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1. Automorphism Groups of p-Groups

Let p be a prime, P a finite non-cyclic p-gvoup and <D(P) the Frattini subgroup
of P. Then every automorphism 6:x\-+xQ of P restricts to an automorphism
B: x<b(P) i-> (xd)Q>(P) of the factor group P/$(P), and the map 61-+B is a homo-
morphism from the automorphism group Aut P of P to the automorphism group of
P/$(P). When P/O(P) is regarded as a vector space over the field of order p, the
restriction of Aut P to P/<I>(P) is a group of linear transformations of this vector
space. Our main result is to establish that every linear group arises in this way.

THEOREM 1. For each linear group H of finite dimension d, with d ^ 2, over the
field of order p there exists a finite p-group P such that the restriction of Aut P to
P/<D(P) is isomorphic, as linear group, to H.

The authors are indebted to Dr. John Cossey and Dr. Hans Lausch for provoking
this work by the comment that such a result, in conjunction with a recent paper [8]
of Laue, Lausch and Pain, yields that if p and q are distinct primes then there is an
extension of a finite j>-group by a finite g-group which does not lie in the smallest
normal Fitting class of finite soluble groups: this refutes Conjecture 2 of Cossey's
survey [3].

It should be acknowledged that an analogue of the above theorem, where the
restriction of Aut P to the central factor group of P is prescribed as an abstract
(rather than linear) group, was obtained by Heineken and Liebeck [6].

Theorem 1 will be derived in this section from two other results, Theorem 2 and
Theorem 3. Theorem 2 will be proved in §2 and Theorem 3 in §3.

Let K be a field and let A be the free associative K-algebra (with unity) on d
generators x1} x2, ..., xd (d ̂  2). Then A is the direct sum

A = 0 At
i = 0

where At is the homogeneous component of degree i. Now A carries the structure of
a Lie algebra over K under the usual bracket multiplication: [u, v] = uv—vu. Let A
be the Lie subalgebra generated by xlt..., xd. As is well-known, A is actually a free
Lie algebra on xu ...,xd: see Theorem 5.9 of Magnus, Karrass and Solitar [10].
We have

A = e A,

/ = 1

where A; = A n At. Note also that At = Av
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Let Z be the general linear group of degree d over K. Thus Z can be regarded as
the group of X-automorphisms of Av Since A is freely generated by xlt..., xd, the
action of each element of Z can be extended uniquely to an algebra automorphism of
A. Thus Z may be regarded as a group of automorphisms of A. Clearly the A{ and the
A,- admit the action of Z, so may be regarded as fCZ-modules. In fact, as KZ-module,
Ai is isomorphic to the tensor product of i copies of Av

Let G be a finite subgroup of Z, let M be the subgroup of G consisting of the
elements of G with scalar action on Au and write m = \M\. Then, in the present nota-
tion, Theorem 2 of [1] states that for all sufficiently large i the ICG-module
A{ © Ai+l © ... ®Ai+m.l contains a regular ICG-module. The first result needed
for Theorem 1 above is a refinement of this.

THEOREM 2. For all sufficiently large i the KG-module At © A i + 1 © ... © Ai+m.l
contains a regular KG-module.

We shall apply Theorem 2 in the case where K is the field of order p and G = Z.
Here it may be used in conjunction with the fact that the modules At occur as
sections of certain p-groups. An application of this sort has already been useful
elsewhere: see Harris [5]. The second result needed for Theorem 1 above allows us
to exploit the full force of Theorem 2 by establishing that the modules
A,- © ... © A.+n,.! occur as sections of certain p-groups.

Let F be a free group on d generators y1} ...,yd. Define Ft = F and, for
i ^ 1, Fi+l = FiP[Fi, F]. Thus .Ff+1 is the smallest normal subgroup of F contained
in Ft such that FJFi+1 has exponent p and is central in F/Fi+l. It is not difficult to
verify that [Fit Fj] ^ Fi+J for all i,j. Note also that F/Fi+l is a finite p-group with
$(F/Fi+1) = F2/Fi+1. In the above notation, taking K to be the field of order p,
Z may be regarded as the automorphism group of F/F2. Of course, we choose the
actions of Z on A± and F/F2 so that there is a .KZ-module isomorphism
<£: F/F2 -> At with (yj F2)0 = Xj (1 < ; < d).

Suppose Fi+1 ^N < F2 where N is normal in F. Let 6 be an automorphism of
F/N. Then 0 can be "lifted" to an automorphism 9* of F/Fi+l such that N/Fi+1
admits 6* and 6* acts as 6 does on F/N. To prove this note that, since F is free, there
is an endomorphism 0' of F such that yj 6' e (j>y N)6 for all j . Hence f9' e (fN)9 for
a l l / e F. It follows that JV admits 0' and 0' acts as 0 does on F/N. Now Fi+1 is a fully-
invariant subgroup of F. Hence 0' yields an endomorphism 0* of F/Fi+l. Clearly
N/Fi+l admits 0* and 0* acts as 0 does on F/N. Since N < F2, 6* acts as an auto-
morphism on the Frattini factor group of F/Fi+l. Thus 0* is an automorphism.

Let a e Z. Then a may be lifted to an automorphism a* of F/Fi+v It is straight-
forward to verify by induction on i that the action of a* on Ft/Fi+1 depends only
on a and is independent of the choice involved in defining a*. Hence FJFi+1 may be
regarded as a KZ-module. The second result needed for Theorem 1 is the
following.

THEOREM 3. FJFi+1 has a submodule isomorphic to A2 © ... © A,-.

We can now derive Theorem 1. By Theorems 2 and 3 we can choose i so that
i ^ 2 and jP,/Fi+1 contains a regular XZ-module. Write P* = F/Fi+1 and
W = Fi/Fi+l. Thus W contains a regular XZ-module. Let w be a generator for this
regular KZ-module.
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Let H be a subgroup of I and let WH denote the KH-submodule of W generated
by w. Then, for all a 6 I\H, WH does not admit a. Let P = P*/WH. We shall
identify P*/O(P*), P/$(P) and F/F2 in the obvious way.

To show that P has the property described in Theorem 1, let 6 be any
automorphism of P. Then 6 may be lifted to an automorphism 6* of P* such that
WH admits 0* and 0* acts as 6 does on P. Let a be the element of £ obtained by
restriction of 0* to P/<D(P). Then W^ admits a, since it admits 0*. Thus a e # .

Conversely, let fieH and let /?* be an automorphism of P* which acts on
P*/Q>(P*) as p does. Then /?* acts on W as £ does. Thus WH admits £*. Thus fi*
yields an automorphism of P whose restriction to P/<D(P) is equal to /?.

Thus the restriction of Aut P to PI<f>(P) is equal to H, as required.

2. Lie Representations

In this section we prove Theorem 2. But first we make some preliminary
observations about field extensions. Let K be a field, L an extension field of K, and
G a finite group. Let U and F be finite-dimensional KG-modules and let UL and VL

be the LG-modules U ®KL and 7 ® K L , respectively.

LEMMA 1. If UL and VL have a common non-zero direct summand then U and V
have a common non-zero direct summand.

This is result (2.18) of [2].

COROLLARY 1. IfUL is a direct summand of VL then U is a direct summand of V.

Proof. We can write U = W ®UX and V = W © Vx where l ^ and Vt have no
common non-zero direct summand. If UL is a direct summand of VL it follows by
the Krull-Schmidt Theorem that Ut

L is isomorphic to a direct summand of Vt
L.

Hence V^ is zero, by Lemma 1. Hence Ut is zero and U is a direct summand of V.

COROLLARY 2. If VL contains a regular LG-module then V contains a regular
KG-module.

Proof. Since the regular LG-module is injective the hypothesis is equivalent to
the regular LG-module being a direct summand of VL. But the regular LG-module
has the form UL where U is a regular KG-module. Thus the result follows from
Corollary 1.

We now prove Theorem 2 using the notation introduced in §1. In particular, K
is a field and G is a finite group of iC-automorphisms of Ax. To put this last statement
another way, Ax is a XG-module on which G acts faithfully. The associative algebra
A acquires a KG-module structure, as described in §1. M is the subgroup of G consist-
ing of the elements with scalar action on Au and m = \M\.

Suppose L is an extension field of K. Then A ®K L is the free associative
L-algebra generated by xx (g) 1,..., xd ® 1. The homogeneous component of degree i
is At ® L and the Lie subalgebra generated by xt ® 1,..., xd ® 1 is A®L, with A,- ® L
as homogeneous component of degree i. Also, Ax ® L is an LG-module on which G
acts faithfully, with M as the subgroup of G consisting of the elements with scalar
action. The LG-module structure of A ® L defined via algebra automorphisms from
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Ax ® L is identical with the LG-module structure of A ® L derived from the KG-
module structure of A. If (A,-® L) © ... © (Ai+m_1 ®L) contains a regular
LG-module then Corollary 2 shows that Af ©... © Ai+m_1 contains a regular
ICG-module. Thus it is enough to prove Theorem 2 for the field L. Consequently
it is enough to prove Theorem 2 with the additional assumption that K is infinite.
We make this assumption henceforth. It allows us to prove the following lemma.

LEMMA 2. There is an element v of Ax such that v and vtx are linearly independent
for all a e G\M.

Proof Let a e G \ M . Then the eigenspaces of a in Ait of which there are at
most d, are all proper subspaces of Av Since G is finite, the eigenspaces of elements
of G\M form a finite collection of proper subspaces of Av But, since K is infinite,
At is not the set-theoretic union of any finite collection of proper subspaces: this is
easily proved by induction on d. A non-zero element v of Ax which is not in any of
the above eigenspaces has the required properties.

Now M is a cyclic central subgroup of G. Let a be a generator of M. Then a
acts like a scalar £ on Alt where £ is a primitive wth root of unity in K. Let T be a set
of coset representatives for M in G, where 1 e T.

Let U be a regular ICM-module. Then U = Uo © ... © t//M_x where Ut is a 1-
dimensional KM-module on which a acts as the scalar £l (0 < i < m). Let Uc denote
the ICG-module induced from U. Then UG is a regular ICG-module and we have
UG = U0

G © ... © £/£_!. Now a acts as the scalar £* on Uf. Also Uf contains
an element ut such that {W,T: xe T] is a basis for Ut

G. These two facts serve to
characterise U^ as a KG-module.

If k = i (mod m) where 0 < i < m then a acts like the scalar £' on Ak. The proof
will be completed by showing that, for large enough k, with k = i (mod m), Afc
contains a submodule isomorphic to t/;

G. This will be done by showing that Ak
contains an element u such that {UT: T e T} is linearly independent. It is enough to
find an element u which does not belong to the subspace <MT: xe T\{1}>, because
this implies ux' $ <WT: T e T \ { T ' » for all x' e T.

The result is clear if \T\ = 1, so we assume that \T\ ^ 2 .
Let v be chosen as in Lemma 2, and let w be any element of AL such that v and u>

are linearly independent. Let xu...,xn be the non-identity elements of T. Then for
each j (1 < j < «) there is a vector space decomposition Ax = Xj © Y} where
veXj and yty e y}.

Let k > 3«. Then regarding Ak as the tensor product of k copies of A^ we can
write Ak in the form

(*i © Yt) ® (X, © Yj) ® (Xi © YJ ® (X2 © Y2) ® (Jf2 © Y2)® (X2 © Y2)
... ® (Xn © Yn) ® (Zn © Yn) ® (Xn © YJ ® At ®

Thus Ak is the direct sum of a certain collection of subspaces of the form
Zt ® ... ®Z3n

where each factor Z,- is equal to some Xj or some Yj. Let 5 be the sum of those
subspaces in the collection with at most one factor Zt belonging to {Y1}..., Yn} and
let C be the sum of those subspaces with at least two factors Z,- belonging to
{Yj,..., YJ. Thus Ak = J5© C.
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Consider the element u of Ak given by the left-normed product [w, v, v,..., v] with
k—\ copies of v. It is easy to verify that

*-i (k-l\
s=0\ S )

wv

Since v and w are linearly independent they are part of a free generating set for A.
Hence u is a non-zero element of Ak. Clearly u belongs to B. Thus u does not
belong to C. But, for al l ; ,

*-* (k-\
h = E

s = 0 \ S

In each summand at least two of the factors vxj occur in positions where we have
used Xj © Yj in place of yl^ Thus, for all j , uxi e C. Hence u$ <WT1} ..., MTB>. This
completes the proof of Theorem 2.

By additional argument it is possible to deduce the following more general result.
Let t be a positive integer. Then for all sufficiently large i the KC-module
Ai® ... © Af+jn-j contains a free KG-module of rank t. We now sketch an alter-
native proof of this generalisation.

Of the two proofs, the one we have already described is more attractive in the
special case of Theorem 2 and gives a better lower bound for i. But the proof which
follows has the advantage of establishing the generalisation directly.

Let n= [G:M]-1 and write B = An © ... ©y4n+m_1. Then Theorem 2 of [1]
shows that B contains a regular KG-module. Hence, for any finite-dimensional
.KG-module U, B ® 1/ contains a free KG-module of rank equal to the dimension
of U: this follows from Lemma 60.2(i) of Dornhoff [4] because free KG-modules
are induced from the identity subgroup.

For each positive integer i there is a KG-homomorphism from Af (g) A1 to
A i + 1 in which u®v\-*[u, v] for all we A,-, veAv This homomorphism is easily
seen to be onto: for example, by use of Exercise 5.4.18 of [10]. Hence for any
positive integer j there exists a KG-homomorphism from At ® Aj onto Ai+J. Hence
there exists a KG-homomorphism i/̂  from B® At onto A n + i © . . . ©A n + m _ 1 + i.
Using Witt's formula (Theorem 5.11 of [10]) for the dimension Xr of Ar, the
dimension dt of the kernel of ^4 may be calculated. (In fact all that is needed is an
estimate for dt based on the estimate

— dr~drl2 <Xr< —dr+dr/2

r r

for Xr) Now, by the remarks above, B ® A{ contains a free KG-module of rank Xt.
It may be verified that, for all large enough i, A; ^ (dt + l)t. Hence B (x) At contains
a free KG-module of rank / which has zero intersection with the kernel of t/̂ . It follows
that An+(- © ... © An+m_1 + l contains a free KG-module of rank t.

3. The Modules

In this section we shall prove Theorem 3 by determining the structure of the K 2-
modules F{/Fi+l: here K is the field of order p. What we need is essentially
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contained in the literature, but unfortunately not in a very convenient form.
Skopin's papers [11] and [12] cover the case where p is odd. Lazard [9] treats the
general case but omits some of the details, especially in the case p = 2. Koch [7] also
treats the general case but seems to be partly in error: see below. We have considered
it most satisfactory to run through the arguments again in broad terms, adding some
details which are not readily accessible in the above papers.

Let F be the power series ring in non-commuting variables zuz2, ...,zd. Then, by
means of the Magnus embedding, F may be regarded as a subgroup of the group of
units of T, where ys = 1+Zj (1 < j < d): see §5.5 of [10].

Let D be the ideal of T consisting of those elements with constant term divisible
by p . Then, as proved in [7] (and also, implicitly, in [9]),

F. =

for all i. (The proof of this shows incidentally that

where yr F is the rth term of the lower central series of F.) It follows easily that there
is a group embedding of FJFi+1 into Dl/Di+1 given by

for all / , e Ft.
Using the notation introduced before in which A refers to the free ^-generator

associative JC-algebra, there is an obvious isomorphism
Dl/Dt+1 *iA0®Al@...®Al.

Hence for each i we obtain a group embedding

fi- Fi/Fi+l-+A0@Ai@...®Ai.
Detailed information concerning the embeddings $; is more easily stated in terms

of the associated group homomorphisms
<£;: F{, -» A0 e At e . . . e A(.

For the case of p odd calculations show

fip<t>i+i=fih for all flsFh

and [/i,/itti+i = [/i0i,/i0i] for all f^F

These are given on p. 139 of [9]. For p = 2 the only difference is that the condition
/ i 2 <t>2 — / i $i f° r au< / i e -Fi must be replaced by

i<M2 for all f^Fv

These conditions give an inductive description of the homomorphisms $,-. For all
a e E an easy induction on i shows that the homomorphisms

satisfy a"1 $,-a = 4>t. Thus the <j>i are XS-module embeddings.
For the case of p odd the image of $f is easily calculated to be Ax © ... ©A,-, as
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remarked by Skopin and Lazard. Thus

as Xl-module.
For the case of p = 2 the calculation is slightly more complicated. The image of

0X is At. The image E of $2 satisfies

E-\-A2 = A1 ®A2 and EnA2 = A2,

so E is an extension of A2 by Aj. For i > 3 the image of $t is E © A3 © ... © A,-. Thus
Fj/Fi+l is, in all cases, an extension of A2 © ... © A; by Ax. This completes the
proof of Theorem 3.

Koch's statement in [7] that, for all p, F , /F i + 1 is canonically isomorphic to
Al © A2 © ... © Ai seems to be false because direct calculation shows that when
p = 2 and d = 3 the extension E referred to above does not split.
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