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1. Introduction. Let G be a finite group of odd order with an automor-

phism β of order 2. (We use without further reference the fact, established by

W. Feit and J. G. Thompson, that all groups of odd order are soluble.) Let

GQ denote the subgroup of G formed by the elements fixed under θ. It is an

elementary result that if GQ = 1 then G is abelian. But if we merely postulate

that GQ be cyclic, the structure of G may be considerably more complicated—

indeed G may have arbitrarily large soluble length. E.g. let p be an odd prime

and let t denote the largest odd divisor of p - 1 . Let G be the group formed

by the matrices A - ί u ^a *_ , J of determinant 1, where a, b, c> d, u, v

lie in the ring of residue classes (mod pk+1) and uv = u* = 1 (mod p). Let θ be

the contragradient automorphism A-^iA'1)1. Then GQ is cyclic of order pk.

G itself has order pzkt and soluble length m or m + 1 , where m is the least

integer such that 2m>& + l. The Fitting subgroup of G is a i>-group of order

pzk> exponent pk, and class k.

The theorem proved in this note deals with the case where GQ is nilpotent.

It belongs to the same circle of ideas as the recent results of J. G. Thompson

[5], though it is much more special. Let F(H) denote the Fitting subgroup of

a group H and 1=*F*(H)<> Fi{H)<> the ascending Fitting series of H, de-

fined inductively by Fi+ι(H)/Fi(H) = F(G/Fi(H)).

Theorem Let G be a group of odd order and β an automorphism of G of

order 2 such that Go is nilpotent. Suppose either (i) G = F2(G) or (ii) the

Sylow subgroups of GQ are regular. Then G/F(G) is contained in the variety

V generated by GQ together with the cyclic subgroups of G/FiG).

The following particular case may serve as an illustration of the Theorem:
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if G is a group of odd order having an automorphism of order 2 with abelian

fixed point group, then G' is nilpotent. The example cited above shows that,

even in this case, GlF(G) need not belong to the variety generated by Gθ.

Conditions (i), (ii) in the Theorem are not superfluous, i.e. the nilpotency

of GQ does not imply that G = F2(G). To see this, let Γ be the group, of order

2.37.7, formed by the transformations x->ax* + b of the field K=GF($), where

a runs over the 7-th roots of unity in K, a over the automorphisms of K and

b over all the elements of K. Let G be the subgroup of Γ of index 2 and θ the

automorphism X-» T~XXT of G, where T is the transformation x->x27. Then

GQ is a (non-regular) 3-group whereas F2{G) is a subgroup of G of index 3.

On the other hand, the nilpotency of GΘ implies, by the results of Thompson

[5], that G'<Fz{G) and thus that G=F*(G). J. N. Ward has proved [6] that,

in fact, the nilpotency of GQ implies G = Fz(G).

We mention in conclusion another unpublished result of Ward dealing with

the derived length of G/F{G) : if Gθ is nilpotent and (GθV
n) = l, then G{n) is

nilpotent. The point of Ward's result is that it deals with the case where

G/F(G) is not necessarily nilpotent.

2. Notation. Our general notation is standard and only the following points

need to be mentioned. M<,N (M<±N) means that M is a subgroup (normal

subgroup) of the group N. M<N (M<N) means that Mis a subgroup (normal

subgroup) of N distinct from N. If L<±M<N, MIL is called a factor of N.

Throughout the paper, G denotes a group of odd order and θ an automor-

phism of G of order <2 such that GQ is nilpotent. Γ denotes the splitting ex-

tension of G by θ. V denotes the variety generated by GΘ together with the

cyclic subgroups of G/F{G) note that every group in V is nilpotent. If H is

a group, H/Y(H) denotes the largest factor group of H belonging to V. As is

well known, Y(K)<V(H) if K<H, \(H/N) = Y(H)N/Nit N^H, and V(HxK)

= \(H)x\(K).

A subgroup H of G is called a ^-subgroup if H = Hθ. A factor H/K of G

is called a 0-factor if H, K are ^-subgroups. The automorphism β acts in a

natural way as an automorphism of order <2 on each θ-ίactor H/K. The sub-

group formed by those elements of H/K which are fixed under β is denoted by

(H/K)*.

LEMMA 1. Let H/K be a d-factor of G and xK an element of H/K such
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that (xK)θ = (xKY (e= ± 1). Then xK contains an element y such that jyθ = y\

Proof. The mapping #-»(«ε)θ is a permutation of order <2 of the set xK

of odd order take y as any of the elements fixed under this permutation.

COROLLARY. (H/K)Q = HQK/K; thus (H/K)Q is isomorphic to a factor of Gθ.

3. The present section leads up to the proof of the Theorem in Section 4.

We derive some properties of the Fitting series of G under the following as-

sumptions :

(3.1) G/F{G)$V;

(3.2) if K is a 0-factor of G different from G, then K/F(K) <ΞΞ V.

Set F=F(G), Fi = Fi(G), and Φ = Φ(G), the Frattini subgroup of G.

LEMMA 2. F is the unique minimal normal subgroup of Γ. F is its own

centralizer CAF) in Γ.

Proof. Suppose F(Γ) * F. Then | F ( Γ ) : F | = 2 and the Sylow 2-subgroup

of F(Γ) (of order 2) is normal in /'. Thus Γ = gp{θ}xG and so G = GΘ, con-

trary to (3.1). Hence F(Γ) = F. As Γ is soluble, a result of H. Fitting [2]

gives that

(3.3) C Γ (F)=Cr(F(Γ))<F.

Let Mi, M2 be minimal normal subgroups of Γ. Then Mi^FiD^G. By

(3.2), V(G/Mi) is nilpotent. Since G/Λfi Π M2 is isomorphic to a subgroup of

G/MιXG/M2, V(G/MiΠM2) is also nilpotent; hence, by (3.1), MiΠM 2 >l and

so Mi = M2. It follows that MΊ = M2 = M (say) is the unique minimal subgroup

of Γ. As Γ is soluble, M is an elementary abelian ^-group for some prime p.

By a result of W. Gaschutz [3], F(GlΦ) = F/0. Since V(G)*F (by (3.1)),

also Ύ(G/Φ)ίF(G/Φ) and therefore Φ = 1 (by (3.2)). As Φ(F)<Φ, F is a direct

product of elementary abelian groups. Since Λf is the unique minimal normal

subgroup of Γ, F is in fact an elementary abelian ^-group.

Consider H/M=F(G/M). If P/M is the Sylow -subgroup of HIM, then P

is a normal ^-subgroup of G: hence P<F. But clearly F < P, so that F=P.

Since V(G)<# (by (3.2)) and V ( G ) ί F (by (3.1)), we have

(3.4) F<H.

Now F is a normal, elementary abelian Sylow subgroup of H. Therefore
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F is a completely reducible (H/F)-module. It follows that F=MxN with

N<H. Since HIM is nilpotent, Hi Facts trivially on N. As F is abelian, we de-

duce that N<Z(H). It Z(H)>1, then M<Z(H) and so F=MxN<Z(H), con-

trary to (3.3) and (3.4). Thus Z(H) = 1, ΛΓ = 1, F=M, which proves the lemma.

Restating the lemma in module terminology, we have

COROLLARY 1. F is an elementary abelian p-group for some prime p. F is

a faithful, irreducible (Γ/F)-module.

COROLLARY 2. FΘ>1.

Proof. Suppose FΘ = 1. Then θ must invert all the elements of F. Since

F is a faithful (Γ/F)-module, it follows that ΘF(ΞZ(Γ/F) and so (G/F)* = G/F.

By the Corollary to Lemma 1, this implies that G/FeV, contrary to (3.1).

COROLLARY 3. If x is a pf-element of Gθ (i.e. an element ofGQ of order prime

to p), then Or(#)>Fe>l.

Proof. The inclusion CF(X)>FQ follows directly from the nilpotency of Gθ.

LEMMA 3. Let K/F be a θ-subgroup of GIF distinct from GIF. Suppose

there exists a normal θ-subgroup HlF of GIF such that Y(K)<H < K. Then

Proof Since K = K°<G, Y(K)<F(K) by (3.2). Hence Y(K)<F(K)ΠH.

Since H<K and F(K) ΓΊ H<K, we have F(K) Π H<H and so F(K) ΠH<F(H).

On the other hand, since # < G , F(H)^F. It follows that V(K)<F(K) Π H<F

and thus that Y(K/F) = 1.

COROLLARY. If H/F is a proper normal θ-subgroup of GIF, then Y(H/F) = 1.

LEMMA 4. F2/F is the unique minimal normal subgroup of Γ/F. GIF2 has

prime order r and F2IF is an elementary abelian qgroup for some prime q^p

or r. Z{GIF) = 1.

Proof. By the last Corollary, every proper normal ^-subgroup of GIF is

nilpotent. Hence either F2IF is the unique maximal such subgroup or Fi - G.

In the former case, F2/G1 is the unique maximal ^-subgroup of GIG1 it follows

readily that G/F2 has prime order, say r, and that G/F = gp{ξ, F?JF}, where ξ

has order r*>r and £θ = ξ*1.

Case 1: Z(G/F) = 1 . Evidently F2<G. Let RjF be a Sylow r-subgroup of



INVOLUTORY AUTOMORPHISMS OF GROUPS OF ODD ORDER 117

GIF which contains ξ. If |/?/F|>r, then (R/F) Π (F 2/F)>1 and so 1<Z(R/F)

Π (Fz/F)<Z(G/F), contrary to assumption. Thus jfe = 1 and F2/F is an r'-group.

Let Γ/F be a minimal normal subgroup of Γ/F contained in F2/F. T/F is an

elementary abelian g-group for some prime q. Since F2/F is an r'-group, q*r.

Since F-F(G), q*p. It remains only to prove that T=F2.

Suppose T<F2. Set K = gp{ξ, T/F}. Since ξ has order r, K/F<G/F and

since £θ = ξ±x, K/F is a 0-subgroup of GIF. By Lemma 3, K/F is nilpotent. In

particular, ξ centralizes T/F. Then, since T/F<Z(F2/F), we have T/F<Z(G/F),

contrary to the assumption that Z(G/F) = 1. Thus T=F2 as required.

2: Z(GJF)>1. We have to prove that this assumption leads to a

contradiction. Choose C<ΞZ(G/F) such that Cθ = C ± 1 Φl. By Lemma 1, ζ=zF,

where zQ = z±ι. Since gp{C)Γ/F, CF(z) is a normal subroup of Γ contained in

F. By Lemma 2, C*U) = 1. Then, by Corollary 3 to Lemma 2, z° = 2"1.

Let F-Θ denote the group formed by the elements of F inverted by θ then

F = F Θ X F - Θ . If ΛreF ± θΠ(F ± θ ) 0 , then x±*~ι = (xz~Ύ = U 9 Γ = x±z, so that * e

CMz2) = l ; hence F ± θ Π ( F ± θ ) 2 = 1. It follows that | F ± Θ | 2 = | F ± θ x ( F ± θ ) 2 | < | F | .

Therefore, since F=*FQxF-Q, | F Θ | = | F - Θ | = | F | 1 / 2 and F - F θ x (F θ ) 2 .

Let ί be a ^'-element of Go. By Corollary 3 to Lemma 2, FΘ^CH U ) . Then

(FQ)z<CF(t)z = CAtz) = CFίt), since ZFEΞZ(G/F). Hence F= FQx (Fθ)
z<CAt)

and so, by Lemma 2, ί = 1. Thus Go is a ^-group. Since FjF is a ί'-group,

(F2/F)θ = l. Thus θ inverts all elements of F2IF and F2IF is abelian. If G/F

were a //-group, the same argument would prove GIF abelian, contrary to

(3.1). Hence F 2 <G and r=p. Also, since F2IF is a ί'-group, ξ has order p.

Set Q = F2/F, S = Z(G/F), T=Φ(S). Clearly, ξ does not centralize Q. On

the other hand, the argument used in Case 1 shows that ξ centralizes every

proper subgroup of Q which is normal in Γ/F. Thus S is the unique maximal

such subgroup. It follows that Q is a #-group for some prime q\ *p). Also,

since Q/Φ(Q) is a completely reducible (Γ/F2) -module, it is in fact an irreduci-

ble module and thus Φ(Q) = S. Since an automorphism of Q which leaves the

elements of Q/Φ(Q) fixed has #-power order, ξ does not centralize Q/S.

Now, since Q is abelian, the mapping xS-+xqT(xeQ) is a (Γ/F2)-module

epimorphism from Q/S to S/T. Since Q/S is irreducible and S/Γ>1, Q/S and

S/T are isomorphic modules. Since ξ does not centralize Q/S, it does not
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centralize SIT. This is a contradiction because S=*Z(G/F). The proof is now

complete.

4. We are now in a position to prove the Theorem. Let G be a counter-

example of least order. Using the Corollary to Lemma 1, we see easily that G

satisfies (3.1) and (3.2). Thus the conclusions of all the lemmas in Section 3

hold. In particular, G/F = gp{ξ, F2/F}, where ξr = 1 and £θ = ξ±1.

By Corollary 1 to Lemma 2, F provides a faithful, irreducible representation,

say /, of Γ/'F over the prime field GFip). Qua representation over the algebraic

closure, k, of GFip), f splits into a direct sum of (absolutely) irreducible re-

presentations (cf Curtis and Reiner [1], § 70). Let V be a representation module

(over k) corresponding to one of these irreducible parts. We use the customary

(additive) module notation in F, writing scalars on the left, and group elements

on the right, of vectors. If x e Γ/F, Vx denotes the set of vectors fixed by x.

Since the absolutely irreducible parts of / are all algebraically conjugate

(Curtis and Reiner I.e.), they all have the same kernel. Thus

(4.1) V is a faithful, irreducible (Γ/F)-module.

Using also Corollaries 2 and 3 of Lemma 2, we get

(4.2) F Θ > 0 ;

(4.3) if x is a ^'-element of (G/F)Q, then VΘ<VX.

Case 1: V is a reducible (G/F)-module. Let W be an irreducible (G/F)

submodule of V, so tbatlθ<W<V. Then Wβ is also a (G/F)-submodule of

V; hence FPΠ Wβ and W+ Wβ are (Γ/F)-submodules and so V= Wθ Wβ. Let

j c b e a ^'-element of (G/F)Q. If WΪΞ W, then w(l + 0 ) e VQ and so, by (4.3),

w(l + θ) =w(l + θ)x. Hence w(χ-l) = -wθ(x-l)= -w(x-l)de WΠ WΘ^O,

which shows that w e Vx and wθ ̂  Vx. Thus VX=V and so, by (4.1), x=l.

This proves that (G/F)θ is a ^-group. Hence (G/F)B Π (F2/F) = 1. But (G/F)θ

>1, for otherwise G/F would be abelian, contrary to (3.1). It follows that

r = j£> and ξθ = f.

Now G>F2, so that hypothesis (ii) of the Theorem holds. Hence Vθ(? - l)^"1

= 0. By the argument used above (with (f-1)^""1 in place of ( # - D ) , we de-

duce that V(ξ -lΫ'1 = 0. But this is contrary to Theorem B of Hall and

Higman [4].
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Case 2 : V is an irreducible (G/F)-module. Let U be an irreducible (F2/F)

submodule of V. Then U is a one-dimensional subspace, spanned by the vector

u, say; also, wη^X(-η)u for y^F2/Ft where X is a character of F2/F. Set

Ui = uΓ\ Ui = m~i. Since urη = w / Γ f = £(/')«/, K is an (F2/F)-submodule

with corresponding character &(??) = χ(v

χt). Then £/0+ + Ur-i is a (G/F)-

submodule, so that £/0 + + ZΛ -i = V. Therefore, since V is a faithful module,

X is not the trivial character 1.

We prove next that & , . . . , 7r-i are all different. If not, then Ji = Xj

(i¥ j) and this gives X(ηv"v) = 1 for all η e F2/F. Now the kernel of the endo-

morphism v*VV~V of F2/F is CF2/F(¥~J') = ZiG/F) = 1. Therefore the image of

this endomorphism is the whole of F2/F and so our equations give X = 1, a

contradiction. This proves the assertion. It follows that Z7o, - . . , Ur-\ are

the only one-dimensional (F2/F)-submodules of V and that F = £7OΘ J7ΊΘ θ

Since (uiO)*q = Xi(rf){uie)> β permutes the Z7*. Since the number, r, of the

Ui is odd,' θ leaves at least one Ui invariant. We may suppose Uθ = U.

Since Uaffords a 1-dimensional representation of gp{θ, F2IF) and F2IF is not

contained in the kernel of this representation, the derived group of gp{θ, F2/F)

is a proper subgroup of F2/F and so (F2/F)Θ>1. Let l * C e (F2/F)Q. If ξ° = ξ,

then f, C are elements of coprime order in the nilpotent group (G/F)Q and so

£C = Cf. But this implies that CeZ(G/F), contrary to Lemma 4. Therefore

£θ = £~\ and consequently £7*0 = Z7-; for every ί.

The argument used in Case 1 shows that w e F^ whenever Z7, 0# f/, . Hence

(4.4) M/€=F? for l < / < r - l .

Since Ui = uξ~\ this gives

(4.5) wC"* = w for l < * ' < r - l .

Now, since η-^yΓ'1 is an automorphism of F2/F and 1 = C^"1 = ζ ( 1 + * + " + * r 1)(*-1))

we have ζi+*+-+*'-1 = 1. with (4.5), this gives wC = u. Hence, by (4.4), F^ = V.

Since this is contrary to (4.1), the proof is complete.
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