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Cross varieties of groups 

BY L. G. Kovkos AND M. F. NEWMAN 

The Australian National University 

(Communicated by B. H. Neumann, F.R.S.-Received 17 September 1965) 

One of the fundamental problems in the theory of varieties of groups is to decide whether 
the laws (identical relations) of each group admit a finite basis (in the sense that they are all 
consequences of a finite set of laws). Oates & Powell recently proved (I964) that the answer 
is affirmative in the case of finite groups. We present a considerably shortened proof of their 
result; with a little additional reasoning, this in fact yields a slight generalization of the 
Oates-Powell theorem. 

1. Oates & Powell (I964) proved that a variety of groups is a Cross variety if 
and only if it can be generated by a finite group. This paper grew out of an analysis 
of their argument. The result here is the following: 

THEOREM. Let e, m, c be positive integers, and let E [or, in full, E(e, m, c)] be the class 
of groups G such that 

(i) the exponent of G divides e, 
(ii) every chief factor of G is of order at most m, and 
(iii) every nilpotent factor of G is of class at most c. 

This class ( is a Cross variety: that is, 

(a) every finitely generated group in E is finite, 
(b) ( contains only finitely many (isomorphism classes of) critical groups, and 
(c) X is a variety whose laws are finitely based. 
This yields a generalization of theorem 3 of Oates & Powell (I964). 

COROLLARY. A variety generated by a class X of groups is a Cross variety if and only 
if X is contained in some class E(e, m, c). 

To derive the corollary, note that every Cross variety can be generated by a 
finite group (from theorem 1 in Higman I960) and each finite group is contained in 
some class E (e, m, c), while on the other hand every subvariety of a Cross variety 
is a Cross variety (theorem 2 in Higman I960). 

The proof of the theorem is so arranged that its first three parts, ?? 2, 3, 4, con- 
stitute a direct proof of the Oates-Powell result (which appears here as (4.5)). 
Part (b) of the theorem is implicit in the proof of theorem 4 in Oates & Powell 
(i 964), and the proof given in ? 3 is a simplified version of what can be found there. 
The main new idea is the use of certain laws which arose in another investigation of 
ours and whose relevant properties are described in (4.3) and (4.4). After extracting 
(b) from Oates & Powell (I964), one of us (L. G. K.) recognized that these laws make 
it possible to complete the proof of the Oates-Powell result by the argument in 

??2 and 4. 
For terminology, the reader is referred to Oates & Powell (i964). There is one 

exception: the use of 'law' for 'identical relation'. 

[ 530 ] 
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We thank Drs Oates and Powell for making a pre-publication manuscript avail- 
able, Professor Hanna Neumann for presenting it in a course of lectures, and 
Professor B. H. Neumann for stimulating conversations. 

2. The following simple remark will be used repeatedly: 

REMARK 2. 1. If H/K is a chief factor of a group C and C is the centralizer of 
H/K in C, then C/C is faithfully represented by automorphisms of H/K: hence, if 

IH/KI < m, then-to be very generous- I/CI < n!. Conversely, if IC/CI < n, then 
either I H/K I < n or H/K is an elementary Abelian group on at most n generators; 
thus, if C is a group of exponent dividing e, then I C/Cl < n implies that IH/K I < en. 

Proof of (a). 
Let C be a finitely generated group in W(e, m, c); let F be the intersection of the 

centralizers of the chief factors of C, and K the intersection of all the normal 
subgroups of finite index in G. By (ii) and (2.1), K < F. Being a finitely generated 
group, G has only finitely many normal subgroups of index at most m! (see, for 
example, lemma 3-4 of Neumann I955); hence, by (2.1), iC/Fl is finite. Thus 
Schreier's theorem (see, for example, M. Hall 1959, p. 97, corollary 7-2- 1) implies 
that F is finitely generated. Let N be a normal subgroup of finite index in G. Con- 
sider a chief series of the finite group G/F n N through F/F n N: all the chief factors 
which lie in F/F n) N are central in F/F n) N, so F/F n) N is nilpotent. Now F/F n N 
can be generated by at most as many elements as F; by (iii), it has class at most c; 
by (i), its exponent divides e: hence there is a bound on the order of F/F r) N 
which is independent of N. Thus there is a bound on the orders of all finite factor 
groups of C; hence, by the argument above, C has only finitely many normal sub- 
groups of finite index: it follows that C/K I is finite. By Schreier's theorem, K is 
finitely generated. Thus, if K were nontrivial, G would have a chief factor of the 
form K/L; but then, by the definition of K, IO/LI, and hence also IK/LI, would be 
infinite, contrary to (ii). This proves that K = 1 and so G is finite, as required. 

3. Proof of (b) 

The key to this is lemma 2-4-2 of Oates & Powell (I964): 

LEMMA 3 1. If a group a has a set of normal subgroups N1, ...,Mk and a sub- 
groupL suchthat C-=LM,, Ms; (3.11) 

a is not generated by L together with any proper subset of {M1, ...A,1}; (3.12} 

[M?(1), . .. , M(s)] = 1 for every permutation IT of the integers 1, . ..,s; (3-13) 

then C is not critical. 
It is necessary to apply this lemma in two different situations. The first applica- 

tion needs hardly any preparation; we begin the proof with this. 
Let G be a critical group in ((e, m, c), F the Fitting subgroup and D the Frattini 

subgroup of G. Then I101 < nc. (3.2) 

Proof. By theorems 1 and 7 of Gaschiitz (I953), F/ID is a direct product of mini- 
mal normal subgroups Ml/l4>, ... M/MslJ1D of G/D; moreover, F/D has a complement 
L/@ in G/I. These subgroups L,M1,...,Ms obviously satisfy (3.11) and (3-12). 
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Each Mi/(D is a chief factor of G and so has order at most m. If (3.2) were false, s 
would have to be greater than c; by (iii), F is of class at most c; hence in this case 
1h,... ,aMwould satisfy (3.13) as well, contrary to the criticality of G. 

Note that the centralizer G of F/@D in G is the intersection of the centralizers of 
the chief factors Xi//D; by (ii) and (2.1), each of these has index at most i!; as we 
have seen, there are at most c such centralizers involved: hence it follows that 

GICt0 (m!)C. (3 3) 

The plan for the rest of the proof of (b) is the following. It will be shown that 

IG/ (Dcan be bounded in terms of e, m, c; say, IG/(I < b. Then G can be generated 
by b elements, and D is a subgroup of index at most b in G: hence, by Schreier's 
theorem, D can be generated by b' elements where b' is finite and depends only on 
b, i.e. on e, m, c. Now D is nilpotent of class at most c and has exponent dividing e: 
thus I D can be bounded in terms of b', c, e. Consequently, IGI can be bounded in 
terms of e, n, c, and hence (up to isomorphism) there can only be finitely many 
critical groups in C. 

In view of (3 2), it suffices therefore to show that IG/FII can be bounded in terms 
of e, m, c. Now it is well known (see, for example, Hall 1940, p. 210) that F is pre- 
cisely the intersection of the centralizers of the chief factors of G; in particular, 
F < C. Thus (3.3) further reduces the problem to that of bounding IC/PJ. Let 
F = n (G GT: 1 < r < t) with each CT the centralizer of some chief factor of G 
and t as small as possible. Put C* = n (CT: 1 < r < t); then P- GC n G* and so 
IC/XI = G*/GC* < IG/GC*I < (in!)1, by (ii) and 2-1: hence 

it suffices to give a bound for t. (3.4) 

For this, one has to consider only the case t > 1. By the minimality of t, none of 
the subgroups DT defined by D7 = n (G n c,Q: 1 oC < t, o- - r) is equal to P. 
Moreover the product H (DT/F: 1 - r < t) is direct: for, if HI (dT: 1 < i < t) EF with 

dTEDT for each r, then 

(dTF)-l = l(dP: 1 < C <t, C * )ED/PIG n C/F = F/F for 1 < r < t 

(note that in these products the order of the factors is immaterial since the normal 
subgroups DT/F are pairwise disjoint). Let NT/P be arbitrary minimal normal sub- 
groups of G/F in the DT/P, one for each T. 

By theorem 10 of Gaschiitz (I953), each NT/ID is non-nilpotent. On the other hand, 
as NT C G, P/@D is central in NT/ID: it follows that every NT/F is non-nilpotent. 
As the product H(D,/F: 1 < Tr < t) is direct, so is lH(NT/F: 1 < r < t). Now lemma 
2*2-9 of Oates & Powell (I964) gives that G/F has a subgroup T/F such that 
G/F, T/P, N1/F, . . .,N1/F (in place of G, L, M1, . . , MJ) satisfy conditions (3.11) 
and (3.12); hence G, T,N1, ...,N1 also satisfy these conditions. The remaining steps 
will show that if t> 2++m!ce, then the Nt also satisfy (3.13), so that a second 
application of (3.1) gives a contradiction to the criticality of G. Thus it will follow 
that t < 2 + n! ce which, in view of (3 4), completes the proof of (b). 

Let F = F0 > ... > Fk = 1 be the series obtained by refining the lower central 
series of F with terms corresponding to the lower Frattini series of its factors: 
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then each FK is characteristic in F and hence normal in C, while all the factors 
FK-1/FK are elementary Abelian and central in F, for K = 1, ..., k. (The case F = 1 
can be disregarded, for then G/F has only one minimal normal subgroup and so 
t < 1.) As F has class at most c and exponent dividing e, k < ce is a very generous 
estimate. 

Since C has only one minimal normal subgroup and F is nilpotent, F has only one 
Sylow subgroup: so F is a p-group for some prime divisor p of e. The key to the final 
step is the following proposition. 

If 1 < K < k and if bFFm... b.!F are elements of orders prime to p from distinct 
.A4/F, then [EFK-1 bl ..., bm!i < FK. (3.5) 

To prove this assertion, consider the section FK-1= XO > .> XT = FK of a 
chief series of G through FK-land FK; further, let B be the subgroup generated by F 
and the elements bl, ..., b,!. As F centralizes FK_1/FK and B/F is a direct p&roduct 
of m! (cyclic) groups of orders prime to p, Maschke's theorem implies that each 
Xp_lIFK is the direct product of the corresponding XP/FK and a suitable normal sub- 

group YPIFK of BIFK, for p =1, . ., r. Now FK-1IF, is the direct product of the YPIF 
and it suffices to show that [Yp, bl, ... bmt] < F,K or, equivalently, that 

[Xp-Pn bl, ..,) bm 1] < Xp 

for, each p. In turn, this will follow if one can show that at least one of the elements 
bl, ..., bmI belongs to the centralizer Kp of the chief factor Xp-,/Xp of G. Consider 

Kp/F n l1 (NJF: 1 < T < t): this is a normal subgroup of G/P contained in the direct 
product of the non-Abelian minimal normal subgroups NTIF. As is well known and 
is in any case easy to provet), this implies that KpIF n Hl(NTF: 1 < ( < t) is in fact 
the product of some of the NJF. Thus the direct product of those NT/F which lie 
outside Kp/F avoids Kp/F; by (ii) and (2.1), 1GIKpl <ml and so it follows that 

Kp contains all but at most m! -1 of the NT. Hence of the m! elements bl, ..., bm!, 
which were taken from m! distinct NT, at least one must lie in Kp. This completes 
the proof of (3.5). 

To complete the proof of (b), let b TF be elements of orders prime to p, one from 
each NTF and suppose that t > 2 + m! ce. As N1/F and N2/F commute 

[bl,b2]EF = Fo. 

By (3.5) it follows that [bl, ..., 6b2+mjI F1; (k - 1) further repetitions of this argument 

give that [bl, ...,b2+km]nEFk = 1; and then t > 2+ m!ce > 2+krm! gives that 
[bl, ..., bt] = 1. Since the -NTIF are non-Abelian chief factors of G, they are direct 

t Let H be a normal subgroup of an arbitrary group K, and suppose that H is contained 
in the direct product of certain non-Abelian minimal normal subgroups H1, ..., Hn of K. 
In proving that H is in fact the product of some of the Hi, it can be assumed without loss 
of generality that H is not contained in the product of less than n of the Hi. Then H has ele- 
ments hj of the form hj = h1j ... hni with hij cHi and hii * 1, for i,j = 1, ...,n. Since the 
Hi have trivial centres, they have elements hi such that [hii, h'] * 1. Now 

1 t [hi,, h,] = [hi, h] H n Hi < Hi; 
as H n ,Hi is normal and Hi is minimal normal in K, it follows that Hi = H n Hi < H for 
each i. This proves that H = H1 ... Hn. 
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powers of non-Abelian simple groups, and so each NT is generated by those elements 
bT (of Nl) whose cosets mod F have orders prime to p. By a routine argument (see, 
for example, lemma 2-4 of P. Hall (I957), the fact that [bl, ..., bt] = 1 holds for every 
choice of the b T from these (characteristic) generating sets of the NT implies that 
[N1,...,N1] = 1. This is true regardless of the order in which the NT were listed: 
hence the NT satisfy (3.13), and the proof of (b) is complete. 

4. The next major aim is to prove the following proposition. 

If G is a finite group, then there is a integer k such that the variety defined by those 
laws of G which involve at most k variables is contained in some class E. (4X1) 

Three simple lemmas will be required. 

The class of finite groups within a class 0 is closed with respect to taking subgroups, 
factor groups, and finite direct products. (4.2) 

The proof of this is straightforward modulo the observation that a finite group 
satisfies (iii) if and only if its Sylow sugbroups are all of class at most c. 

The other two lemmas concern the following words: 

3 = [(X lX2)X2 (X1yX3)X1a, (X2lX3)x2s] 

and U. = [U._,, (Xl-x)Xin, .... (X-1 _Xn)ni,n] if n > 3. 

If G is afinite group of order less than n and n > 3, then u,,, = 1 is a law in G. (4.3) 

Proof. Since G does not contain n distinct elements, at least one of the gy Igj is the 
identity for every set g,, . .. , gq, g12, ..., g) ,-n of elements of G that one substitutes 
for the variables of u,, and hence u. has no nontrivial value in C. 

If the centralizer C of a chief factor H/K of a group C has index at least n in G, then 
ubn= 1 is not a law in G. (44) 

Proof. Put g1 = 1; let g2, ... , gn be representatives of distinct cosets of C with 
g2EH\K and g3, . . ., g- C. Consider the normal closure N13 of gy'g3 and K in C. 
The centralizer of N13/K in G/K is a normal subgroup which does not contain 

g11g2K: for otherwise it would also contain the normal closure H/K of g11g2K, 
and then [H/K, gyIg3K] = 1, i.e. [H, g1j7g3] c K and so g11g3EC would follow, 
contrary to the initial assumptions. Thus [g1 g2,N13] 4 K, so that there is a con- 
jugate (ylg3)213 of gljg3 for which [gy1g2,(ylg3)913]]EH\K. Repetition of the 
argument with this commutator in place of g-'g2 and g2193 in place of gy'g3 gives 
that, for some g23, [g-1g2 (g9lg3)Uis, (q9lg3)923] EH\K. 

This commutator now is a value of U3 in G. If n > 3, a further ln(n-1)-3 repeti- 
tions of the twice used argument gives finally that ub has a value in C which lies in 
H\K and is therefore nontrivial. 

Proof of (4.1). Consider an arbitrary nontrivial, finite group C. Let n denote the 
order of G, e the exponent of C, and c the maximum of the classes of Sylow sub- 
groups of C; choose k to be -1(n + 1) (n + 2), the number of variables in ubf1; and let 
U be the variety defined by the (at most) k-variable laws of C. It can now be shown 
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that U c X = QS(e, en, c). Clearly, GE d:. Let H be an arbitrary group in U. With G, 
H satisfies the law xe = 1, and so has exponent dividing e. By (4 3), ub+1 = 1 is a 
law in U; by (4 4), it follows that every chief factor of H has centralizer of index 
at most n in H; by (2 1), this implies- that every chief factor of H is of order at most 
en. In order to prove that HE E-, it remains to show that every nilpotent factor K of 
H which can be generated by c + 1 elements is of class at most c. By the definition 
of U (as k > c + 1), these factors K all belong to the variety generated by G; accord- 
ing to lemma 43 of Higman (I959), each K is therefore a factor group of a subgroup 
of a finite direct power of C. In view- of GE C and (4.2), this means that each K 
belongs to X and therefore has class at most c. Thus indeed HE E and so it has been 
proved that U c E. 

According to a result of B. H. Neumann (read theorem 14-2 of Neumann (I937) 

in conjunction with Schreier's theorem) the laws of U are finitely based. Thus (4.1) 
and (a), (b) give that U is a Cross variety. As the variety generated by G-is contained 
in II, and as subvarieties of Cross varieties are Cross varieties, the main result of 
Oates & Powell (I964) has been reached: 

If G is afinite grqup, then the variety generated by G is a Cross variety. (4.5) 

5. Only two steps of the proof of the theorem remain. 

If G is a finite group in C = (e, m, c), then the whole var-iety 3 generated by G in 
contained in (E. (5.1) 

Proof. The case G = 1 can be ignored; let n be the order of C, n > 1, and let H 
be an arbitrary group in Z. According to the proof of (4 1), HE E(e, en, c); so every 
chief factor A/B of H is finite and-in order to prove that HECl(e, rn, c)-the only 
thing to verify is that IA/BjI < m. To 'each of the finitely many non-trivial proper 
subgroups of A/B, choose an element from H/B which does not normalize it; con- 
sider the subgroup K/B of H/B generated by these elements together with A/B. 
Then K/B is a finitely generated group in Z, and A/B is a chief factor of K/B. 
By lemma 4-3 of Higman (I959), K/B is a factor group of a subgroup of a finite 
direct power of G; hence, according to (4.2), K/BE Q(e, M, c): thus JA/BJ IBI , 
as required. 

For the final step, let E = E(e, m, c) be fixed; according to (b), E contains only 
finitely many isomorphism classes of critical groups; let G be the direct product of a 
complete set of representatives of these isomorphism classes, and let Z be the 
variety generated by G. In view of (4 5) and (5. 1), the theorem will follow from the 
following assertion: 

E c $. (5.2) 

Proof. It suffices to show that if HE E then every finitely generated subgroup 
K of H lies in Z. Suppose this is not so: then the relevant verbal subgroup V(K) 
of K is nontrivial. As K/ V(K) is a finitely generated group in Z and hence, 
by (5-1), in E, (a) implies that K/V(K) is finite: thus it follows from Schreier's 
theorem that V(K) is finitely generated. Therefore there exists a normal subgroup 
N of H which is maximal with respect to not containing V(K). The normal subgroups 
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of H which properly contain N all contain V(K), and so their intersection M is 
greater than N. Now MIN is a chief factor of H, and so IMINI < m. Put 

L= V(K)AN, 

note that V(K) > L, and consider KIL. This is a factor of H, and so has exponent 
dividing e and all its nilpotent factors are of class at most c. Moreover, 

V(K)/L ~ V(K)N/N < M/N, so j V(K)/Lj <, 

while K/ V(K) E ' C: so K/L is finite, and (by an application of the Jordan- 
Holder theorem) the chief factors of K/L are all of order at most m: thus K/LE C. 

Let 3 be the variety generated by KIL. By theorem 1 in Higman (I960), 3 
is generated by its critical groups; in view of (5-1), 5 c CE, and so every critical 
group of G is isomorphic to a direct factor of G: thus K/LE 1 _ Z. This contra- 
dicts V(K) > L. Thus V(K) = 1, KE3, HE5, and (E Z, as required. The proof 
of (5-2) and with it the proof of the theorem, is now complete. 
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