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An embedding theorem for some countable groups
By L.  G. KOVAC S and B. H. N EU M AN N  i n Canberra (Australia)

Every countable soluble group can be embedded in a soluble 2-generator group,
the solubility length increasing by no more than 2 in the process: this was shown
in [5]. We here extend this result to some of the transfinite generalizations of soluble
groups. The method of [5] has to be modified to do this, firstly as in [4] and secondly
as in  HALL'S paper [1].

We use the following notation and terminology. An ascending series o f  sub-
groups of a group G is a family I L , 1
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the union of its predecessors when ;t. is a limit ordinal.] I f  each L
A  i s  n o r m a l  i n  i t ssuccessor L „ , ,  or even in G, the series is called "normal" or "invariant", respect-
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where [A, B] stands for the mutual commutator group of A and B, then the series
is called "soluble" or "central", respectively. A soluble series is necessarily normal,
and a central series invariant.

If G has a soluble series with L
a
=  G ,  t h e n  
G  i s  
d e fi n e d  
t o  
b e  
a n  
S N * -
g r o u p ;

if  the soluble series can be chosen invariant, then G is an S P  -group; i f  G has a
central series with 4 . =  G, then G is a ZA-group. The ordinal a is called a "length"
of G — we do not assume it  chosen minimal, and i f  G has SN*-length or S I - -
length or ZA-length o
-
, t h e n  i t  
h a s  
a l s o  
e v e r
y  
g r e a
t e r  
l e n
g t h
.

We shall prove the following theorem.
Theorem.  Every countable SP-group G of  length a  can be embedded in a 2-

generator S I *  -group o f  length a  +2.

The method of proof yields rather more than the theorem. To every countable
group G, we contruct a 2-generator group H  which embeds it. The new feature of
H  is that its second derived group is contained in  a certain interdirect power N,
of G. Let f  be a class of groups which is closed under the operations of taking sub-
groups and taking interdirect powers like N,. (The reader has to refer to the first
paragraph of the proof: an interdirect power F is selected there, and Ar
c
, i s  a  r e s t r i c t e d
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direct power of F.) I t  follows from our construction that every countable group in
C.t can be embedded in a 2-generator group whose second derived group is in S o m e
examples o f  classes which satisfy the conditions on G are those o f  SN*-groups,
ZA-groups, locally nilpotent groups, locally finite groups, periodic groups, etc.
In part icular,  i t  follows that every countable SIV* -group of  length 0 is embeddable
in a  2-generator SN* -group o f  length a  + 2.

We mention an easy consequence of the theorem itself:
Co ro lla r Y- There exist S P  -groups that  are not  locally soluble.

This fact was pointed out by HALL in [2]; in the present context it  follows by
applying the theorem to a countable insoluble SI* -group G, for instance to one
of the characteristically simple groups o f  McLAIN [3].

Proo f o f the Theorem. In addition to the notation introduced above, we also
use the definitions and notation of [5]. In the complete wreath product P =G Wr C
of the given SP-group G and an infinite cyclic group C generated by an element c,
we single out a subgroup that contains the restricted wreath product G wr C, but
is not much larger. In the base group of P, that is the cartesian power GC consist-
ing of all functions on C to G, we single out those functions [that are constant for
all sufficiently large positive powers of e, and also for all sufficiently large negative
powers o f  e, the constant in this latter case being l  ; thus we consider those f  to
which there is an integer p 0 ,  depending on f, such that

f ( c )  =1 when n  — p ,  f ( c n ) . -
,
- - f ( c n +
1
)  w h e n  
n  > 1 ) .

These functions form a subgroup F of Gc, and F is normalized by C. We put fi r  —P°.
The cartesian powers /S: are normal subgroups of Gc, but they will not in general

form an ascending series in Gc, as the analogue of (1) may fail for limit ordinals 2.
HoWever, i f  we put, fo r 0
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ascending soluble invariant series o f P°. We omit the easy verification. I f  we put
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Next we take an infinite cyclic group B generated by an element b and form

the complete wreath product
Q =P°  Wr B.

This contains in its base group P°B the direct powers N, of the Af„, that is the functions
on B to M,  with finite support. These are easily seen to form an ascending soluble
invariant series I N
A
1
0
, , , ,
+ 1  i n  
Q .

We now use the assumption that G is countable, and generate it  by a family{gJ1
iE

of elements indexed by the set I  of positive integers. To  these we define
elements k
i  E F  
b y k

i
(
e
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w
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1
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O
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Next we define an element a E,poB b
y

a (b) c ,  a  (b )  k  when i  E

a(b") = I  when a is not a  power o f  2.

Let H be the subgroup of Q generated by a and b, and let A be the normal closure
of a in  H.  Then A  is generated by the conjugates

a =  a„

say, o f  a, where n ranges over all integers.
We now show that the derived group A' of A is contained in N,. First we remark

that A' is generated by all commutators [a„„ a
o
]  a n d  t h e i r  
c o n j u g a t e s  
u n d e r  
p o w e r s

of b; and as b normalizes N,, it  suffices to show that every [ a
m
,  a
o
]  l i e s  i n  N .  
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this is I  unless n — m and n are distinct powers of 2, say n — m =  2, n =2-
1
, w i t h

non-negative integers. In  this case m =  — 2 ' ,  and to any one m there is at
most one such pair i, j.  Thus the support of [a„,, a
o
]  c o n s i s t s  o f  
a t  m o s t  
o n e  
e l e m e n t

of B; i t  only remains to show that the one non-trivial value o f [ a
m
,  a
o
] .  i f  i t  h a s

one at all, lies in M,— F. Now i f  m =  2
1
- 2 '  0 ,  t h e n[a
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a
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(
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[
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= i f  i  0 ,  O .

These values all lie in  F, and it follows that a s  claimed.
Incidentally the above argument also shows how G can be embedded in H;

for i f  we put, fo r i  EI,
h
i 
= 
[
a
,  
,  
a
o
]
,
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1 1
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hence the subgroup of H generated by { h
i
}
i c i  i s  i s o m o r p h i c  
t o  G ,  
a n d  
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t o  
G .

Finally we put H fl ,  N
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a .  
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soluble invariant series of Q, also 1 1 < "
2
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i n v a r i a n
t  
s e r i e
s

of H. Adding K „ ,  = A and K,+2 = H to this series, we obtain an ascending soluble
invariant series that terminates with H itself; for as we have just seen, N ,  and
thus also K
a
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