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A note on generalized characters
R.M. Bryant and L.G. Kovacs

Let a be a generalized character of a (not necessarily finite)

group G over an arbitrary field, and n a positive integer.

It is shown that the function a defined by a (g) = a[gn)

is also a generalized character of G . An application confirms

a conjecture of Robert Higgins and David Ballew: if G is

finite and k is also a positive integer, the k-th power of

the number of n-th roots of g , summed over all g in G , is

divisible by the order of G .

1.

The representations considered here will all be finite-dimensional

linear representations of groups (which may be infinite) over some field

K . A character will be the character of such a representation and a

generalized character the difference of two characters.

If a is a generalized character of a group G and n a positive

integer, a function a can be defined by

«(fl)<*> = a[gn)

for all g d G . If G is finite, a second function a, •. can be defined

by

Kn> htG

h =g

where a, Ag) = 0 if g has no w-th root in G . We prove
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THEOREM. If a is a generalized character of a group G and n is

a positive integer then a is also a generalized character of G . If

K is the complex field and G is finite then a, > is also a generalized

character of G .

In the case where K has characteristic zero, the first part of the

theorem is an almost immediate consequence of a well-known formula of

Frobenius connecting characters of the general linear group and of the

symmetric group (VI (2.3) of [7]), and it may well have teen known to

Frobenius or his contemporaries. Again, much more general results can

probably be found in the context of K-theory. However, the theorem in its

present elementary form seems interesting enough to warrant explicit

statement, and, as far as we know, has not been recorded before.

The second part of the theorem follows from the first, when G is

finite and K is the complex field. (One can find examples to show that

these conditions cannot be relaxed completely.) The inner product <a, 3>

of class functions a and 3 is defined as usual by

gtG

Thus the class function a is a generalized character of G if and only

if <a, 3> is integral for every generalized character 3 of G . If a

and B are generalized characters, one checks easily that

<<x(n ), B> = <a, 3 ( w ) > •

Since 3 is a generalized character of G , by the first part of the

theorem, a, •. is also a generalized character of G , and this

establishes the second part.

If p is the trivial character of a finite group G , then P(n)(#)

is the number of n-th roots of g in G . By the theorem, p, , , and

consequently any power [p, -A , is a generalized character of G (over

the complex field). This verifies the conjecture in [3D which states in

effect that \ (P( \) > P/ is an integer.



Generalized characters 267

2.

To prove the first part of the theorem it is sufficient to consider

the case where a is a faithful character of G . Therefore, since a

generalized character remains a generalized character upon restriction, we

may take G to be the whole general linear group, on some

finite-dimensional vector space V , and a the trace function on G . In

this section, G, V and a have these meanings and n is a positive

integer. S will denote the symmetric group on {l, ... , n} .

Firstly we note that K is a splitting field for S and that every

character of 5 is integer-valued: it is well-known that the rationals

form a splitting-field for S (§129 of [5]), and so, by Corollary 83-7 of

[2] for example, every prime field is a splitting field for S .

Secondly, every irreducible K.{GxS )-module is the outer tensor product

(p. 315 of [2]) of an irreducible KG-modnle and an irreducible

KS -module. This is because Corollary 51-13 of [2] holds, without any

finiteness condition on the groups, for any field which is a splitting

field for at least one of the groups. The proof in [2] may be adapted to

this case. It follows that if t, is an irreducible character of G * S

then there are characters n, of G and £ of 5 such that, for all

g € G , h (. Sn , we have T,{gh) = r\{g)Z,W •

Let W be the n-fold tensor power of V , and for v , ..., v € V ,

g i G , and h € S , define

and

fv, ® ... ® v 1 h = vK 1 nJ

This extends to a definition of W as a K[GX£ }-module (as in §67 of

[2]), affording a representation of G * 5 with character C, , say. If

we choose a basis for V and a corresponding basis for W an easy
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c a l c u l a t i o n s h o w s t h a t , f o r g i G , h ( . S ,

(1) C(*ft) = « ( ^ ( 1 ) . . . a[gn)Hn)

where h{i) is the number of cycles of h of length i . On the other

hand t, = EC. is a finite sum of irreducible characters of G x S

Thus, by the remark above, there are characters r\. of G and £. of S

such that

(2) c(07i) = Zr\Ag)ZAh) .
2* I*

If in (l) and (2) we take h to be a cycle of order n , we find

As remarked above, the C-(^) are integers, and so Ot is a generalized

character of G .

If in (l) and (2) an element g of G is fixed, there results an

expression for a class function of S : this is the basis of one method

of determining the irreducible characters of S (VI, §3 of [/]). By

suitable choice of g one obtains generalized characters of S . In

particular, if K is the field of the rationals, and g is taken to be a

permutation matrix, one gets the generalized characters of Theorem 5-1 of

141, obtained there in a rather different way.

REMARK (added in proof, 11 June 1971). Dr BaI lew has informed us that

he and Mr Higgins jointly, and Professor Richard Brauer independently, have

also confirmed the conjecture of [3J.
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