L. G. Kovács and B. H. Neumann

On the existence of Baur-soluble groups of arbitrary height

SZEGED, 1965

INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS
On the existence of Baur-soluble groups of arbitrary height

By L. G. KOVÁCS and B. H. NEUMANN in Canberra (Australia)

A hierarchy of generalized soluble groups has been defined by HERIBERT BAUR in [1]: abelian groups are to be termed Baur-soluble of height 0; for an ordinal \(h \) other than 0, a group is to be called Baur-soluble of height \(h \) if it is not Baur-soluble of height less than \(h \) and has an invariant system (in the sense of KUROSH [3]) whose factors are all Baur-soluble of height less than \(h \). Thus Baur-soluble groups of height 1 are precisely the non-abelian SI-groups. It is easy to show, by induction on \(h \), that

1. subgroups and factor groups of Baur-soluble groups of height \(h \) are Baur-soluble of height at most \(h \).

A further simple observation is that

2. every restricted direct product of Baur-soluble groups is Baur-soluble, and its height is the least upper bound of the heights of the factors.

The purpose of this note is to demonstrate the existence of Baur-soluble groups of height \(h \), for every ordinal \(h \). In fact, the following result will be proved, by induction on \(h \):

Theorem. There exist perfect Baur-soluble groups of height \(h \), for every ordinal \(h \).

(A group is called perfect if it is its own commutator subgroup.)

Proof. The initial step: for \(h = 0 \), the unit group is the only example. Observation (2) and the fact that restricted direct products of perfect groups are perfect take care of the limit step in the induction.

It remains to construct, from any given perfect Baur-soluble group \(G \) of height \(h \), a perfect Baur-soluble group of height \(h + 1 \). The construction is based on wreath powers, which were introduced and studied by HALL in [2]; his notation is adopted throughout. Important use is made of a torsion free, characteristically simple group \(A \) constructed by McLAIN in [5]. This group has the additional property that it is the product of its abelian normal subgroups. Thus, firstly, \(A \) is a perfect SI-group, and secondly, \(A \) is locally nilpotent. Therefore, firstly, \(A \) is a perfect Baur-soluble group of height 1, and so there is no need to consider the case \(h = 0 \). Secondly, as a torsion free locally nilpotent group, \(A \) can be (fully) ordered (cf. MAL'ČEV [4], or Corollary 6. 2 of B. H. NEUMANN [6]). Let \(A \) be the ordered set of elements of \(A \), and let \(W \) be the wreath power \(W \wr H^A \). For each element \(\lambda \) of \(A \), HALL defines (in section 2. 4 of [2]) a subgroup \(D_\lambda \) of \(W \) and shows that

3. each \(D_\lambda \) is a direct product of isomorphic copies of \(H \);
4. the \(D_\lambda \) generate \(W \); and
(5) D_λ normalizes D_μ whenever $\mu \in A$, $\mu \leq \lambda$. Define D_Γ, for each lower section Γ of A, to be the subgroup of W generated by the D_λ with $\lambda \in \Gamma$. Contrary to HALL's convention, allow the empty set \emptyset as a lower section of A, and put D_\emptyset equal the unit subgroup. It follows from (4) and (5) that the D_Γ are all normal subgroups of W. As unions of ascending chains of lower sections, as well as intersections of any number of lower sections, are again lower sections, it follows that the D_Γ form an invariant system of W. Let D_λ/D_Γ be a factor of this system; then no member of the system can lie properly between D_Γ and D_λ, and so no lower section properly contained in A can properly contain Γ. From this it is easy to deduce that A contains just one element λ which is not contained in Γ. Hence $D_\lambda = D_\Gamma D_\lambda$; so that D_λ/D_Γ is isomorphic to a factor group of D_λ. Now (1), (2) and (3) give that each factor of this invariant system of W is Baur-solvable of height at most h, and therefore W is Baur-solvable of height at most $h + 1$. On the other hand, as W is generated by the perfect Baur-solvable groups D_λ of height h, W is perfect, and its height is at least h.

If the height of W is $h + 1$, the construction is complete. Assume that W is of height h. Let the elements of A act on A as right translations; then A becomes a transitive and hence irreducible group of order-preserving permutations of A. Take G to be the natural split extension of W by A. (In [2], HALL takes A to be the group of all order-preserving permutations of A, but the omission of ”all” does not effect his subsequent results.) Since $G/W \cong A$ and A is Baur-solvable of height 1, G is Baur-solvable of height at most $h + 1$; also, as W and A are perfect, so is G. It follows from Theorem D of HALL [2] that W is a minimal normal subgroup of G; therefore every invariant system of G has a factor which contains an isomorphic copy of W and therefore cannot be Baur-solvable of height less than h. Consequently, the height of G cannot be less than $h + 1$. This completes the construction in case W is of height h.

References

THE AUSTRALIAN NATIONAL UNIVERSITY

(Received April 10, 1964)