
The study of varieties of groups was initiated by the Cambridge doctoral thesis of
B. H. Neumann in 1935, and many of the principal contributions to the subject were
subsequently made by him and by his mathematical family. It is a joy to greet him on his
seventieth birthday, with much love and gratitude, and with a discussion of some results
and some open problems on varieties.

After a brief summary in this paragraph, I shall start from scratch and introduce
technicalities as slowly as possible, to make at least part of the paper accessible to non-
specialists. This is a survey of what we do know and what we would like to know about
torsionfree nilpotent varieties. In particular, it will be proved that there are precisely
39 such varieties of class at most five (there are infinitely many of class six), and
each of these will be identified. In the course of the proof it will be seen that if  a
torsionfree locally nilpotent variety does not contain all, and does not consist of,
nilpotent groups of class at most four, then it is metabelian. Not only the metabelian,
but a ll the centre-by-metabelian locally nilpotent torsionfree varieties wil l  be
completely classified. In addition, for each positive integer e, we know (although in a
less specific sense) all torsionfree nilpotent varieties o f  class c which contain all
nilpotent groups of class less than c. Most of the open problems concern torsionfree
nilpotent varieties which have only finitely many torsionfree subvarieties. These have
many other attractive features, and it seems conceivable that for sufficiently large e
there are only finitely many join-irreducible varieties of this kind with class precisely c:
only for c — 6 are there known to be infinitely many of them.
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A variety is a class of groups defined by a set of laws (or identical relators): if  L is a
subset of a free group X(of countably infinite rank), the variety defined by L is the class
of all groups G with the property that L is in the kernel of every homomorphism of X
into G. The set o f all laws of this variety is the intersection of the kernels of the
homomorphisms of X into groups in the variety. This intersection is the subgroup of X
generated by the union of the images of L under the endomorphisms of X: the fully
invariant closure of L in X. Thus varieties are in a one-to-one correspondence with the
fully invariant subgroups of X.

For example, if x and y are elements of a free generating set of X, the variety defined
by the single law Ex, y] ( = x x y )  is the class 91 of all abelian groups, and the set of
all laws of 91 is the commutator subgroups X' of X.

Two subsets of X are called equivalent if they define the same variety: that is, if they
113
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have the same fully invariant closure. One of the striking results in B. H. Neumann's
thesis [21], [22] was that each nontrivial element of X
i s  e q u i v a l e n t  t o  
a  t w o - e l e m e n t
subset consisting of a power of x and an element of X'. It follows readily that each
subset of Xis equivalent to a subset of X' augmented by a single power of x. This in turn
implies that every variety which consists o f  abelian groups is definable by the
commutative law [x, y] and an exponent law xn to  each nonnegative integer n, there is
the variety 91 which consists of the abelian groups in which the orders of elements all
divide n, and there are no other abelian varieties. (It is customary to write 91, simply as

, and 9t , as t h e  latter is just the class of all groups of order I.) Another immediate
consequence is that every variety which does not contain '21 must have finite exponent.

The best-known problem in variety theory has been the finite basis problem, first
raised in B. H. Neumann's thesis (though its scope had grown in the course of time): can
each variety be defined by a finite set of laws? It took until 1969 before the answer was
proved to be negative, by Of §anskif [26]. It follows (from the details of that answer)
that the cardinality of the set of all varieties is that of the continuum: a positive answer
would have implied countability. There is a wealth of literature on this problem, giving
positive answers for various restricted classes o f varieties, and by now numerous
examples to show that the positive answers cannot be extended much further.

The abelian case of the problem was, of course, dealt with by B. H. Neumann's result,
as discussed above. The next step was the positive answer for the nilpotent case
(Lyndon [19]), which is best handled, as in Hanna Neumann's book [24], by starting
with a generalization of this result. This generalization is that each subset of X is
equivalent to a subset of X,LJ 9I,(X) where X, is the subgroup of X generated by a c-
element subset of a free generating set of X while 91,(X) is the (c + 1)th term of the
lower central series of X, that is, the set of all laws of the variety 91, of all nilpotent
groups of class at most e. For c = 1 this is just the result discussed earlier. However,
there is a vast difference between the cyclic X, and the X, with e > 1, so the reduction in
the general case is very much less effective. While it is good enough to yield the finite
basis result, it is only a small step towards a classification of nilpotent varieties which
would match the complete and decisive nature of the abelian results.

Let us look at this a little closer. The e 1  case tells us that we only need to consider
exponent laws and commutator laws. Apply next the case e = 2 to  the latter:
commutator laws are equivalent to two-variable commutator laws (that is, elements of
X )  and commutator laws of higher weight (elements of 9 1
2
( X ) ) .  O n e  c a n  
n o w  e x p l o i t

that Yr2 is cyclic modulo 9 I
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class 2 without much trouble. In trying for class 3, our luck runs out, for 91
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also been classified (.16nsson [12], Remeslennikov [27]). The class 4 case is vastly more
complicated; it is only now being sorted out by P. Fitzpatrick.

The general case would require us, first, to deal with 91, , (X , ) modulo 9I,(X), and
then, harder still, to fuse the conclusions with the results obtained for class e — 1. An
equivalent form of the first question is to ask for the fully invariant subgroups of X,
sandwiched between 91 , (X , )  and 91,(X,). There is, in fact, a deep and largely classical
theory applicable to certain aspects of this, which I shall refer to as 'small class theory'.
The key ideas were developed in the late thirties and early forties, then consolidated by
Graham Higman [11] in 1965; for a more detailed and up-to-date exposition, see a very
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recent paper of mine [15]. The quotient
1
91, _  ( X
.
, ) 1 9 1 , ( A 1 )  i s  
a  f r e e  
a b e l i a n  
g r o u p  
o f  
fi n i t e

rank which is a module with respect to the semigroup of endomorphisms of ,11, and the
fully invariant subgroups we are interested in correspond to the submodules of this
module. The theory deals conclusively with the submodules of prime-power index p" as
long as c < p (hence the term 'small class'), and also with the isolated submodules (that
is, those which give torsionfree factormodules). However, in general it  is virtually
unable to touch, say, the submodules of 2-power index.

This is largely in accord with the state of the art in general group theory (as distinct
from variety theory). Finitely generated torsionfree nilpotent groups are just about the
best understood infinite nonabelian groups, and finite p-groups of class less than p (for
any prime p) are similarly well behaved. By comparison, our understanding of finite
p-groups without a class bound is extremely meagre (even if we restrict attention, say, to
the metabelian case).

The seventies have seen a marked decline of activity in variety theory, and this is
frequently blamed on the solution of the finite basis problem. True enough, that was the
problem which caught the attention of algebraists, and with its solution the glittering
bait is gone. It was also the last of what I regard the three fundamental problems of
variety theory. (The first was the structure of the multiplicative semigroup o f all
varieties: shown to be free with zero and identity, by three Neumanns [23] and Smerkin
[29]; the second, the question of the distributivity of the lattice of all varieties, settled
negatively by Higman [11].) Still, I feel that this decline also has a lot to do with variety
theory having largely caught up with the rest of group theory, in the sense illustrated by
the previous paragraph. While there were plenty o f  basic unanswered questions
concerning varieties of otherwise well understood groups, the subject could move
forward with confidence. Today one is impressed by tantalizing varietal questions more
or less tied up with well-known unsolved problems of general group theory. For
instance, there is the question whether there exist nonabelian varieties in which all finite
groups are abelian. Intuitively this appears closely related to the existence problem of
Tarski monsters: infinite groups in which every proper nontrivial subgroup has prime
order. After the very recent announcement that Rips has made some Tarski monsters,
one eagerly awaits details to see whether this will open the way to 'pseudo-abelian'
varieties. I also wonder whether it brings us any closer to solving another, so far entirely
intractable problem: if a finite group G is contained in the join 11. v  913 of two varieties,
must G lie in a variety generated by one finite group from 11 and one from SB ? (The first
of these questions is on record in Hanna Neumann's book [24]; the second has also
been around for a long time, though its only occurrence in print that I know of is in
[141.)

One of the aims of this paper is to draw attention to a number of apparently
unexplored questions which do not carry the discouraging label 'well known to be
hard'. To motivate them and to make them more accessible, I need to spell out some of
the rich folklore of the subject. The results I present were broadly recognized a decade
ago, certainly in my discussions with M. F. Newman (to whom I am greatly indebted)
and very likely by many others, yet as far as I know most of them have never been
actually formulated, let alone printed. It is not my intention to claim credit or priority,
and I  regret i f  I  have overlooked some relevant publication and so fa il to give
acknowledgement where it is due.
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2. Torsionfree varieties

In calling a variety torsion free one does not use the adjective in the same sense as in
the case of abelian or nilpotent varieties, for of course only the trivial variety If consists
of torsionfree groups. What is meant here is a variety which is generated by torsion-
free groups, or (equivalently) whose free groups are torsionfree. Thus the torsionfree
varieties are precisely those which correspond to isolated fully invariant subgroups of
the free group X. This terminology is a convenient start towards exploring what
advantage may be taken, in the context of varieties, of the general fact that torsionfree
groups are better behaved than arbitrary groups.

Our descent into technicalities must accelerate now: the reader will soon need most
of the basic language o f  varieties, still much the same as in  Hanna Neumann's
monograph [241. The bulk of this section will be taken up by examining, in broad
outline, how the structure of the set (call it T) of all torsionfree varieties compares with
the structure of the set (call it  F) o f all varieties of groups.

First recall that F is a free semigroup with zero C (the variety of all groups) and
identity CF. Obviously, C and CF lie in T, and 22.22 of [24] gives that T is a subsemigroup
of F. In fact, much more is true: a product of two varieties (other than (E, and C) is
torsionfree if  and only if  the first factor is torsionfree. Before proving this, let us note
that not only does this mean that T (or rather, T without Is;) is a right ideal in F, but also
that T itself is a free semigroup with zero and identity. (The deduction of the latter is
straightforward: if  C 0  liE T and / 1
1
1 1
2  •  •  •  t i
„  i s  t h e  
u n i q u e  
f a c t o r i z a t
i o n  
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I I  
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h
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the ith among the torsionfree members of the sequence U
1
,  1 1 2 ,  U
n
. )  M o r e o v e r ,

'2 III defines a map of F into T: as this map is one-to-one (on account of the
uniqueness of factorization in r), it follows that the cardinality of T is also that of the
continuum. Thus T and F are isomorphic as semigroups.

It remains to prove the italicized statement of the previous paragraph. The only if '
part is immediate from the fact that the free groups of II are subgroups of the free
groups of /OB. For the proof of 'if', let O.: 0  11 E T and C 0  13 e F; let V be the verbal
subgroup of X corresponding to /3, and II( V) the verbal subgroup of the free group V
corresponding to tt we have to show that X/II( V) is torsionfree. By assumption, E <
so It (V) < V', and V/II( V) is torsionfree. Thus V ' / U(
V ) i s  t o r s i o n f r e e  
a n d  s o  
i f  X I V '  
i s

torsionfree we are done. However, it is an elementary fact that XIV' is torsionfree for
every normal subgroup V of every free group X. (As I cannot think of a reference, here
goes the proof. If w is an element of X with w
k e  V '  f o r  s o m e  
p o s i t i v e  
i n t e g e r  
k ,  
c o n s i d e
r

the subgroup Wof Xgenerated by Vand w: this is free, so W/ W' is torsionfree, and thus
V' < W' implies that w e W'; but W' < V and V/ V' is torsionfree, so WE V' follows.)

Next, recall that F is a complete modular lattice with respect to partial order by
inclusion. Of course T inherits this partial order from F, and as the intersection of any
set of isolated fully invariant subgroups is isolated and fully invariant, T is also a
complete lattice with respect to this partial order. However, while joins in T are the
same as joins in F (so T is a sub-join-semilattice of 1), the meet in T of two elements of T
is at times smaller than the set-theoretic intersection which is their 'meet' in F. This
reflects the fact that not all products of isolated verbal subgroups of X are isolated. It
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follows that T is not a sublattice of F. (In the rest of this paper, I  shall consistently use
'meet' and A in T but 'intersection' and n in F, departing in this respect from standard
usage.) The question cries out for answer: is T modular? I have made no serious attempt
to answer this in general, and leave it as our FIRST OPEN PROBLEM. The modularity of the
sublattice of T consisting of the torsionfree nilpotent-by-abelian varieties will be more
than enough for the present, and that much is easily established. (As every torsionfree
variety other than ( contains 2•1, the corresponding verbal subgroups of X may as well
be assumed to lie inside X', and modulo any one of them X' is nilpotent. Then one
exploits the fact that in a nilpotent group the elements of finite order form a subgroup,
so the 'isolator' o f the product of two of these subgroups has a particularly simple
description.) Another property of F (uses of this tend to be implicit in the literature) is
that it is join-continuous, that is, (
fl u ) )  v  s B  
1  n ( 1 1
)
,  v  
F i l )  
w h e n e v
e r  
t h e  
U  
f o r
m  
a

A
chain. (Unfortunately, many authors use 'join-continuity' to mean the dual property.)
From the dual version of this law for fully invariant subgroups of X, one readily sees
that T is also join-continuous.

For any variety 0 , let A(1;) denote the lattice of all subvarieties of t3 , and A'(13) the
lattice of all torsionfree subvarieties of (Th u s  A ( )  is a sublattice of I
-
, a n d  A ' ( s B )  i s  a
sublattice of T: it will be convenient to have the latter defined even when 13 itself is not
torsionfree.) It is known that T is not distributive, for small class theory tells us that
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Classification Theorem' in [15] yields something of interest here: for nilpotent $ , we
know that 10(1
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.) i s  
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simple observations. Let T be a torsionfree subvariety of 91„ say; then A '(Z) is the
interval bounded by E and 0  in A'(9Z,), that is A ' (T) = [ E  A'(91,) E  <11 < 131.
The first observation is that for any lattice homomorphism, the image of an interval
is an interval in the image. Now the Torsionfree Classification Theorem states that
A'(9t,) is the subdirect product of the subspace lattices of finitely many rational vector
spaces: so all that remains is to observe that an interval in such a subspace lattice is itself
the subspace lattice of some space and is therefore distributive if and only if it is finite.

As to the finite basis problem for torsionfree varieties, we already have the negative
answer: we have seen that there are uncountably many torsionfree varieties, while of
course X has only countably many finite subsets. Of course, this does not mean that
there are no questions left, but I leave it to the reader to examine which of the many
positive or negative results in this direction have easy or challenging torsionfree
analogues. (A survey of most of the relevant literature can be found in [16].) Let us call
this group of questions our SECOND OPEN PROBLEM.

A notion which may be relevant here (and which will certainly ease our burden in
later sections of this paper) is the following. In any group, the isolator of a normal
subgroup is the intersection of the isolated normal subgroups which contain it. Another
description of the isolator is the following. For a normal subgroup N of a group G,
define N* by saying that N*IN is the subgroup generated by all the elements of finite
order in GIN; put N, = N, define inductively N ,  =  NP, and let N
c o
z - - U  I V , :  t h e n  N .
is the isolator of N in G. From this it is easy to see that if Nis fully invariant in G, so is
N„ and each of the N
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subset L  of X if the corresponding verbal subgroup of X is the isolator of the fully
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invariant closure of L. It is possible that some torsionfree variety may be definable by a
finite L in this sense, without having a 'finite basis' in the usual sense: indeed, if  the
infinite ascending chain of fully invariant subgroups (in the second description of the
isolator of the fully invariant closure of some finite L) is properly ascending all the way,
then that must be the case. (I have not looked for examples.) Thus one might expect
stronger positive finite basis results in  this sense. (O f  course, the cardinality
considerations prove that the general answer remains negative.)

The term corresponding to isolator in the context of varieties is torsionfree core: for
any variety 13, this is the subvariety 13
0 g e n e r a t e d  
b y  a l l  
t h e  
t o r s i o n f r e
e  
g r o u p
s  
i n  
1 3 .

Thus for any subset L of X, the torsionfree variety defined as such by L is the torsionfree
core of the variety defined by L.

I shall not continue to explore any further what may correspond in T to the 'algebra
of varieties' F in the sense of Section 1 of Chapter 2 in Hanna Neumann's [24] : for some
of the results recorded there, it does not seem obvious to decide what the torsionfree
analogues might be. There are, however, two deep results which must be borne in mind.
One is that T is not closed with respect to commutator formation, for C. K. Gupta has
shown [7] that the variety [91
2
, ( , ]  o f  a l l  
c e n t r e - b y -
m e t a b e l i a n  
g r o u
p s  
i s  
n o
t  
t o r s i
o n f r e
e .

The other is that cutting back to the torsionfree core of a commutator is a delicate
operation. While the torsionfree core of [',B,„, i s  easily seen to be just 91 (Narain
Gupta and A. Rhemtulla [8]), Adjan showed [1] that for every large prime p the
torsionfree core of [13
p
, c o n t a i n s  
9 3
p  
a s  
w e l l
.

What we have found supports the reader who reacted with scepticism to my
unqualified claim that torsionfree groups are better behaved than groups in general :
while that is so in the nilpotent or metabelian case, without some such restriction
torsionfree groups seem to form no less complicated a picture than the general one.
This is still a wildly intuitive statement, but such thoughts do form part of our overall
view of group theory. I hope this section illustrates that varieties offer, even to those
who are not interested in varieties for their own sake, a language in which such matters
may be explored on a less intuitive level.

3. Counting to thirty-nine

It is time to turn from generalities to specifics: just what individual torsionfree varieties
do we know? As observed in the previous section, a product variety is torsionfree if (and
only if) its first factor is, so the real task is to look at indecomposable torsionfree
varieties (that is, those which have no proper factorization even in 1
-
).  A l l  n i l p o t e n t
varieties are indecomposable, so they provide a good starting point (not that this is the
only reason for giving them precedence).

One aim o f  this section is to count up that there are precisely 39 torsionfree
nilpotent varieties of class at most 5. Closer identification of all but nine is deferred to
the next section. According to the general program laid down in the introduction, the
problem breaks up into two parts. The first is to count, for c < 5, the isolated fully
invariant subgroups of X, which lie between 9I,_ ,(X,) and 91.,(X,). The Torsionfree
Classification Theorem of small class theory [15] tells us that the lattice of these is the
direct product of the subspace lattices of certain rational vector spaces. For c < 5 each
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of these spaces is 1-dimensional so each subspace lattice has jug two elements. The
number of direct factors is 1 when c < 3, but 2 for e = 4 and 5 for c 5 .  Thus the
number of torsionfree varieties strictly between 91 ,  and 91, is O for c < 3, it  is 2
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The second step of the program is to complete the picture by counting the torsionfree
subvarieties of 91
5 w h i c h  
d o  
n o t  
l i e  
i n  
a n
y  
o
f  
t h
e  
i n t
e r v
a l s  
a l
r e
a d
y  
i n v
e s t
i g a
t e d
.  
S
m
a
l
l

class theory is not much help in this beyond telling us that A
°
( 9 1
5
)  i s  d i s t r i b u t i v e  
a n d

finite (and providing a very crude upper bound for its number of elements), so we have
to fall back on ad hoc arguments. These are easy enough to find here, but do not seem to
be so readily available should one attempt, say, the class 6 case. In fact, I do not even
know how many torsionfree sulwarieties of 91
6 f a i l  t o  c o n t a i n  
9 1
5
:  l e t  
t h i s  
b e  
o u r  
T H I R D

OPEN PROBLEM. It is perfectly feasible that this number could be finite, but our ignorance
here is in stark contrast with what we are about to prove for the class 5 case. (One way to
approach this problem would be to concentrate on the torsionfree subvarieties of 91
6which are maximal with respect to not containing 91
5
. I t  i s  n o t  h a r d  
t o  s e e  
t h a t  
t h e r e  
a r e

precisely five such varieties, one for each maximal subvariety o f 91
5
: j u s t  u s e  t h e
distributivity, proved in Section 2 of [15], of the sublattice of A
l
' ( 9 1
6
)  g e n e r a t e d  b y  
9 /  5

and any two other elements. I f  these five, or rather, their joins with 91
5
, c o u l d  b e
identified in the setting of the Torsionfree Classification Theorem, the answer to the
problem could be read off the information already available. The only thing known in
this direction is that one of the five varieties contains the rank 2, but not the rank 3, free
group of 9 :  Chau [4], [5].)

To justify the count of 39, we must show that there is just one further torsionfree
subvariety in 91 I t  is, in fact, 91.
5 1 1
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result o f  Magnus, 36.32 in Hanna Neumann's [24], implies that each 91,n 91
2 i storsionfree.) As a first step towards this, we need to identify the two torsionfree varieties
strictly between 91, and 91
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but it is hardly necessary to conduct a systematic search to spot these two old friends.
One is, of course, 91, n 91
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law ty,x,x,x1, so I shall denote it by C
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third Engel groups have class at most 4, and for instance the simplest case of the general
construction at the end of Newman's [25] shows the existence of such groups of class
precisely 4: since we know that there are precisely two torsionfree varieties strictly
between 91
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l
a
i
m
.

The other steps can be made, at very little extra cost, much more general than what is
needed just for counting to 39. It will be more convenient to break pattern and display
them.

Lemma 1. I f  13 i s  a n y  torsionfree loca lly nilpotent varie ty such t h a t
13 A 91,, <  M„r
)
, t h e n  
2 3  
<  
9 1
( r ) .

That is, if  every r-generator torsionfree group of class at most c + 1 in 0  in fact has
class at most e, then every r-generator group in 23 has class at most e.

To see this, let F be the rank r free group of b y  assumption, this is torsionfree and
nilpotent, say of class precisely d. If d < c we are done; so suppose d > c and aim for a
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contradiction. Let ,  be the (d — c — 1)th term of the upper central series of F. As
all terms of the upper central series of torsionfree nilpotent groups are isolated (cf.
31.41 in [24]), ,  is an r-generator torsionfree group of class precisely e + I in
11, contrary to our hypothesis.

Lemma 2. I f  93 is a torsionfree locally nilpotent variety such that 93 A 91 <  91
2
, t h e n

93
The proof of this is somewhat longer. Before imposing it on the reader, let me show

that it is worth the trouble, for it leads quickly to a result that does a lot more than
complete the count.

Theorem. The only torsionfree locally nilpotent varieties which do not contain91,are
and the 9 l
n  9 1
2
.

(Of course, for c < 4 the latter are just 9 1 ,  91,, and 91
3
. )

The only additional information we need for the proof of this is the fact that the meta-
belian torsionfree varieties are precisely the 91„ n 91
2
. I n  f a c t ,  M .  
F .  N e w m a n

and I  have classified a ll torsionfree metabelian varieties (see Bryce [31): apart
from 91
2 
i t s e l
f ,  
t h
e y  
a
r
e  
a
l
l  
p
o
s s
i b
l e  
fi
n
i
t
e  
j
o
i
n
s  
o
f  
t
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e  
v
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i
e
t
i
e
s  
o
f  
t
h
e  
f
o
r
m  
9
1
t
n  
n  
9
1
2
,

and each of them has a unique irredundant expression as such a join. However, that
result is far too heavy a weapon to use here; what we need can be had much more
directly, for instance as follows. Let 11 be any metabelian torsionfree nilpotent variety:
say, 11 < 91,n 91
2
. T h e n  
1 1  
i s  
g e n e r
a t e d  
b
y  
i t
s  
f r
e e  
g r
o u
p  
F
o
f  
r
a
n
k  
c
,  
a
n
d  
F
i
s  
r e
s i
d u
a l
l y

of prime exponent p with p ranging through any infinite set H of primes (Higman [10]),
so tt = v  193„ n U I p H I .  It is well known that every metabelian nilpotent variety of
prime exponent p and class less than p is of the form 93,n 91
c
, n  9 1
2  ( B r i s l e y  [ 2 ]  
a n d

Weichsel [31]; also 54.27 in [24]). Thus 93,n =  93,n 91 ,,
(
, ,
)
n  9 1
2  w h e n  p  >  
c .  A s  
t h e

function e' has finite range, it must be constant, say with value d, on some infinite set H
of primes. Higman's result applies equally well to the rank d free group of 91,n s2(
2 i nplace of F, so we may conclude that

{93n11 p e  r }  = v  {O
p  n  9 1
d
n  9 1
2  
p e n }  
=  
9 1
d
n  9 1
2
.

For the proof of the theorem, let 93 be a torsionfree locally nilpotent variety not
containing 91
4
, a n d  
l e t  
G  
b e  
t h
e  
r a
n k  
2  
f r
e e  
g r
o u
p  
o
f  
T  
A  
9
1
4
.  
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class at most 4 are metabelian, so the variety generated by G is 91,n 91
2 f o r  s o m e  d w i t hd < 4. I f  d < 2, we have that 93 A 91
4 <  O P :  t h i s  
i s  a  
r a t h e r  
t r i v i a l  
c a s e ,  
a s  
t h e

torsionfree core of 91
(
2
2) i s  j u s t  
9 1 ,  
( L e v i ;  
s e e  
3 4 .
3 1  
i n  
H a
n n
a  
N e u
m a n
n ' s  
[ 2
4 ]
) ,  
a
n
d

= 91, n 91
2 
f o l l o
w s  
b y  
a
n  
e v
e n  
s i
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l e
r  
v
e
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i o
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first note that 91
3 <  9 1
4
n  9 1
2  
<  
9 3  
A  
9 1
4  
<  
9 1
4
.  
I
f  
d  
=  
3
,  
w
e  
u
s
e  
L
e
m
m
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I  
w
i
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t
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conclusion that T is either 91
3 ( =  9 1
3  n  9 1
2
)  o r  
( t h e  
t o r s i o n
f r e e  
c o r
e  
o
f  9 1
(
3
2 )
) .  
I
f  
d  
=  
4

we have that 93 A 91 =  91
4 n  9 1
2  s o ,  
b y  
L e m m a  
2 , 9 3  
i s  
m e t a b
e l i a n .  
S i n
c e  
1
3  
i
s  
t o r s
i o n f
r e e

locally nilpotent, each of its finite rank free groups generates an 91,n 912, and between
them they generate T However, the join of any infinite set of 91,n 91
2 i s  9 1
2  ( s i n c e  f r e e
metabelian groups are residually nilpotent: Gruenberg [6]; cf. also 26.32 in [24]) which
is not locally nilpotent, so 93 must be some 91,n 912 as claimed.

It might be noted here that this last step, showing that a metabelian torsionfree
locally nilpotent variety must in fact be nilpotent, together with a version of a well-
known result o f  P. Hall, yields that a nonnilpotent, locally nilpotent, torsionfree

Should be: the metabelian nilpotent 
torsionfree ...
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variety would have to be insoluble: the existence of such varieties is a hard problem of
long standing (Question 4 in [16]; for a detailed discussion, see Kostrikin [13]).

The proof of Lemma 2 (inspired by Stewart [30]) is of an entirely different nature. So
far we have been able to get away with what seems like 'general nonsense' compared to
the explicit commutator calculations so common in work on nilpotent varieties, but we
must turn to these now. Since the variety of metabelian groups is defined by a 4-variable
law, we only need to prove that the rank 4 free group of /3 is metabelian, so no
generality is lost by assuming that 13 is actually nilpotent. Induction on its class then
reduces our task further: it will be sufficient to prove that if e > 5 and 93 is a torsionfree
subvariety of 91, such that /3 A 9 1 „  is metabelian, then 93 is metabelian. Towards
establishing this, take F to be the rank e free group of 91 a n d  let V and N be the
(isolated) verbal subgroups of Fcorresponding to 93 and 9
1
1 ,_  ,  r e s p e c t i v e l y .  
W e  n e e d  
t o

show that the second derived group r  of Eis contained in V, given that it is contained
in the isolator VN of VN. As F1VNis a finitely generated nilpotent group, VNIVN is the
(finite) subgroup consisting of the elements of finite order in FIV N. Let t f  , f
c
1  b e  a
free generating set of F; by what has been said, some nontrivial power [ f
5
,  f
4
;  f
2
,

of the element [ f
5
, 1
.
4
;  f
2
,  I d  
o f  
F "  
m u
s t  
l i
e  
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n  
V
N
:  
t
h
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s

[A, ;  f2, ] k  = vw w i t h  v  e V, w N .

Let y, 6 denote the endomorphisms of F defined by

— J 31
,  
J Y  
—

1'56 — 1, f . (
5  f ,

if i  5 ,
if  i  5 ,

and write w = W
1
W
2  •  •  
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e a c
h  
w ,  
a  
b a
s i c  
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v e
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commutator, of weight c. Apply 6 to (*): this gives (v 6) (w 6) 1 ,  so (*) may be replaced
by

n[f
*
5
, 
1
'
4
;
1
'
2
,  
f
i
r  
=
,
(
,
-
1
(
5
)
(
w
-
1
5
)
w 
= 
v
(
v 
-  
1
6
)  
n 
(
I  
V 
O
W 
•

i
•j =

Note that wi 1
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o r  w
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d e p e
n d i n
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left of (w - 1
( 5 ) w  
a f t e r  
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entry: when next we apply y, these all increase in weight and hence vanish. It follows
that [ f s  .f3, .f4; .f2, — ((v 'ö )v)yo  V. Because V  is isolated, th is means that

./4 . 1

.
1 ]
c 1 /  
s
o  
[ fl
A T
) ,  
F
'
]  
V
.  
a
n
d  
i
t  
i
s  
i
m
m
e
d
i
a
t
e  
f
r
o
m  
t
h
i
s  
t
h
a
t  
V  
m
u
s
t  
c
o
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-

tain all the basic commutators of weight greater than 4 which are not left-normed. In
particular, F" n N < V. I t  was shown in Section 2 of [15] that the lattice of isolated
verbal subgroups of F generated by Nand any two such subgroups is distributive: thus

< V N gives that r  r n  VN— (F" n V)(F" n N),  and so f rom F " n N < V  we
can conclude that F" < V as required.

This completes the proof of all the claims made in this section, and we are almost
ready to move on. In taking stock of the torsionfree nilpotent varieties that are known
to us, we have noted those which lie between 91, and 91, for some ;  those of class at
most 5 (isolating the specific problems in the way of dealing with the class 6 case); and
the metabelian ones. The latter form part of a larger, also complete picture, namely that
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of the torsionfree nilpotent centre-by-metabelian varieties. The classification of these
runs as follows.

For k > 3, let e
k  b e  
d e fi n e
d  
a s  
t o r s i
o n f r e
e  
v a r
i e t
y  
b
y  
t
h
e  
k
t
h  
E
n
g
e
l  
c o
m m
u t
a t
o r

[y,x, ,  x] (where x is repeated k times), the nilpotent law of class k + 1, and the
centre-by-metabelian law [x,y;ti,v;w1. (That is, Lk is the torsionfree core of the variety
defined by these laws. Note that for k = 3 this is consistent with our earlier definition.)
The result is that each torsionfree nilpotent centre-by-metabelian variety is either an
91,n 21
2 o r  
a n  
o
r  
a
n  
(
9
1
,  
n  
1
1
2
)  
v  
C
k  
w
i
t
h  
k  
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e
.  
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e
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f
o
r  
a  
v
a
r
i
e
t
y  
i
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unique, and two such varieties are comparable (in the partial order by inclusion) if and
only if that is obvious from writing them in this form. Thus in particular the lattice of all
torsionfree nilpotent centre-by-metabelian varieties is distributive. (The torsionfree
core of 91, n [9 .1
2
, (]  
a p p e a r s  
h e r e  
a s  
9 1 ,
n  
9 1
2  
w h
e n  
e  
<  
3  
a
n
d  
a
s  
(
9
1
,  
n  
9
1
2
)  
v  
_  
,
w
h
e
n

c > 4.) These claims are proved either by adapting the whole argument of Stewart [30]
from the large prime exponent to the torsionfree case, or by imitating the reasoning we
used in the metabelian case to deduce them direct from Stewart's conclusions. (There is
one complication in the latter, namely that Stewart used not the torsionfree t b u t  the
ordinary variety defined by the three laws. Fortunately, the torsion part (if any) of the
rank k + 1 free group of that variety must be finite, and it is more than good enough for
the applicability of Higman's theorem that, up to any given class, only finitely many
primes have to be excluded.)

One might ponder whether this could be taken any further: is A
I D
( 9 1 ,  n  [ 9 1
2  ,  ] )

also finite,for cache? Let this be our FOURTH OPEN PROBLEM. If it worked out positively,
it would be the last step in this direction, for of course 91
6 <  [ 9 1
2
( i ]  a n d  A
c )
( 9 1
6
)  i s

infinite.

4. Counting slowly to five

It is one thing to be able to count that there are precisely 39 torsionfree nilpotent
varieties of class at most 5, and quite another to list them individually. Fortunately,
those which have not been dealt with so far all lie between 91
4 a n d  9 1
5  a n d  s o  f a l l  
i n t o  t h e

scope of small class theory. I have been tempted to elaborate here just how that theory
copes with this task on its own; for it is quite a complicated theory, hard to assimilate
without seeing it at work on specific examples, and I know of no comparable exercise in
print except for Stewart's [30]. On balance, it  seemed more appropriate to take
advantage of what shortcuts offered themselves, though detailed small class theory
remains the backbone of the argument.

In the first instance, identification will be by defining sets of laws, the nilpotent law of
class 5 being always included even if not specifically mentioned. Small class theory is
not capable o f  giving such definitions except in the sense o f  defining torsionfree
varieties: that is, I shall always mean the torsionfree core of the varieties defined by the
given laws, even if I omit to repeat this again and again. With some regret, I have to
leave as our FIFTH OPEN PROBLEM the removal of this weakness from the results of this
section. (The corresponding problem is also open for most of the torsionfree nilpotent
centre-by-metabelian varieties discussed before. In the class 5 case, only the 91, with
O < <  5 and 91
4 n  9 1
2  , 9 1  
n  
9 1
2  
a r e  
a d e q
u a t e
l y  
c o
v e
r e
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e
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e r  
s
e
n
s
e
;

Chau [4], [5] has dealt with the two varieties generated by the rank 2 and the rank 3 free
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groups of 91, ; and each of the remaining 29 cases appears to require careful individual
consideration.) Other forms of identification may be more revealing in some sense,
though they are not available for each of the 39: 1 shall return to this at the end of the
section.

From what has already been said about /V(91
5
), w e  k n o w  t h a t  
9 1 ,  h a s  
p r e c i s e l y  
fi v e

maximal (proper) torsionfree subvarieties, and the 30 torsionfree varieties strictly
between 91
4 a n d  
9 1
5  
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3
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5
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set. It is therefore only necessary to give defining sets of laws for the five maximals : in
fact, a single defining law will be found for each of the five, and then each of the 30 will
be defined (as torsionfree variety) by a proper nonempty subset of the set of these five
laws (the nilpotent law of class 5 being always understood as an extra). The discussion
concerning our third open problem has already highlighted the importance of the
maximal torsionfree subvarieties of 91
5
, s o  i t  m a y  
b e  
c o n v e n i e n t  
a l s o  
i n  
t h a t  
c o n t e
x t  
t h a
t

attention is focussed on them once again.
For many reasons, I would have preferred a different approach: to pick out the join-

irreducible subvarieties of 91
5
. E a c h  
v a r i e t y  
w e  
a r e  
i n t e r e s
t e d  
i n  
h e r
e  
i s  
u n i q
u e l y  
e x p
r e s
-

sible as an irredundant join of some of these. Join is the same in T as in F, and it is easy
to see that if a nilpotent variety is join-irreducible in T it is also join-irreducible in F.
Other classes of varieties have usually been described in terms of join-irreducibles.
We already know the centre-by-metabelian join-irreducibles : that leaves only three
more to identify, and one of those is the torsionfree core of 91
(
4
3)
. ( O f  c o u r s e ,  i f  
w e

have finite defining sets of laws for two varieties, we have no way of deriving from these
a finite defining set for their join: that would have been a drawback of this approach.)
Unfortunately, I have not been able to pin down the other two without going through
the whole procedure here: it  would be very interesting to have direct identifications
for them, in more familiar terms than what can be extracted from the following.

To set the scene for detailed small class theory, a series of further definitions are
required. Let A be the algebra of polynomials with rational coefficients in several
noneommuting variables x, y, • • • : the number o f  the variables is to be finite but
unspecified for the time being. For each nonnegative integer e, let A o denote the
subspace of homogeneous polynomials of (total) degree e in A. The obvious basis of A
econsists of the monomials of degree e. The symmetric group S
e o f  d e g r e e  e  h a s  
a  n a t u r a l
action on this basis (permuting monomials by permuting the order of their factors), and
hence on the whole of A. I t  is a simple combinatorial exercise to write down the
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orthogonality relations enables one, at least for small values o f  e, to deduce the
structure of A, as S
e
- m o d u l e .  
F o r  
i n s t a n
c e ,  
w h
e n  
A  
h a
s  
j u
s t  
3  
v a r
i a b
l e s
,  
o
n
e  
fi
n
d
s  
t
h
a
t
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Next, regard A a Lie algebra with respect to the usual bracket product defined by
[a,b]=  ab — ba, and let L be the Lie subalgebra of A generated by r of the variables of
A Put L
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Consider the general linear group Gt(r, Q) acting on L as the group of invertible
homogeneous linear substitutions: each L (n ) is  mapped onto itself by these.
Torsionfree 'small class' theory is based on the fact ([15], Section 3) that the lattice of
Gt(r,Q)-submodules of L
c i s  
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c = 5 each nonzero L(n) is irreducible as ot(r, 0
) - m o d u l e  a n d  
f o r  r  
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the L(n) are nonzero. I t  is therefore natural to label the five maximal torsionfree
subvarieties of 91, by the appropriate partitions so that the verbal subgroup of X
rdetermined by the variety 91(n) should correspond to L(n) in the lattice isomorphism
referred to above. (For e > 5 there are partitions n with L(n) not irreducible: the
matching varieties 91(n) may still be of considerable interest, though in that case they
are not maximal among the torsionfree subvarieties of 91,) Thus the five varieties we
seek will be called 91(21
3
), 9 1 ( 2
2
1 ) ,  9 1 ( 3 1
2
) ,  9 1
( 3 2 ) ,  
a n
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( 4 1 )
.

Only one of these five partitions has more than 3 parts: thus the rank 3 free group
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9 i  
5  
)  
i
s  
p
r
e
c
i
s
e
l
y  
9
1
(
2
1
3
)
,  
a
n
d  
s
o  
m
a
y  
s
i
m
p
l
y  
q
u
o
t
e  
a  
m
u
c
h  
d
i
s
c
u
s
s
e
d  
d
e
f
i
n
i
n
g  
l
a
w

of this variety from Kovacs, Newman and Pentony [17], Levin [18], and Chau [4], [5]:
91(21
3
) i s  
d e
fi n
e d  
b
y  
(
t
h
e  
c
l
a
s
s  
5  
l
a
w  
a
n
d
)  
u
(
2
1
.
3
)  
w
h
i
c
h  
m
a
y  
b
e  
g
i
v
e
n  
a
s

[ z , w , z ; y , x ] [ z , x , z 0 ,
,
, w ]
- i
[ z , y , z ; x , w ]
[ y , w , z ; z , x ] - 1
[ y , x , z ; z , w ]
[ x , w , z ; z , y ]
.

The next shortcut comes from an appeal to the results on torsionfree nilpotent
centre-by-metabelian varieties near the  end o f  the previous section. Since
(91
5 
n  
%
2
)  
v  
9
1
4  
a
n
d  
(
t
.
'
,  
a
r
e  
m
i
n
i
m
a
l  
w
i
t
h  
r
e
s
p
e
c
t  
t
o  
c
o
n
t
a
i
n
i
n
g  
9
1
4
,  
e
a
c
h  
m
u
s
t  
b
e  
t
h
e

meet of four of the five maximal torsionfree subvarieties of 91
5
; a n d  t h e i r  j o i n ,  
t h e

torsionfree core of 91, n NI 2
, ( S i ,  m u s t  
b e  
t h e  
m e e t  
o f  
t h r e e
.  
N o
w  
F
7
( 9
4 )  
i
s  
c e n t
r e -
b y -

metabelian (because F
2
( 9 1
4
)  i s  
m e t a b e l i
a n ) ,  
a n
d  
i f  
w
e  
t a
k e  
r  
—  
2  
w
e  
h
a
v
e

L, =  L(32) L (4 1 ) :  hence we must have that the torsionfree core of 9 1
5
n  [ 9 . 1
2
, ]  i s

91(21
3
) A  
9 4
2
2
1 )  
A  
9
1
( 3
1
2
) .

Consider u(32) = [y,x,x;y,x] and u(41) = b),x,x,x,xl• Read as group commutator,
u(32) is a law of (91 5 n ,
2 1
2
) v  9 1
4
.  I f  
i t  
w e r e  
a l s o  
a  
l a
w  
o f  
t . t
.
' „ ,  
i
t  
w o
u l
d  
b
e  
a  
l
a
w  
o
f  
t h
e i
r

join which is the torsionfree core of 91, n N1.
2
, a n d  t h e r e f o r e  
a  l a w  
o f  F
2
( 9 1
5
) .  
S i n c e

that is not so, u(32) is not a law of S i m i l a r l y ,  u(41) is a law of (F, 4 but not of
(91, n9,1
2
) v  
9 1
4
.  
I t  
f o l
l o
w s  
t
h
a
t  
u
(
3
2
)  
a
n
d  
u
(
4
1
)  
a
r
e  
i
n  
d
i
s
j
o
i
n
t  
i
s
o
l
a
t
e
d  
v
e
r
b
a
l  
s
u
b
g
r
o
u
p
s

of F
2
( 9 1
5
) .  
T
h
e  
c
o
r r
e
s
p
o
n
d
e
n
c
e  
w
h
i
c
h  
u
n
d
e
r
l
i
e
s  
t
h
e  
l
a
t
t
i
c
e  
i
s
o
m
o
r
p
h
i
s
m  
i
s  
g
o
o
d

enough to yield from this that, read as Lie elements, u(32) and u(41) are in disjoint
GL(2, Q)-submodules of L, with r = 2: but then the only pair of disjoint (nonzero)
submodules of L, is L(32), L(41). In fact, u(32)E L(32) and u(41) e L(41). This can be
seen by observing that [y,x,x,x,x] = yx
4  —  4 x y x
3  +  6 x
2
y x
2  —  
4 x
3
y x  
+  4 x
4
y ;  
t h a t  
t h e

five (associative) monomials on the right-hand side form a single S,-orbit; and the span
of that orbit, being the direct sum o f a 1-dimensional trivial (o f type 5) and an
irreducible of type 41, avoids A (32): so u(41) could not lie in L(32). Thus we have
proved that, as torsionfree varieties, 91(32) and 91(41) are defined by u(32) and u(41),
respectively (the class 5 law being, o f course, understood).
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So far the laws came easily, but to find those needed to define 91(31
2
) a n d  9 4 2
2
1 )  w e

must work a little harder. It will be convenient to change our field of coefficients from
the rational field CI to the complex field C, specify that A have just three variables,
x, y, z, and choose L with r 3 .  What we are looking for are nonzero polynomials
u(31
2
) 
a n
d  
u
( 2
2
1 )
,  
w
i
t
h  
i
n
t
e
g
e
r  
c
o
e
f
fi
c
i
e
n
t
s
,  
i
n  
L
(
3  
1
2
)  
a
n
d  
L
(
2
2
1
)
,  
r
e
s
p
e
c
t
i
v
e
l
y
.  
T
h
e

general linear group GL(3, C) acts not only on L but on all of A, and its action on A, is
closely linked up with the action of S. Each A(it) is the sum of all irreducible GL(3, C)
-submodules of one isomorphism type, labelled, of course, also by IC. As one changes
from S ,  action to GL(3, C) action, dimensions and multiplicities swap roles. For
instance, we noted that in this 3-variable case A (2
2
1 ) i s  t h e  d i r e c t  
s u m  o f  
3  
i r r e d u c i b l e  
5 -

dimensional S
5
-
m o d u l e s
:  i t  
i s  
a l s
o  
t h
e  
d i r
e c
t  
s
u
m  
o
f  
5  
i r r
e d
u c
i b l
e  
3 -
d i
m e
n s
i o
n a
l

C)-modules. (This is a special case o f  a well-known theory, much used by
physicists, which originated in the 1901 dissertation [28] of Schur, under whom B. H.
Neumann took his first doctorate in Berlin.) It follows that the irreducible L (2
2
1 ) h a s
dimension 3; similarly, one obtains that L(31
2
) i s  6 - d i m e n s i o n a l ,  
w h i l e  
t h e  
d i m e n s i o n
s

of L(32) and L(41) are 15 and 24, respectively.
It will be useful if we can establish the structure of the GL(3, C)-submodule [L
2
,  L
2
]  o f

L,. By analogy with the fact that [L,, L
i
]  =  L
2  a n d  t h e  
b a s i s  
x ,  
y ,  
z  
o f  
L ,  
g i v e s  
r i s e  
t o

the basis [y,x],[z,x],[z,y]o f  L
2
,  o n e  s e e s  
t h a t  [ L
2
,  L
2
]  
h a s  
a  
b a s i
s  
c o n s i
s t i n g  
o
f  
[ z , x ;
y , x ] ,

[z,y;y,x], and [z,y;z,x]. If the matrix expressing the action of an element g of GL(3, C) on
L, in terms of the given basis issupper triangular, so is the matrix expressing the action
of g on [L
2
,  L
2
]  
i n  
t e r
m s  
o
f  
t
h
e  
g
i v
e
n  
b
a
s
i
s  
o
f  
t
h
a
t
.  
(
I
n
d
e
e
d
,  
i
f  
z
g  
i
s  
a  
s
c
a
l
a
r  
m
u
l
t
i
p
l
e  
o
f  
z

and yg a linear combination of y and z, then [z,y]g is a scalar multiple of [z,y] and [z,x]g
a linear combination of [z,x] and [z,y], so [z,y;z,x]g is a scalar multiple of [z,y;z,x], and
so on.) Moreover, the diagonal entries of the second matrix are obtained from those of
the first on multiplication by the determinant det g (of the first matrix). Since every
element of GL(3, C) is conjugate to an 'upper triangular' element (Jordan normal form),
this information is sufficient to determine that the character of GL(3, C) afforded by
[L,, L2] is the same as the character afforded by D 0  L
i w h e r e  D  i s  
a  1 - d i m e n s i o n a l
module spanned, say, by d, such that dg = (det g)d for every g in GL(3, C). As D L ,  is
clearly irreducible, this implies that D L ,  [ L
2
,  L
2
] .  I n  f a c t ,  
w e  s h a l l  
n e e d  
t o  
s p e c i f y

an isomorphism. The unique 1-dimensional subspaces of L, and [ L
2
, L
2
]  i n v a r i a n t

under the 'upper triangular' subgroup of GL(3, C) were spanned by z and [z,y;z,x],
respectively, so an isomorphism must map d z  to a  nonzero scalar multiple of
[z,y;z,x]; as a (nonzero) scalar multiple of an isomorphism is an isomorphism, we
conclude that there is an isomorphism which maps d z  to [z,y;z,x]. Now we make use
of the elements of GI(3, C) which permute the three variables to deduce that this
isomorphism must map d 0 x to — [z,x;y,x] and d 0 y to — [z,y;y,x].

The purpose of this preparation was to enable us to exploit the well-known fact that
L, 0  L, is the direct sum o f  the 3-dimensional space o f  skew-symmetric tensors
and the 6-dimensional space o f  symmetric tensors, these two being irreducible
GL(3, C)-modules. As [L2, 1,2] 0  L, is isomorphic to D 0  L, 0  L,, this means that
[ L
2
,
1 ,
2
1
0  
L
,  
i
s  
t
h
e  
d
i
r
e
c
t  
s
u
m  
o
f  
t
w
o  
i
r
r
e
d
u
c
i
b
l
e
s
,  
a  
3
-
d
i
m
e
n
s
i
o
n
a
l  
c
o
n
t
a
i
n
i
n
g

[z,y;z,x] 0  y + [z,y;y,x] 0  z and a  6-dimensional containing [z,y;z,x] z .  Now
a ® [ a , b ]  is a homomorphism of [ L
2
, L
2
]  L ,  o n t o  
t h e  
s u b m o d u l e  
L i

of L
5
,  
s
o  
w
e  
c
o
n
c
l
u
d
e  
t
h
a
t  
[
z
,
y
;
z
,
x
;
y
]  
+  
[
z
,
y
;
y
,
x
;
z
]  
a
n
d  
[
z
,
y
;
z
,
x
;
z
]  
g
e
n
e
r
a
t
e  
a
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3-dimensional and a 6-dimensional irreducible submodule of L
5
,  r e s p e c t i v e l y ;  t h a t  
i s ,

unless one or both vanish. Having calculated the dimensions o f  the irreducible
submodules of L
5
,  w e  
k n o w  
t h i s  
m e a
n s  
t h
a t  
t
h
e  
f i
r s
t  
e l
e m
e n
t  
l
i
e
s  
i
n  
L (
2
2
1 )  
a
n
d  
t
h
e

second in L(31
2
). T o  
v e r i f y  
t h a
t  
n e i t
h e r  
e l e
m e
n t  
i
s  
z e
r o
,  
o
n
e  
c o
n v
e r
t s  
t
o  
b
a
s
i
c  
f
o
r
m  
u
s
i
n
g

the Jacobi identity. The result is, in group notation,

u ( 2
2
1 )
=  
[ z
, y
, y
; z
, x
]
[ z
, x
, y
; z
, y
]
- 1
[ z
, y
, z
; y
, x
]
[ y
, x
, z
; z
, y
]
-
1
,

and u(31
2
) 
[ z , x
, z ; z
, y ]  
l
[ z ,
y , z
; z ,
x ] .  
T
h
e  
v
a
r i
e
t i
e
s  
d
e
f
i
n
e
d  
b
y  
u
(
2
2
1
)  
a
n
d  
u
(
3
1
2
)  
a
s

torsionfree varieties, are then 91(2
2
1) a n d  9 1 ( 3 1
2
) ,  
r e s p e c t i v e l
y  
( t h e  
c l a s s  
5  
l a w  
b e i
n g

again understood). This completes the search for defining laws.
It remains to consider further identifications in terms other than explicit defining laws.

Two general results are of use here; each is an interpretation of the fact that the number
of summands in an unrefinable direct decomposition of  L(n) as GL(r, GO-module
is the multiplicity 1(n) discussed in [15], independent of r as long as r  is at least
the number of parts of it, while L(n) =  O for all smaller values of r. The first asserts that
if/3 is a torsionfree variety between 91, _ , and 91,, then the join of 91
c
_ ,  w i t h  t h e  v a r i e t y
generated by the rank r free group F
r
( 1 3 )  o f  $  
i s  j u s t  
t h e  
m e e t  
o f  
1 3  
w i t h  
t h e  
v a r i e
t y

A {9l(it)I n has more than r  parts}

The second is that if 13 = A {9i(n) i t  e HI (note not every 13 is of this form when e > 5),
then the torsionfree core of 91,n V '
)  i s  j u s t

A {91(n) I n I I  and it has at most r parts}

(There is a finer version of this, to cope with all 13 even when e > 5, but to state that
would require finer terminology.) We have already noted that 91(21
3
) i s  g e n e r a t e d  b y
F
3
(
9
1
5
)
,  
a
n
d  
t
h
a
t  
t
h
e  
t
o
r
s
i
o
n
f
r
e
e  
c
o
r
e  
o
f  
9
1
5  
n  
[
1
1
2
M
,  
g
e
n
e
r
a
t
e
d  
b
y  
F
2
(
9
1
5
)
,  
i
s

9r1(21
3
) A  
9 1 (
2
2
1 )  
A  
9 1
( 3
1
2
) .  
T
h
e  
t
o
r
s
i
o
n
f
r
e
e  
c
o
r
e  
o
f  
9
1
(
4
3
)  
(
w
h
i
c
h  
l
i
e
s  
i
n  
9
1
5  
o
n  
a
c
c
o
u
n
t  
o
f

Theorem B o f  Newman [25]) is  91(2
2
1)  A  9 1 ( 3 1
2
)  A  
9 1 ( 3 2 )  
A  
9 1 ( 4 1 ) ,  
w h i l e  
t h a t  
o f

n 91
(
4
2
.
) 
i s  
9
1
(
3
2
)  
A  
9
1
(
4
1
)
.  
U
s
i
n
g  
o
n
e  
m
e
t
h
o
d  
a
f
t
e
r  
a
n
o
t
h
e
r
,  
o
n
e  
o
b
t
a
i
n
s  
t
h
a
t

91(2
2
1) 
A  
9 1
( 3
1
2
)  
i
s  
t
h
e  
t
o
r
s
i
o
n
f
r
e
e  
c
o
r
e  
o
f  
9
1
5  
n  
N
t
2  
,  
0
3
)
,  
a
n
d  
t
h
a
t

91(21
3
) A  
9 1
( 3
2 )  
A  
9
1
(
4
1
)  
i
s  
g
e
n
e
r
a
t
e
d  
b
y  
t
h
e  
r
a
n
k  
3  
f
r
e
e  
g
r
o
u
p  
o
f  
t
h
e  
t
o
r
s
i
o
n
f
r
e
e  
c
o
r
e  
o
f

9 1
5
n  
9
1
(
4
2
)
.  
T
h
e  
r
e
a
d
e
r  
m
a
y  
c
a
r
e  
t
o  
c
o
m
p
l
e
t
e  
t
h
e  
l
i
s
t  
o
b
t
a
i
n
a
b
l
e  
i
n  
t
h
i
s  
w
a
y
;  
I  
s
h
a
l
l

merely add that 91(32) is the torsionfree core of 91
5 n 0 2 1
2
)
( 2 )
,  t h a t  i s ,  
9 1 ( 3 2 )  
i s  
g e n e r a t e d

by the torsionfree groups of  class at most 5 whose 2-generator subgroups are all
metabelian. Two identifications which do not come simply by these methods may also
be noted: 91(21
3
) A  9 4 2
2
1 )  
A  
9 1 ( 3 1
2
)  
A  
9 1 (
3 2 )  
i
s  
n
o
t  
o
n
l
y  
( 9
1
5
n  
%
2
)  
v  
9
1
4  
b
u
t  
a
l
s
o  
t
h
e

torsionfree core of  91
5 n  [ 9 1
2
,  C ,  
w h i l e  
9 1 ( 4
1 )  
i s  
n o
t  
o n
l y  
t h
e  
t o r s
i o n f
r e e  
c
o
r
e  
o
f

n
(
4
2
)  
b
u
t  
a
l
s
o  
t
h
e  
v
a
r
i
e
t
y  
g
e
n
e
r
a
t
e
d  
b
y  
t
h
e  
t
o
r
s
i
o
n
f
r
e
e  
f
o
u
r
t
h  
E
n
g
e
l  
g
r
o
u
p
s  
o
f  
c
l
a
s
s

at most 5.
The end result is that we have, or can generate, at least one such identification for

each o f  the 14 torsionfree varieties strictly between 91
4 a n d  9 1
5  w h o s e  m e e t
decompositions involve either both 91(2
2
1) a n d  9 1 ( 3 1
2
)  o r  
n e i t h e r .  
H o w e v e r ,  
I  
c a n n o
t

envisage any way of reaching the other 16 in such terms.



The Thirty-nine Varieties 1 2 7

5. Applications

There are at least two reasons why detailed knowledge of torsionfree varieties is not
only of intrinsic interest but is capable of powerful application in the context of other
varieties.

The first is that many a variety is the join o f its torsionfree core and another,
significantly smaller variety. For instance, every nilpotent variety is the join o f its
torsionfree core and a finite exponent variety (proved like 2.5 is in Newman [25]).
Another way o f  putting this is that a join-irreducible nilpotent variety is either
torsionfree or of finite exponent. A similar fact is that a join-irreducible metabelian
variety is either torsionfree or of finite exponent or of the form 91,k11 for some prime
power p
k 
( K o
v d c
s  
a
n
d  
N
e
w
m
a
n ,  
s
e
e  
B
r
y
c
e  
[
3
]
)
.  
T
h
i
s  
i
s  
n
o
t  
t
h
e  
p
l
a
c
e  
t
o  
a
t
t
e
m
p
t  
i
t
,  
b
u
t  
a

survey of results of this kind would be an interesting project, and a systematic search for
further theorems could well prove fruitful.

The second is that one can exploit the torsionfree subvarieties of a variety /3 in the
description of its finite exponent subvarieties. In a sense, small class theory already
illustrates this, but I  mean something more direct here. The ideal, but perhaps
misleadingly simple (I don't mean easy) case is that of /3 = M n  91
2
: f o r  p  >  c ,  t h e
classification of the p-power-exponent subvarieties of /3 by Brisley [2] and Weichsel
[31] allows such an interpretation. Let me sketch, rather speculatively, how a more
general application might run. Let /3 < 91, and p > c. It is easy to prove that if 11 <
in /0(13) then /3,n U < ' S
p
n  a m  
P r o g r e s s  
i s  
c o m f o r t
a b l e  
i f  
/ 1  
V
n  
/
1  
i
s  
a  
l a t
t i c
e

homomorphism from A ' (0 ) into A( /3„ n /1): this happens if  and only if  /I n913 is
p-torsionfree (that is, its free groups have no elements of order p) for all U, 113 in /0(13).
By the previous comment, in this case the lattice homomorphism is one-to-one, hence
A
°
(
/
3
)  
i
s  
f
i
n
i
t
e  
a
n
d
,  
b
y  
a  
r
e
s
u
l
t  
p
r
o
v
e
d  
i
n  
S
e
c
t
i
o
n  
2
.  
d
i
s
t
r
i
b
u
t
i
v
e
.  
I
t  
c
a
n  
t
h
e
n  
b
e  
d
e
d
u
c
e
d

from small class theory that the lattice A P
(
B ) o f  a l l  p -
p o w e r - e x p o n e n t  
s u b v a r i e t i
e s  
o f  
/ I

is also distributive. If in addition /I n  It maps A
°
(
3 )  o n t o  A ( O
p
n  1 3 ) ,  
o n e  
s h o u l d

be able to obtain a  fu ll description o f  A P
(
)  f r o m  A ' ( 9 3 ) .  
S u c h  
d e s c r i p t i o n s  
o f

distributive lattices with minimum condition are conveniently given, as has been the
practice in variety theory, in terms of the partially ordered set of the join-irreducible
elements of the lattice. The join-irreducibles of A B )  should be just the varieties of the
form / 3
1
A n  
1 1  
w i t
h  
/
1  
j o i
n -
i r r
e d
u c i
b l e  
i
n  
/
O
(
3
)
,  
a
n
d  
t
h
e
i
r  
p
a
r
t
i
a
l  
o
r
d
e
r  
s
h
o
u
l
d  
b
e  
g
i
v
e
n

by / 3 „k
o i
n  1 1
1  /
3 , /
, ( 2
)
n  
1
1
2  
i
f  
a
n
d  
o
n
l
y  
i
f  
k  
(
1
)  
k
(
2
)  
a
n
d  
/
1
1  
1
1
2
.  
I  
e
x
p
e
c
t  
t
h
a
t  
t
h
i
s

sketch works when /3 is either 91, or any 91,n [s2t b u t  I have not checked all the
details. I t  would be interesting to pin down the conditions under which it works in
general. The reason for including it is to indicate that finite and distributive /0(93) are
not only the most manageable but also the most applicable sets of torsionfree varieties,
and so deserve the special attention directed to  them in  the present paper and
particularly in our open problems.
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