to see a draft of that paper.

2. Some group theory

Our preparations start with some elementary facts on finite
groups. While we have no entirely convenient referénce, all the ideas
go back to Gaschiitz [6], [7] (see also Section 15 in Chapter VII of

Huppert and Blackburn [15]).

Let G be a finite group and V a simple G-module. Set
c={g€G| vg=v for all v in V} .

Let D denote the intersection of all subgroups H of G that
which ar
complement chief factors K/L of G {(G-) isomorphic to V (so

HNK=1 and HK = G) ; if there is no such H , put D =C .

2.1 LEMMA. A chief factor K/L of G is complemented and isomorphic

to V if and only if C 2 KD > LD .

Proof. Suppose first that at least one chief factor K/L 1is isomorphic
to V and has a complement H . We derive some general information
before adressing the proof of the Lemma. Obviously, C 2 K> L . As
(HNC) /L is normal in H/L and centralized by K/L , it is normal in
HK/L : thus H N C is normal in G . By Dedekind's Law C = (HoYk ,

and so c/(mc) = (aNc)k/ (@Nc) = K/ (HNCNK) = K/L = V .
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It follows that C/(HNC) is a self-centralizing minimal normal subgroup
complemented by H/(HNC) in G/(HNC) : hence H is a maximal subgroup
of G, and H N C is the intersection of the conjugates of H .
Therefore D is normal, C/D (# 1) is a direct product of isomorphic
copies of V , and the Frattini subgroup of G/D is trivial: so (see
III.4.4 in Huppert [14]) C/D has a complement, say E/D , in G/D .

Of course in this case C Z KD > LD , for LD £ H * K , so the "only if"

part of the lemma is proved.

For the proof of the converse, suppose that Kl/Ll is a chief

factor and C 2 KlD > LlD . Then Kl n LlD is a normal subgroup of

G and K >KlﬂLD;L , so we must have KlnLlD=L

1

Hence Kl/Ll is isomorphic to KlD/LlD which, as each composition factor



of the G-module C/D , is isomorphic to V and complemented in c/D .
Let F/D be such a complement : that is, F is normal in G ,
F N KD = LD, FK,D = C . It is now easy to see that EF is-a
subgroup which complements Kl/Ll in G .

This discussion also showed that C/D =1 if and only if no
complemented chief factor of G is isomorphic to V . As C/D =1

obviously if and only if no chief factor K/L satisfies C 2 KD > LD ,

the proof is complete.

-

2.2 THEOREM. The number k of complemented chief factors isomorphic
to V in any one chief series of G is independeﬁf of the choice of
the chief series; C/D is the direct product of k copies of V .
Proof. If G = G1 > .. 2 Gi > ... is a chief series of G , the
distinct GiD/D with C 2 Gi form a composition series of the G-
module C/D . Lemma 2.1, and the observation in its proof on the

structure of C/D , then yield the theorem.

2.3 COROLLARY. No chief factor of the form D/L can be complemented

and isomorphic to V .

2.4 COROLLARY. Each chief factor of the form C/L with L

|\Y%
o}

is

complemented and isomorphic to V .

In comparing our reduction with previously published material, we
shall make use of one more point : see VII.15.4a (and its proof) in

Huppert and Blackburn [15].

2.5 If G is p-soluble where p is the characteristic of V , then
Op,(G/C) > 1 (unless G/C = 1) , and each chief factor C/L isomorphic

to V is complemented (and therefore has L z D) .



The notation of this section will be used again from Section 5
onwards. We stress that C , D , and k depend on (the isomorphism
type of) V . This dependence could have been indicated by using, say,

C D.-, and kV : we trust that the simple notation adopted will not

v' Vv

lead to confusion.

3. Some representation theory

The main result we shall need from representation theory is
Clifford's Theorem : let us recall the relevant part of the usual statement

(III.17.3 in Huppert [14], 11.1 in Curtis and Reiner [4]).

3.1 CLIFFORD'S THEOREM. Let F Dbe any field, N a normal subgroup
in a (not necessarily finite) group‘ G, V a finite dimensional simple
FG-module , and U a simple FN-submodule of V . For each g in G ,
Ug is a simple FN-submodule, and V is the sum of the Ug (so in

particular V is semi-simple). The "stabilizer" or "inertia group" T

of U in G is defined by

T={g €G UgArrNU}.
The sum 2 Ut is a simple FT-submodule in V , and V is (isomorphic

t€T
to) the induced module (IUt) ngIFG .

To prepare for the intended applications of this result, we add
some comments here. For each subgroup A of G containing T ,

"transitivity of induction" appears here in a very concrete form; namely,

2 Ua is the induced module (XUt) §%TIFA , and V is ZUa induced
a€a

from A to G :



3.2 vz ( Z Ua) ®FAI‘G .
a€ca

A subgroup A of G contains T if and only if
3.3 Ug]E%\IUa whenever gGG,ng,aEA

(for, by definition of T , Ug ]E%\I Ua 1is equivalent to ga-l f T)
It follows that if A 2 T then there is no nonzero FN-homomorphism

from z Ua to ; Ug , nor in the opposite direction; in particular,
a€a gfa

3.4 V = (Zua) © (Iug)

. - ® .
and a fortiori End]FAV End]FA (ua) Ende‘A (Zug) , a direct sum of
F-algebras. Thus there is an algebra homomorphism from the subalgebra
EndFGV of End]E‘AV into EndI‘A (ZUa) , while the functorial nature

of induction guarantees an algebra homomorphism in the opposite direction.
As V is a simple FG-module and IUa is a simple FA-module, their
endomorphism algebras are finite dimensional division algebras, so the

two homomorphisms must in fact be isomorphisms :

3.5 End]E‘GV -] EndFA (xva). .

Thus we have established that 3.3 implies 3.2, 3.4, and 3.5.

Finally, recall (say, from VII.4.1ll in Huppert and Blackburn [(15]1)
that if the index [G:H| is finite and W is an FH-module [or ZH-
module], then the induced module W ®FH FG [or W ®ZH ZG] 1is naturally

isomorphic to the coinduced module HoquH(FG,W) [ox HomZH(ZG,w)] .



4., Derivations

In this section we develop all relevant facts from first principles.
Many a tedious verification is omitted, but (we hope) never more than

one liné at a time, and none that would call for a fresh idea.

Let G be any group and V any G-module. Amap d : G~»>V

is called a derivation if

(gh)d = (gd)h + hd for all g,h in G

[so in particular 1d = 0 and g—ld = - (gd)g-r] . The set Der(G,V)
of all such maps is an abelian group with respect to the addition defined
by g(d+d') = gd + gd' . Obviously, the exponent of Der(G,V) divides

that of V . To each v in V there is a derivation
(ider v) : gb v - vg .

These "inner" derivations form a subgroup Ider(G,V) in Der(G,V) .

For our purposes Hl(G,V) is defined as the factor group :
#' (G,V) = Der(G,V)/Ider(G,V) .

[The motivation relevant here is the following. If H is a
complement of V in the semidirect product GV , then to each g in G
there is a unique u in V such that gu € H, and the map ghF u
is then a derivation. Conversely, if 4 € Der(G,V) then {g(gd) | g € G)
is a complement of V in GV , equal to the conjugate va-l of G

if and only if d = ider v . See Robinson [17], pp.304-305.]

Let N be a normal subgroup of G . As usual, write Der(N,V)
for the derivations of N into the N-module obtained from V by

restriction. There is a G-action on Der(N,V) given by

x(@%) = [(gxg hdlg for all x in N .
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The map ider : V - Der(N,V) is a G-homomorphism; its image is Ider(N,V)

14

and its kernel the largest trivial N-submodule VN of V. Moreover, as

4.1 & = a - ider(yd) for all y in N ,

the action of N on the factor module Hl(N,V) = Der(N,V)/Idexr(N,V) is
trivial. In particular (take N = G) , the action of G on Hl(G,V) is
trivial.

We interrupt the general development to establish some other useful

consequences of 4.1.

-

4.1° If VG =0 , no nonzero G-submodule of Der(G,V) can avoid

Ider(G,V) .

Indeed, if d 1lies in a G-submodule V1 which avoids 1Ider(G,V) , then
4.1 (still with N = G) yields ider(gd) =4 - a7 ¢ v, N 1der(G,v) =0,

so gd € VG for all g, and hence 4 =0 .
" . . VN _ N _
4.1 If N is normal in G and =0, then Der(G,V) =0 .

For, if VN = 0 then also VG =0, so Ider(G,V) is isomorphic to V
and hence avoids the largest trivial N-submodule Der(G,V)N ; on the

other hand, the latter is a G-submodule (because N is normal).

4.1™ If V has prime exponent p and G has a normal subgroup N of

finite order prime to p with VN =0 , then Hl(G,V) =0 .

For, by Maschke's Theorem Ider(G,V) has an N-admissible complement in
Der(G,V) ; that complement is isomorphic to the trivial module Hl(G,V) ,

and so must be 0 by 4.1".
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Let us return now to the general development. Restriction of maps
gives the "restriction map" Der(G,V) + Der(N,V) ; clearly, this is a

G-homomorphism. If d is in its kernel, then Nd = 0 and so
-1 -1
(gd)x = (gd)x + xd = (gx)d = [(gxg ")gld = [(gxg ")dlg + gd = gd

(for all g in G and x in N) shows that d is constant on each
coset of N in G and that the image of d 1lies in VN : thus d may
be viewed as a derivation of G/N into v (with VW considered a G/N-
module in the obvious way). Of course ider w lies in the kernel of the
restriction map if and only if v € VN . Digferently put : Der(G/N,VN)
embeds in Der(G,V) as the kernel of the restriction map, interesting
Ider(G,V) precisely in Ider(G/N,VN) . On the other hand, the restriction
map takes Ider(G,?) onto Ider(N,V) and so yields a G-homomorphism of

it (e,V) into HY(N,V) . As noted above, H (G,V) is a trivial G-
module, so the image of this homomorphism must lie in the largest trivial

submodule HX(N,v)¢ of HI(N,V) .

Der (6N NV
Tder @G/N, V“)
\/
0 ~—
ng. 3

These comments have established the "inflation-restriction exact sequence”
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4.2 0 » mre/n, W) 0E, e, v =25 wtov,n© .

The fact that the composite of a derivation and a module homomorphism is
a derivation,; leads to each term of this sequence being an (EndG V) -
module and each map an (EndG V) -homomorphism. (This is just the first
half of the so-called five term sequence well known in the context of

spectral sequences : see for instance MacLane {16], XI §10.)

If N acts trivially on V (so VN =V and V itself may be
viewed a G/N-module), then of course Der(N,V) = Hom(N,V) and

Ider(N,V) =0 , so Hl(N,V)G = HomG(N,V) and our exact sequence takes

the form
4.2 0+ ure/m,v) 25 wl,v) 25 Hom (N,V) .
Consider briefly also the other extreme : when VN =0 . In this

case res 1is an isomorphism :
4.2" G,V = 5t m,wnC .

To see this, we only have to add to the foregoing that now res is
surjective : indeed, if d € Der(N,V) and d + Ider(N,V) € Hl(N,V)G ,
then for each g in G there is a vg in V such that 4 - a% = ider v ;

this vg is unique because VN =0, and g vg is easily seen to be

a derivation of G that extends d .

Three other general facts will be needed. It is straightforward
to prove that Der(G,-) , Ider(G,-) , and therefore also Hl(G,-) R

respect direct sums :

1 ool 1
4.3 H (G,Vf$V2) = H (G,Vl) ® H (G,V2) .
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Also, that if N is a normal subgroup of G and U is an N-submodule
of V, then for Ug (with g € G) , which is of course also an N-

submodule, we have
4.4 gl (N,Ug) = HL(N,U) .
The third claim is not so trivial.

4.5 If H is a subgroup of G and V is coinduced from an H-module

W, then HY(G,V) ® HY(H,W) . .

This is known (for all Hn) as Shapiro's Lemma (see for instance p.92

in [8], or III.6.2 in Brown [2]); to keep our promise of not assuming

any cohomology, we sketch a bare-handed proof (for the case we require).

Recall that the G-module V coinduced by W is defined as
I-IomZH (ZG,W) , with G-action given by (vg) (x) ,:-‘-,v(gx) , and that
v p v(l) is an H-homomorphism of V onto W. Restriction
Der (G,V) - Der(H,V) followed by composition with this module homomorphism
yields a group homomorphism Der(G,V) -+ Der(H,W) which maps 'Ider(G,V)

onto Ider(H,W) . This in Eurn yields an isomorphism Hl(G,V) = Hl(H,w)

provided that

(i) if 4 € Der(G,v) and (hd)(l1) =0 for all h in H , then d
is inner; and
(ii) if c € Der(H,Ww) then there exists a d in Der(G,V) such

that (hd)(l) = hc for all h in H .

To establish these two points, first take d as in (i); define v for x
in G by v(x) = (x-ld)x , and on ZG by linear extension of this. The

hypothesis on d yields that v(H) = 0 ; this is used in showing that v

is an H-homomorphism; and then ider v = d is virtually immediate. Next,
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let ¢ be as in (ii), and let R be a complete set of representatives

of the left cosets of H in G : thus G = U rH . Define first a map
r€R

G+W, gp a by th = hc , and verify that EE = §h + h whenever

g € G and h €H. Then define d : G -+ V- by setting (gd) (x) = 6; - x
for each g , x € G ; check that each gd is an H-map so gd €V ;

that 4 is derivation; and that (hd) (1) = hc whenever h€H. This

will complete the proof of 4.5.

What we shall actually use is the following combination of 4.5 with

the reminder at the end of Section 3. -

-

4.5" If H has finite index in G and V 1is the G-module induced

from the H-module W , then Hl(G,V)»S Hl(H,W) .
Next we note a simple estimate.

4.6 If V is simple and G is finitely generated, say, by m
elements, and if the cardinality |V| of Vv is finite, then

1 m-1; G . . : .  as
IH G,n| s ‘VI |v [ with equality if and only if the semidirect

product GV cannot be generated by m elements.

Proof. The inequality is clearly equivalent to |per(c,v)| s |V|m .

Let gl,...,gm generate G . Each complement of V in GV is
generated by glvl,...,gmvm with uniquely determined VireesdVp in V.
If for some choice of vl,...,vm the subgroup generated by 9qVyre-seIpVn
is not a complement, it must be GV itself (because of the simplicity

of V) ; conversely if GV can be generated by m elements, by a result

of Gaschiitz [5 ] it must be generated by m elements of this form.

Finally, we shall need a result which we first proved using Lemma
2 of our [3] or the equivalent 6.11 of [9]. The proof we present here

imMm
makes use of an idea of Professongé;acs.
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4.7 LEMMA. If G is finite, V is simple, M and N are (not
necessarily distinct) normal subgroups of G such that each element
of M commutes with each element of N and neither M nor N acts

trivialiy on V , then Hl(G,V) =0 .

Proof. Now V is isomorphic to 1Ider(G,V) : for ease of notation,
identify these two modules and write U for Der(G,V) . Let p denote
the characteristic of V ; then U 1is also of exponent p . Recall
that U/V is a trivial G-module; thus if H Jis a subgroup of G such
that U happens to be semi-simple as H-module then U = UH + V.

By assumption, neither VM nor VN is V ; as they are G-submodules

and V is simple, VM = VN = VG =0 .

If M acted on V as a p-group, each simple M-submodule of
V would be trivial, contrary to VM =0 . Thus some element of order
prime to p in M must act nontrivially on V ; let L be a cyclic
subgroup generated by such an element. By Maschke's Theorem, U is
semisimple as L-module, so U = UL + V ; by the choice of L , UL <U.
Since N normalizes (even centralizes) L , UL is an N—sugmodule.
Let Y be a maximal N-submodule of U containing v oa fortiori,
U=Y+V so Y # V. Now Yg is also a maximal N-submodule, for each
g in G , and the intersection of the Yg is a G-submodule which cannot
contain and so must avoid the simple G-submodule V . By 4.1', that

intersection is zero. It follows that U is a semisimple N-module,

whence U = UN + V. As UN =0 by 4.1", this completes the proof.

We note that if the hypothesis is modified so that M acts non-
trivially on V but N acts trivially, then HomG(N,V) = 0 (because
M acts trivially on N while VM = 0) and so in 4.2' inf must be an
isomorphism. Combined with this observation, 4.7 yields 6.11 of [9] as

a special case: the most elementary proof yet.
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5. The proof of the Reduction Theorem

Let G be a finite group, V a simple G-module (say, of

characteristic p), and let C , D , k be as in Section 2.
The first step in the proof of the Reduction Theorem is that in
4.2' with N =D,

5.1 Hl(G/D,V)-—igf* Hl(G,V) is an isomorphism.

To this end, it suffices to prove that the image of _Hl(G,V)——£E§+ HomG(D,V)

is 0 . Suppose not: then there is a d in Der(G,V) whose restriction

dD : D>V 1is nonzero. As dD is a G-homomorphism and V is simple,

dD must be surjective. Let L be the kernel of dD ; then D/L is a
chief factor of G isomorphic to V and easily seen to be complemented

by {h € G| hd = 0} , contrary to 2.3. This proves 5.1.

The second step is the application of 4.2' with G/D in place of
G and C/D in place of N .
5.2 The sequence O - Hl(G/C,V) Anf, Hl(G/D,V) xes, HomG(C/D,V) >0

is exact, and the (EndG V)-dimension of HomG(C/D,V) is k .

In view of 2.2 and 4.2', all that remains to establish is the surjectivity
of res . To this end, let ¢ : C/D + V be a nonzero G-homomorphism;
note that ¢ is surjective because V is simple. Let L/D be the
kernel of ¢; by 2.4, C/L has a complement H . Each element of G/D
can be written as hx with h € H/D , x € ¢/D , and x unique modulo
L/D : so hx+ x defines a map G/D + V , and this is easily seen to be

a derivation whose restriction to C/D is @. This proves 5.2.
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This much has been available for quite some time, for instance
as an easy consequence of 4.1 of [10]; in turn, the present line of

arqgument yields a "transgression-free" proof of that result.

It is also the end of the story if we can be sure that Hl(G/C,V) =0 .
That is certainly the case if either G/C =1 or Op,(G/C) >1 (cf. 4.1™),
and so for all simple V of characteristic p when G 1is p-soluble
(cf. 2.5). Our result is then the well-known and very useful formula of
Gaschiitz (on p.93 of Gruenberg and Roggenkamp [13]; see also VII.15.5 and
15.6 in Huppert and Blackburn [15]1): by 5.1, 5.2, and 2.5, if G is
p-soluble then Hl(G,V) = HomG(C,V) . (stammbach [19] proved that if
G is not p-soluble, there always exist simple V of characteristic p

such that HY(G/C,V) #0 .)

Lemma 4.7 yields another sufficient condition: Hl(G/C,V) = 0 except
perhaps if G/C has only one minimal normal subgroup and that is nonabelian
(and of order divisible by 'p , because of 4.1"). It remains to calculate
Hl(G/C,V) in this exceptional case. Let N/C be the unique minimal normal
subgroup of G/C , and S/C a simple direct factor of N/C : so N/C 1is the
direct product of the distinct conjugates of s/C . If S =N then G/C is
nearly simple and the reductién is complete: suppose this is not the case.

Let A/C and B/C denote the normalizer and the centralizer of §/C in G/C ,

respectively: then N/C is the direct product of sS/C and (BNIN) /C , while

SB/B (2S/C) 4is the only minimal normal subgroup of A/B .

By Clifford's Theorem (3.1), V is semisimple as N-module. Since
S >C , S must act nontrivially on some simple N-submodule U of V.
If BN N also acts nontrivially on U , then Hl(N/C,U) =0 by 4.7;
in this case Hl(N/C,Ug) =0 for all g in G (by 4.4) and, as V is
the direct sum of a suitable set of the Ug , 4.3 yields that Hl(N/C,V) =0 :
hence 4.2"‘gi§es that also Hl(G/C,V) =0 . In particular, we have proved

that if V"W = 0 then HL(G/C,V) =0 .
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N
Set W = VB N ; assume W # O , and let U be any simple

N-submodule of W . Since W admits A and WS = VN =0, S acts

rnontrivially on Ua whenever a € A . On the other hand if g { A

then gSg_l/C is a simple direct factor of N/C other than S/C and

1

hence gSg- < BN N : consequently, gSg“l acts trivially on U ,

that is, S acts trivially on Ug . Thus 3.3 is verified, and 3.2,

S

3.4, 3.5 follow. As IUa S W while IUgS V> and WNV =V =0,

3.4 yields that IUa =W, ZUg =V  , V=WO V" ; 3.2 tells us that

V is W induced from A to G , and 3.5 that the_ natural algebra
homomorphism EndA W > EndG V is an isomorphism. _.One may also say that
V as G/C-module is induced from the A/C-module W ; Shapiro's Lemma
4.5' then says that Hl(G/C,V) = Hl(A/C,W) . Since S/C acts non-
trivially on W , 4.7 gives that Hl(A/C,W) = 0 except perhaps if B/C

acts trivially. When B/C does act trivially, we use the fact that

HomG(B/C,W) = 0 because ws =0, so by 4.2' (with aA/C , B/C, W in

mn

place of G , N , V) inf is an isomorphism: Hl(A/B,W) Hl(A/C,W) .

Finally we apply 4.2" (with A/B , SB/B , W in place of G , N , V) to
’ . . . 1 -~ 1 A/B ’
deduce that res is an isomorphism: H (A/B,W) = H (SB/B,W) , that

is, Hl(A/B,W) = Hl(S/C,W)A . These conclusions may be summarized as

follows.

5.3 If W=0 or if B acts nontrivially on W , then Hl(G,V) =0 ;
otherwise W is a faithful simple module for the nearly simple group

A/B with End W= End, V and wle,v) = uha/B,W = wls/c,m?,

/B

and V is W induced from A to G .

This completes the proof of the Reduction Theorem. We stress that
all the isomorphisms in 5.3 are (composites of) natural maps {(which arise
from the functorial nature of induction, Shapiro's Lemma, and various

instances of the inflation-restriction sequence 4.2).
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6. The generation gap or presentation rank

Our first application will settle an old debt by establishing a
wWidh wae ’
result ,/éﬁ;;unced without proof as (30) in [11].

Let d(G) denote the minimum of the cardinalities of the generating
sets of G . For an arbitrary G-module U , let 6U,t be 1 if U is
trivial and O otherwise; also,write dG(U) for the minimum of the
cardinalities of the G-module generating sets of U . For each real
number x , let [x1 be the (unique) integer such that [x] - 1 < x s [x] ;

it is straightforward to see that

6.1 [x/n1 = [[x1/n] for each positive integer n .

Finally, denote the augmentation ideal of the integral group ring ZG by ¢ .

The generation gap of a finite group G is defined by
gap G = d(G) - d. (g) ;

by a theorem of Roggenkamp [18] (Proposition 1 in our (3]), it is equal

to the presentation rank of G : the context of these concepts was
surveyed at length in [9] and [11]. Here we recall only that gap G =0
if either G is soluble or G can be generated by two elements; and that
gap G > 0 if and only if the standard wreath product of an infinite

éycle by G can be generated by d(G) elements.

The outstanding claim gives a test for gap G > 0 . Even its
statement refers to the Reduction Theorem: call a simple G-module V
monolithically induced if it comes under the last, exceptional case of
that Theorem. Explicitly, V is monolithically induced if G/C has

only one minimal normal subgroup N/C , this is nonabelian, and if
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S/C is a simple direct factor of N/C with centralizer B/C then
vB # 0 : the case of nearly simple G/C is included here, for then

B/C=1 and Vo =V .

6.2 THEOREM. Assume that d(G) > d(s/C) for every composition factor
s/C of the finite group G (#1) . The following two conditions together

are sufficient to ensure that gap G > 0 .

(a) d(G) - 22 dG(C/D) - GV ‘ whenever V is a complemented
14

abelian chief factor of G that is not monolithically induced;

(b) (d(G)-Z)lG:AI 2 d((A/B)Wk) - 1 whenever V 1is a complemented
abelian chief factor of G that is monolithically induced with k ,
A, B, W as in the Reduction Theorem, and with (A/B)Wk the
semidirect product of A/B and the direct product wk of k

copies of W .

If the automizers of the nonabelian composition factors of G are all

2-generator groups, then these conditions are also necessary.

The reason for d(G) - 2 on the left hand sides of these .
inequalities is that by definition gap G > 0 if and only if

d(G) - 22 dG(g) -1. Theorem 3 of our [ 3] says in effect that

1
_ dim H(G,V)]| _
def@) - 1 = ‘“‘”‘{[ dim v 1 Gv,t}

where the maximum is taken over all simple G-modules V : so gap G > O

is equivalent to

. 1
_3E_§_Q§Q91 -8 for all simple V .
v,t

d
(c) d(G)-zzl- o v

By 2.2 and the simple rule (7.12 in ([9]) for calculating dG(U) ’
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dim E
im ndG \"/ .
dim Vv !

k
dG(C/V) =
hence the Reduction Theorem leads to the inequality in (a) when V is
not monolithically induced. If V is of this kind but not isomorphic
to any complemented chief factor, that inequality is automatically

satisfied (for d(G) > 1 by assumption).

For monolithically induced V of course Gv,t = 0 , and by the
Reduction Theorem dim HY(G,V) = k + dim H' (a/B,W) while
dim V = [G:A‘ dim W ,  all dimensions being taken over the "same"
finite field EndG vV = EndA/B w. Substitute into the right hand side
of the inequality in (c) and use 6.1 to move |G:A| to the left hand

side:

+dim Hl(A/B,W)
dim W .

(a) (a(e)-2)|G:al 2z P‘

When k = O this is automatic: for in the last part of the Reduction

d(s/Cc)-1 d(G)-2

-

Theorem WS = 0 and |H (a/B,W)| < et (s/c,w | s |w| |w|
by 4.6 and because d(G) > d(s/Cc) has been assumed. By the, Corollary
to Lemma 2 in Gruenberg and Roggenkamp [12] (note this can also be

proved without transgressions, as the last line of p.265 in [12] is

an easy variant of our 5.2),

' 1
_ k+dim H™ (A/B,W)
a(@a/BW) - 1 = max{d(A/B)-l,[ e -l} )

Thus (b) certainly implies (d) and so (c) for all monolithically induced
V , and the converse implication is also valid under the assumption that

d(aA/B) is always 2. This completes the proof of 6.2.

6.3 REMARK. In condition (b), one can replace the externally
constructed (A/B)Wk by a section A/R of G chosen as follows. (We

continue to use the notation of Section 5.) since B (I N is normal in
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the normal subgroup N , repeated application of Clifford's Theorem
tells us that V is semi-simple as (BaN)-module: thus

v = anN & [v,BNN] . Here VBnN = W and in the relevant case all

n
=

of B acts trivially on W , so we can conclude that v/(v,B] .
We know from 2.2 that C/D = Vk , so C/Ic,B]D = Wk . Also, we

saw in Section 2 that C/D has a (usually far from unique) complement
in G , which we called E in Fig.2. It is now easy to see that

(Na) [C,B]D complements C/[C,BID in A , and so with

R =

w

N (ea) [(c,B = (ENB) [C,B]D we have B/R = C/[C,B]D = W and

(A/B)Wk . Incidentally, this discussion shows that for a V

n

A/R
with k > 0 , the condition VB # 0 in the definition of "monolithically

induced" is equivalent to [C,B]D < C .

Fig, 4

(In contrast to Figs 1 and 2, Fig.4 gives only part of the sublattice
generated in the subgroup lattice of G by the subgroups named: the dotted

line is intended to suggest that the join of E and [C,B]ID is not shown.)
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7. Some other estimates

We retain all the notation established so far; G is finite

throughout.

7.1 THEOREM. Suppose that each nonabelian composition factor of G
can be generated by two elements one of which has order 2, and let V
be a simple G-module not isomorphic to any complemented chief factor

of G. Then |HN(e,W)] < |V] .

¥y

Proof. By assumption, now k=0 and C=D, so Hl(G,V) =0

except perhaps when V is "monolithically induced" in which case by 5.3
IHl(G,V)I < |Hl(s/c,W)| and |V| = |w||G’Al . Recall from the proof

of 5.3 that ws =0 . Also, by Clifford's Theorem W is semisimple

as S/C-module. Thus by 4.3 it suffices to prove that lHl(S/C,U)| < |u]

whenever S/C is a nonabelian composition factor of G and U is a

simple nontrivial (and therefore faithful) S/C-module.

Let S/C be generated by x and y , with y2 =1. If
d € Der(s/c,u) , then O = y2d = (yd) (y+1l) so yd 1lies in the

subspace {u € U | u(y+l) = o} . If this subspace U were U itself,

1
then y would act on U as the scalar -1 and so would lie in the
centre of the faithfully acting, nonabelian simple S/C . This cannot

happen, so IDer(S/C,U)l s |U||Ull < |U[2 , Wwhence IHI(S/C,U)[ < |u| .

This completes the proof of 7.1..

7.2 REMARK. If the assumption on composition factors is eased to each
being generatable by two elements, the last paragraph simplifies to a

direct application of 4.6, and the conclusion is IHl(G,V)l z IVI .

In view of 4.6, 7.1 implies the following.
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7.3 COROLLARY. Let G be a noncyclic finite group such that each
nonabelian composition factor of G can be generated by two elements
one of which has order 2, and let V be a simple G-module such that
da(cv) > 4(Ge) . Then V must be isomorphic to some complemented chief

factor of G (that is, k > 0).

This is very similar to Theorem A of Thomas [20]. In place of

our assumption on composition factors, he requires
(ii) Op,(G/C) > 1

(and "complemented" is missing from his conclusion): If it should be
proved that every nonabelian finite simple group satisfies our
assumption, (ii) could be omitted from his Theorem A. Alternatively,
one may keep to (ii) and strengthen his theorem, using 4.6, 5.1, and

5.2, to the following.

7.4 THEOREM. Let G be a noncyclic finite group and V a simple

G-module such that OP,(G/C) > 1. Then d(GV) > d(G) if and only

if k = (4(G)-1) dim V where the dimension is taken over EndG v .
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