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Admissible direct decompositions
of direct sums of abelian groups of rank one

By L.  G.  KOVAC S (Manchester)

The starting point o f  the theory o f  ordinary representations is MASCHKE'S
Theorem, which states that every representation of a finite group over a field whose
characteristic does not divide the order o f  the group is completely reducible (see
e. g. VAN DER WAERDEN [6], p. 182). A  partial generalization of this theorem has
recently been given by O. GRÜN in [2], and the main step of the classical proof of
the theorem has been generalized by M. F. NEWMAN and the author in  [4]. Both
of these results arose out of a shift in the point of view: they do not refer to repre-
sentations, but to direct decompositions of abelian groups, admissible with respect
to a finite group o f operators (in the sense o f KUROSH [5], § 15). The aim o f  this
paper is to present an extension of GRON's result, exploiting the start made in [4].
The terminology follows, apart from minor deviations, that o f  FUCHS'S book [1].

From [4], only a special case o f Theorem 2.2 is needed here:

Lemma. Let X be an abelian group, and G a finite group of operators on X: sup-
pose that (every element of) X  is divisible (in  X) by the order of G, and that X  has
no element (other than O) whose order is a divisor of the order of G. i f  Y is an admissible
subgroup of X which is also a direct summand of X, then Y has an admissible (direct)
complement in X.

The result o f  this paper is the following.
Theorem. Let A be a direct sum o f  abelian groups of rank one, and G a finite

group of operators on A; suppose that A is divisible by the order of G, and that A has
no element (other than 0 ) whose order is a divisor of the order of G. Then A can be
written as a direct sum o f  admissible, G-indecomposable subgroups, each o f  which is
a direct sum o f  finitely many isomorphic groups o f  rank one.

The proof splits into several steps, and occupies the rest o f  the paper.
(A) A  is a direct sum of countable admissible subgroups each of which is a direct

sum o f  groups o f  rank one.
PROOF. Let A = E ( C „ : ) a )  where the C'
)
, a r e  g r o u p s  
o f  r a n k  
o n e ,  
a  
i s  
a n

ordinal, and 1 runs through all the ordinals which precede cr. Denote the correspond-
ing canonical projections A - -
,
-C
2  b y  y , .  
F o r  
e a c h  
o r d i n a
l  
p  
s u c
h  
t h a
t  
p o
-
,  
o n
e

makes simultaneously the following definitions. Let = s e t  (p). I f  i  is a  finite
ordinal and A a  countable set of ordinals preceding a, let CI = E ( C
)
: ) . E  ) ,  a n d
let C
/ L
iG  
b
e  
t
h
e  
s
m
a
l l
e
s
t  
a
d
m
i
s
s
i
b
l
e  
s
u
b
g
r
o
u
p  
c
o
n
t
a
i
n
i
n
g  
C
.  
T
h
e
n  
q
t  
i
s  
c
o
u
n
t
a
b
l
e
;
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as C
l i
i G  
i s  
g
e
n
e
r
a
t
e
d  
b
y  
t
h
e  
c
o
u
n
t
a
b
l
y  
m
a
n
y  
e
l
e
m
e
n
t
s  
c
g  
w
i
t
h  
C
E  
C
,  
g  
E  
G
,

is also countable. Hence C
p.
' G y
i
, = 0  f o r  
a l l  
b u t  
c o u n t a
b l y  
m a n
y  
v a l
u e s  
o
f  
/
1 ;  
s
o  
t h
a t

the set A Y '  defined by / 1 '  = set().: -<  a, C G y ,
1
> - 0 )  i s  c o u n t a b l e .  
T h i s  
i n d u c t i v e

definition provides an increasing chain A Z  A . . .  c o u n t a b l e  sets
of ordinals. In turn, one constructs another increasing chain by defining its general
term Av as Av = U (A
IL
' v ,  i -
< w ) ,  
f o r  
e v e r
y  
o r d i
n a l  
v  
w i
t h  
v  
0
.  
T
h i
s  
c h
a i
n  
h
a
s

the following properties:
(A l) A °  is empty.
(A2) I f  i s  a limit  ordinal, Q a ,  then AQ = ( A
p
t  f t  ,  •  - <  
C O )  =

U [ U ( A ;
L
:  1 1
-
< V ,  
=
-  
(
A
v  
:
V  
<
Q
)
.

(A3) I f  pt-< o
-
,  t h e n  
A v ;  
f o
r  
p
.  
E  
g  
A
v
.

(A4) I f  A o
-
,  
t h e n  
t h e  
d i f f
e r e n
c e  
s
e
t  
—  
i
s  
c o
u n
t a
b l
e ;  
f
o
r  
i
t  
i
s  
a  
s
u
b
s
e
t

of U  (Ai
A
: i - <  
c o )  
a n
d  
e
a
c
h  
A
j
A  
i
s  
c o
u n
t a
b l
e .

Correspondingly, CV =E(C
A
:  A  E  A y )  
d e fi n e s  
a n  
i n c r e a s
i n g  
c h a
i n  
o
f  
p a r t
i a l  
s u
m s

of E (C
A
:  -
<  
a )
,  
w i
t h  
t
h
e  
p r
o p
e r
t i
e s
:

(A l' ) CO  =0;
(A2') i f  i s  a limit  ordinal, a ,  then CL'= U (CV: v-<o);
(A3') e r  — A ;
(A4') i f  2, -< a, then C A
-
" / C i -  i s  
a  
c o u n t a b l
e  
d i r e c
t  
s u
m  
g r o
u p s  
o
f  
r a
n k  
o n
e .

Moreover, each CV is admissible; for, Cv is generated by the elements c with
c E CA, /ICA'', and, if  A E A
m
' v ,  i -
< c o ,  
w h i l e  
g  
i s  
a n  
a r b i t
r a r y  
e l e
m e n
t  
o
f  
G
,  
t h
e n

cg E q
+ 1  
T
h
u
s  
e
a
c
h  
C
A  
w
i
t
h  
A  
a  
i
s  
a
n  
a
d
m
i
s
s
i
b
l
e  
d
i
r
e
c
t  
s
u
m
m
a
n
d  
i
n  
t
h
e

admissible subgroup ' ,  and so the Lemma, with X =  C'-+ 1 and Y =  CA
, g i v e sthat CA has an admissible complement, say DA, in C
4
+
1
.  I n  v i e w  o f  
D  C A +  
1

and (A4'), it  suffices to prove that A = I (D
A
:  A  - <  a ) .  
T h i s ,  i n  
t u r n ,  
w i l l  
f o l l o w  
f r o m

(A3') and the general relation Cv v )  which holds for every v with v a .
The validity o f  this relation is proved by a simple induction: i t  is valid i f  v =O.
because of (Al'); if  it is valid for the predecessor v — I of v, then Cv = CV
-1  +  D _= 1 ( 4
1
:  
A  
-
< v  
—
1
)
-  
-  
D
,
,
_
,  
E
(
D
;
,
:  
-
1
,
)
;  
i
f  
i
t  
i
s  
v
a
l
i
d  
f
o
r  
e
v
e
r
y  
v  
p
r
e
c
e
d
i
n
g  
a

limit ordinal e
,  t h e n  
0 2 —  
L I  
( C v
:  
Q
)  
-
=  
U  
[ I
( D
)
:  
v
)
:  
v  
Q
.
]  
E
(
D
,
:

by (A2').

(B) Being a direct sum of groups of rank one, A is the direct sum of its maximal
p-subgroups Ap and a  torsion free subgroup A , .  The A
p  a r e  c h a r a c t e r i s t i c  
a n d
therefore admissible subgroups, and so, by the Lemma with X =  A, Y ' A
p  ( w h e r ep runs through all primes), A,  can also be chosen admissible. Moreover, both A
oand the A p are direct sums of groups of rank one. This and (A) make it  possible
to assume, without  loss o f  generality, that  A is  countable and either a torsion f ree
or a p-group. The torsion free case will be discussed first.

(C) I f  A is torsion free and B is a subgroup o f
fi
n i t e  r a n k  i n  
A ,  t h e n  
A  h a s  
a  
d i r e c t

decomposition A =  A' + A" such that  A '  is  o f  finite rank and contains B;  moreover_
both A'  and A" are admissible subgroups of  A, and are direct sums of  groups of  rank
one.

PROOF. In order to prove this assertion, one first notes that there is no loss o f
generality in assuming that B is admissible and pure in A. The justification of this
can be outlined as follows. Let B be any subgroup of finite rank and S a maximal
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independent subset of  B. Consider the set SG defined by SG -=--set(sg: sE S, g E G);
this is finite, f or both S and G are finite. Let  13, be the set of  those elements of  A
which depend on SG;  this  is  an admissible subgroup o f  A:  for,  i f  a, b EB
G a n dg E G, t hen  m a  -= m
i
s  i
g  +  + m
k
s
k
g
k
,  
n b  
- =  
n
t
s  
i
g  
+  
+ n
k
s
k
g
k  
w
i t
h  
s u
i t
a b
l e

integers m,  m
t
,  m
k
,  
n ,  
n
t
, . • • ,  
n
k
,  
m  
=
0  
=
n
,  
a
n
d  
e l
e m
e n
t s  
s
i
g
t  
,  
s
k
g
k  
o
f  
S
G
;

so that mn[ (a — b)g] = .E[(m i
n —  m n  t
)  s  i
g
i
g :  i  
m n  
= 0  
s h o
w s  
t h a
t  
(
a  
—  
b )
g  
i
s

dependent on SG and hence belongs to BG. I t  is easy to see that B
G  c o n t a i n s  B  a n dis pure in A;  moreover, its rank  cannot be greater than t he cardinal of  SG. Thus
B can be replaced by  B
G
.

Let i t  be assumed therefore that  B is admissible and pure in A.  Consider an
arbit rary decomposit ion o f  A int o a direct sum of  groups o f  rank one:

(Cl )  A  A
E
A ) ,
with the corresponding canonical projections y,: A —C
A
;  a n d  d e fi n e  a  
s u b s e t  A
( B ,  C l )

of  the index set A by  A  (B, Cl )  =  s e t :  )
E A ,  B y ,  > - 0 ) .  
l t  i s  
e a s i l y  
s e e n  
t h a t  
t h i s

subset is finite: i f  S is a maximal independent subset of  B, then B consists precisely
of  those elements of  A which depend on S; so, if  O =b EB, then nb =  n
i
s
i
+  + n
k
s
k

for some integrs n, n
t
,  n
k
,  n = 0 ,  
a n d  
e l e m e
n t s  
s
t
,  
s
k  
o
f  
S
;  
i
f  
S
y
,  
=
0
,  
t
h
e
n

(nb)y „= 0 and, as C,  is torsion free, n(by„) — O and n =0  imply  that by, =0;  so that
one has A(B,  Cl )  s e t ( 2 :  I E
A ,  S y  „  0 )  
w h i c h ,  
s i n c e  
S  
i s  
fi n i t e ,  
p r o v
e s  
t h
e  
fi n i
-

teness of  A(B,  Cl).  This subset is used to define 1(B,  Cl),  a set of  types of  torsion
free groups  o f  rank  one:  p u t  '.?1(1, Cl )  --- set (T(C, ):  A ( B ,  Cl ) ) ;  t his  set  o f
types is  clearly also finite.

The statement (C) wi l l  be proved by  induct ion on the cardinal 191(B, Cl )1 o f
'.11(B, Cl).  I f  '.11(B, Cl )  is empty, then B = 0  and so (C) is t riv ially  true. Hence one
can procede to the inductive step: let  a n d  let (C) be assumed to be true for
every choice of  A, G, and B to which there is a decomposit ion like (Cl)  which yields
a cardinal smaller than 19I(B, C1)1. Let  a be a  max imal type i n  C l ) ,  and
put A ,  --- s e t ( :  A E
A ,   T ( C , )
> -  a ) ,  
A ,  
- =  
s e t (
) .  
:  
E A
,  T
( C
)
)  
-
-
-  
a
)
,  
a
n
d  
A
3  
=

= set()L: I E
A ,  T
( C  2
)  
a ) .  
T h
e  
t h
r e
e  
s
e
t
s  
s
o  
d e
fi n
e d  
a
r
e  
p
a
i
r
w
i
s
e  
d
i
s
j
o
i
n
t  
a
n
d  
t
h
e
i
r

union is A .  Let  A '  -= ( C „ :  ).E A
i
) ;  t h e n  A '  
i s  t h e  
c h a r a c t e r i s
t i c  
s u b g r o
u p  
o f  
A

which is generated by  the elements whose types ( in A) are greater than a; so A'  is
admissible. Moreover,  A '  i s  a  direc t  s ummand o f  A ,  f o r  A  =- A '  +A ,  wi t h
A
t  
=  
)
E  
A
2
U 
A
3
)
,  
a
n
d  
B  
i
s  
c
o
n
t
a
i
n
e
d  
i
n  
t
h
i
s  
c
o
m
p
l
e
m
e
n
t  
A
t  
C
o
n
s
i
d
e
r  
t
h
e

torsion free factor group AI  B ; this  has a direct decomposition A I  B =  (A '  + B)1.13
+  A
i
l  
B
,  
w
i
t
h  
(
A
'  
+
B
)
I
B  
a
d
m
i
s
s
i
b
l
e
.  
H
e
n
c
e  
t
h
e  
L
e
m
m
a
,  
w
i
t
h  
X  
=
A
I
B  
a
n
d

Y =  (A l  + B)I B, implies  t hat  ( A '  + B)IB has  a n  admiss ible complement ,  say
A*  IB, i n  211B. As  A '  n A*( A '  + B)(
-
) A *  =  B  
a n d  A '  
fl B  
0 ,  
A *  
i s  
i n  
f a c t

an admissible complement  o f  A'  i n  A.  Le t  a be the canonical project ion o f  A
onto A*  corresponding to the direct decomposit ion

(C2) A  =  A '  H-A*.

I f  a  EA, and a  a '  + a, wi t h  a '  E A',  a, EA, , t hen a l  a '  a + , - - - -  a
l
l ,  s o
that A*  = Acx = A t
a .  A s  
A ,  
a v o i d
s  
t h e  
k e r
n e l  
A
l  
o
f  
a
,  
i
t  
i
s  
m a
p p
e d  
i s o
m o r
p h i
c a l
l y

by a, so that in fact A*  = A t
a - = 1 ( C , 7 . :  
E  
A 2 U  
A 3 ) .  
I t  
i s  
c o n v e n
i e n t  
n o
w  
t
o  
c h a
n g e

f rom ( Cl )  t o the new decomposit ion

(C3) A  =  A '  + A* -= ( C ,
t
:  A
t
) + I ( C
)
a :  A
2  
U  A
3
)  
=  
( D
i
:  )
, E  
A )
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where I  )). = C
A i f  ) .  
E  A
l  
a n
d  
D  
C
c  
t  
i
f  
2  
E  
A
2
U  
A
3
.  
O
f  
t
h
e  
c o
r r
e s
p o
n d
i n
g  
c
a
n
o
n
i
c
a
l

projections (5
3
:  A — D
A
,  
o n
e  
h a
s  
t
o  
o b
s e
r v
e  
t
h
e  
f o
l l
o w
i n
g .  
S
i
n
c
e  
B
A
*  
.

= ( D  ).; ;LE A2U A3), B(52-= 0 whenever /I E A, O n  the other hand, i f  2 E
A 2 U  A 3 ,then 5, y  ;t
ot: f o r ,  
t h e
n  
0 6
5  
=  
6
)
,  
b
y  
d e fi
n i t
i o n
;  
i
f  
a  
i
s  
a
n  
a r
b i
t r
a r
y  
e
l
e
m
e
n
t  
o
f  
A
,

then a = gay ILEA);  also, ,at 0  i f  y E A
l a n d  A y c e  =  
A
L  i f  
y  E  
A 2 U  
A 3 ,  
s o  
t h a t

in this second case y ,otk= O if  y =,1 and y ,
t
o c5
A  y
A
c c  i f  y  
a n d  
h e n c e  
i t  
f o l l o w s

that a (5
)
,=  
a w 5
A  
=  
( a
y  
p
o c
k :  
p  
E  
A
)  
-
=  
a
y  
A
a
.  
A
l
s
o
,  
i
f  
2
E
A
2
U
A
3
,  
t
h
e
n  
t
h
e  
k
e
r
n
e
l  
o
f  
c
i
t

avoids C
A  
a n d  
s o
,  
i
n  
t h
i s  
c
a
s
e ,  
B
(
5
3  
=  
B
y
A
a  
>
-  
O  
i
s  
e
q
u
i
v
a
l
e
n
t  
t
o  
B
y
,  
O
.  
T
h
e
s
e  
o
b
s
e
r
v
-

ations yield the conclusion that A(B, C3) =  A(B, Cl) and so %(B, C3) -=
as well.

Next, consider the subgroup A
2  d e fi n e d  
b y  A
2  = ,  
( D  
A
:  
2 E  
A
2
) .  
T h i
s  
s u b g
r o u p

can be described as the set consisting of O and the elements of type a in the admissible
subgroup A*;  so that A
2  i s  
c h a r a c t e r i s
t i c  
i n  
A *  
a n
d  
h e n
c e  
a d m i
s s i b l
e .  
A l
s o
,  
A
2

is a direct summand in A* and so the Lemma, with X  = A* and Y =  A
2
,  p r o v i d e s
that A
2  
h a
s  
a
n  
a d
m i
s s
i b
l e  
c
o
m
p
l
e
m
e
n
t
,  
s
a
y  
A
3
,  
i
n  
A
*
.  
T
h
u
s  
A  
h
a
s  
t
h
e  
a
d
m
i
s
s
i
b
l
e

direct decomposition
(C4) A  -= A +  A
2 +  A
3  ;
let the corresponding cannonical projections A — Ai be denoted by a
i
,  f o r  i  = 1 ,  2 ,  3 .
Clearly A
3  = i 4
,
1 3  
= E
( / )
3 :  
;
,
E  
A
3
)  
a
3
;  
a
s  
. 1
.
( D
,
1
:  
E  
A
3
)  
a
v
o
i
d
s  
t
h
e  
k
e
r
n
e
l  
A
'  
+  
A
2  
o
f

2
3
,  
t
h
i
s  
s
u
b
g
r
o
u
p  
i
s  
m
a
p
p
e
d  
i
s
o
m
o
r
p
h
i
c
a
l
l
y  
b
y  
c
e
3  
,  
s
o  
t
h
a
t  
A
3  
=  
E
(
D
A
c
c
3
:  
E 
A
3
)
.

Put E
A  
i
f  
;
L
,  
E
A
I
U  
A
2  
a
n
d  
E
3
=
1
)
3
c
c
3  
i
f  
E  
A
3
;  
t
h
e
n  
(
C
4
)  
c
a
n  
b
e  
r
e
f
i
n
e
d  
t
o  
t
h
e

decomposition
(C5) A  - -
, ,
E ( E
)
, :  A ) .

Like in  a  similar situation above, one checks that, for the canonical projections
e
)
.
:  
A 
E
)
.  
c
o
r
r
e
s
p
o
n
d
i
n
g 
t
o  
(
C
5
)
,  
B
e
)
.
-
= 
0  
i
f  
e  
E 
A
,  
a
n
d 
(
x
3
e
)
.
=
-
E
2
=
-  
(
5
5
5
)
4
3 
i
f  
2
E
A
3
.

Put B
2  -
= B
o t
2  
a
n
d  
B
3  
=
B
o
z
3
;  
b
o
t
h  
B
2  
a
n
d  
B
3  
a
r
e  
o
f  
f
i
n
i
t
e  
r
a
n
k
,  
a
n
d  
B  
B
2  
+  
B
3

If  B
3
E ,  
0
,  
t
h
e
n  
À
.
E  
A
2  
a
n
d  
s
o  
B
3
s
,  
=
B
a
3
E
A  
B
k
o
t
3  
s
h
o
w
s  
t
h
a
t  
a
l
s
o  
B
6
A  
>
-  
O
.

Hence A  (B
3
, C 5 )  
g _  
A  
( B ,  
C 3
)  
-
=  
A  
(
B
,  
C
l
)
,  
s
o  
t
h
a
t  
9
1  
(
B
3
,  
C
5
)  
g  
%
(
B
,  
C
l
)
;  
m
o
r
e
o
v
e
r
,

as T(E
A
) =  
l ' (
D
A
)  
=  
T
( C
2
)  
f
o
r  
e
v
e
r
y  
2  
i
n  
A
,  
a
n
d  
a
s  
A  
(
B
3
,  
C
5
)  
A
3
,  
t
h
e  
t
y
p
e  
a  
d
o
e
s

not belong to 1 (B
3
,  C 5 ) .  
H e n c e  
C , ,
5 )  
i
s  
a  
p r o
p e r  
s u
b s
e t  
o
f  
9
t
(
B
,  
C
l
)  
a
n
d

therefore the induction hypothesis applies to A ' ,  G, B
3
,  w i t h  t h e  
c o n c l u s i o n  
t h a t

A
3  
h
a
s  
a
n  
a
d
m
i
s
s
i
b
l
e  
d
i
r
e
c
t  
d
e
c
o
m
p
o
s
i
t
i
o
n  
A
3  
=  
+  
W 
s
u
c
h  
t
h
a
t  
V  
i
s  
o
f  
f
i
n
i
t
e

rank and contains B
3
,  w h i l e  
b o t h  
V  
a n d  
W  
a r
e  
d i r
e c t  
s u
m s  
o
f  
g r
o u
p s  
o
f  
r
a
n
k  
o
n
e
.

Finally, consider B
2
.  B y  
t h e  
i n i t i a l  
s t e
p  
o f  
t h
i s  
p r o
o f ,  
A
2  
h
a
s  
a
n  
a d
m i s
s i b
l e

pure subgroup U  o f  finite rank which contains B
2
.  T h e  s e t  A ( U ,  
C 5 )  i s  
a  fi n i t e

subset o f  A2 ; pu t  U '  =E(E
A
:  / 1 E  A  
( U  ,  
C 5 ) )  
a n d  U "
,
- - -
-
I ( E
A
:  
A 2  
—  
A  
(
U  
,  
C 5 )
) ;

then A
2  
U '  
+  
U
"  
a
n
d  
U  
U
'
.  
N
o
w  
U  
i
s  
a  
p
u
r
e  
s
u
b
g
r
o
u
p  
o
f  
t
h
e  
d
i
r
e
c
t  
s
u
m  
U
'

of finitely many groups of rank one which are all of the same type a; so that a theorem
of CERNIKOV, FUCHS, KERTÉSZ, and SZELE (Theorem 46. 8 in  Fucus [ l i )  implies
that U is a direct summand of U'; hence U is a direct summand of A
2  a s  w e l l .  A sU is admissible, the Lemma (with X =  A
2
,  Y =  U )  
p r o v i d e s  
t h a t  
U  
h a s  
a n  
a d m i s s i
b l e

complement, say U*,  in  A
2
.  I t  f o l l o w s  
f r o m  
a  
t h e o r
e m  
o f  
B A
E R  
( T h e
o r e m  
4
6
.  
6

in Fuclls [1]) that both U  and U*  are direct sums o f  groups o f  rank one.
lt  remains to put these results together : A --= A '  + A
2 + A
3  =  A '  +  
( U  + U * ) +

+ (V  + W) =  (U + V) + (Al + U* 4- W); a ll these summands are admissible sub-
groups and direct sums of groups of rank one; U+  V is of finite rank; and B B
2  +
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B
3  
U
r
+  
V
;  
s
o  
t
h
a
t  
A
'  
a
n
d  
A
"  
g
i
v
e
n  
b
y  
A
'  
=  
U 
+  
V  
a
n
d  
A
"  
=  
A
'  
+  
W

satisfy the claims made in  (C).

(D) I f  A is torsion free, then A can be written as a direct sum of  admissible sub-
groups of  finite rank such that each of  the summands is a direct sum of  groups of  rank
one.

PROOF. In view of (A), A can be assumed to be countable; moreover, only the
case when A is o f infinite rank needs investigation. Let A -= E (C
i
:  I  ( 5 )  b e  a
direct decomposition of A in which all the C
i a r e  g r o u p s  
o f  r a n k  
o n e .  
A c c o r d i n g

to (C), A can be written as C'  +D'  in such a way that C, C ' ,  both C'  and D'
are admissible subgroups and direct sums of groups of rank one, and the rank o f
C' is finite. Suppose that, fo r some positive integer n,
(DI )  A  =  Cl  + C
2  +  + C "  +  
D "is an admissible direct decomposition o f  A in  which all the summands are direct
sums of groups of rank one, a ll but the last are of finite rank, and C, +

c l  + +  C. Let 5 be the canonical projection of A onto D", corresponding to
(D1). Then C , 5  is a subgroup of finite rank in D", and so (C) provides that D"
has a direct decomposition Dn =  C
n  +  +  D ' I + "  
s u c h  
t h a t  
O r  +
1  
a n d  
D
n  
' a r
e  
a d m i s s
i b l e

subgroups which are again direct sums of groups of rank one, C
t i +
, 5
,
- -  C
n  1  a n d

C
n  
+  
1  
i
s  
o
f  
f
i
n
i
t
e  
r
a
n
k
.  
T
h
u
s  
A  
C
l  
+  
+  
C
n  
+  
C
n  
+  
1  
+  
D
n  
'
,  
a
n
d  
n
o
w 
C
,  
+  
C
„  
+

+ C
,  
c
l  
+  
+  
c
n  
+  
C
n  
+  
1
,  
s
o  
t
h
a
t  
a  
d
e
c
o
m
p
o
s
i
t
i
o
n  
l
i
k
e  
(
D
1
)  
h
a
s  
b
e
e
n  
o
b
t
a
i
n
e
d

for n+1 in place of n. This inductive process defines a subgroup O for each positive
integer i. I t  is easily seen that the subgroup generated by the O  is their direct sum,
and i t  contains a ll the C
i
.  T h e r e f o r e  
A  
=  I
( 0 : 1 - i -
o ) ) ,  
a n
d  
t h
i s  
i
s  
a  
d i
r e
c t

decomposition satisfyng the claims made in  (D).
(E) I f  A is  torsion free, then the Theorem is true.

PROOF. According to (D), it  can be assumed that A is o f  finite rank. In  this
case A is trivially a direct sum of G-indecomposable subgroups; it  remains to prove
the assertion about the structure o f its G-indecomposable summands. Let B be an
arbitrary G-indecomposable summand o f  A, and let B =  O. First, a  theorem o f
BAER (Theorem 46. 7 in Focus [1]) gives that B is a direct sum of groups of rank
one. Let B -= +  G with all the C
i o f  r a n k  o n e ,  
a n d  
l e t  
a  
b e  
a  
m a x i m a
l

element of the set of types T(C,), i=1 , . . . ,n .  Put B, —Z(C
i
: T ( C
i
)  =  a )  a n d  
B 2  =

= E ( C
i
: T ( C
i
)  
=  
a
) ;  
t
h
e
n  
B  
=  
B
i
+
B
2
.  
T
h
e  
s
u
b
g
r
o
u
p  
B
1  
c
o
n
s
i
s
t
s  
p
r
e
c
i
s
e
l
y  
o
f  
O

and the elements of type a in B, so that B, is characteristic in B and hence admissible.
Thus the Lemma, with X= B and Y=B, , gives that B, has an admissible complement
in B; as B is G-indecomposable and B, 0 ,  this complement can only be O. Hence
B B ,  so that all the C, are o f  the same type a.

In view of  (B), it  is possible to assume for the rest of  the proof  that A is a count-
able p-group. I n  (F) a special case will be discussed, and (G) will provide the key
to the general case.

(F) I f  pA =0,  then the Theorem is  true.

PROOF. I f  A is finite as well, this statement is trivially true. Let A be countably
infinite; then A = I  (C 1  i  -< co) where all the C. are of order p Fo r each positive
integer j, let Cl =  ( C  1  i  j ) ,  and let C
1
G  b e  t h e  
s u b g r o u p  
g e n e r a t e d  
b y  
a l l
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the elements of the form cg with e E C, g E G. Then all the Ci and the ClG are finite;
C' C ' '  and C i C J G C i s G  hold for every j;  and U  (Cl: 1 - <  (o) =  A, so
that also U ( C
1
G :  1  
- <  
t o )  
=  
A .  
S i
n c
e  
n
o
w  
e v
e r
y  
s u
b g
r o
u p  
o
f  
A  
i
s  
a  
d
i
r
e
c
t  
s
u
m
m
a
n
d

of A, and since the GIG are admissible, the Lemma (with X =  0 +
1
G ,  Y =  C i G )
gives that each CiG has an admissible complement, say D
i
,
1  ,  i n  t h e  
c o r r e s p o n d i n g

0 +  'G. In addition, let D
I  =  C
1
G .  T h e n  
i t  
i s  
e a s y  
t o  
s e
e  
t h a
t  
C i G = E
( D
1
: 1
-
_ _ i _ j )

holds for every j, so that A = U (GIG: - <  co) =  [ '  (D - <  co] =
=E(D E a c h  D
i  i s  
a d m i s s i b l e  
a n d ,  
b e i n
g  
c o n t a
i n e d  
i
n  
t h
e  
fi n i
t e  
C i
G ,

finite. Therefore each D
i i s  a  
d i r e c t  
s u m  
o f  
fi n i t e l
y  
m a
n y  
fi n i
t e  
G -
i n d e c
o m p o
s a b l e

subgroups, so that the direct decomposition o f  A obtained above can be refined
to one in  which all the summands are finite, admissible, and G-indecomposable.
This refinement satisfies the Theorem.

(G) Let  T  be an admissible, G-indecomposable subgroup in  the socle S  o f  A.
Then T is finite, and A has a direct summand B which is admissible, G-indecomposable,
and whose socle is precisely T;  moreover, B  is G-indecomposable.

PROOF. I t  follows from (F) that T must be finite. I f  T=0, then B=0  will do;
hence suppose that T>-0. Let k be one o f the ordinals 0, 1, w ;  then pkA is a
characteristic and hence admissible subgroup o f  A. As every subgroup o f  T is a
direct summand o f  T, the Lemma can be applied to X = T ,  Y  T A p k A ,  with
the conclusion that T npkA has an admissible complement in T. Since T is G-inde-
composable, it follows that either TrIpkA= 0 or T npkA = T. I f  T
-
, - p ' " A ,  l e t  m  =
w .

I f  TnpwA =0, then TrIpkA =0 for some finite ordinals k ;  but not fo r all, fo r
T
-
_
-
A
=
p
°
A
.  
H
e
n
c
e  
t
h
e  
f
i
r
s
t  
o
f  
t
h
e  
o
r
d
i
n
a
l
s  
k  
f
o
r  
w
h
i
c
h  
T
n
p
k
A
=
0
,  
c
a
n  
b
e  
w
r
i
t
t
e
n

in the form in + I, and then T
-
- - p m A ,  
T r I p m " A  
— O .

Since every subgroup of S is a direct summand of S, the Lemma can be applied
to X =  S, Y-= T with the conclusion that S T +  U for some admissible subgroup
U. Let U
k  =  
U n
p k
A ,  
f
o
r  
k  
=
0
,  
1
,  
w
;  
t
h
e
n  
S
n
p
k
A  
T  
+
U
,  
f
o
r  
e
v
e
r
y  
k  
w
i
t
h

k
m
.

Let it  be agreed that w — i c o  for every finite ordinal
Put B
o
= T .  
I f  
m  
0
,  
s
u
p
p
o
s
e  
t
h
a
t
,  
f
o
r  
s
o
m
e  
o
r
d
i
n
a
l  
k  
w
i
t
h  
k  
-
<
m
,  
a
n
d  
i
n
c
r
e
a
s
-

ing chain B
o
,  B
k  
o f  
a d m
i s s i
b l e  
s u
b g
r o
u p
s  
h
a
s  
b
e
e
n  
d
e
fi
n
e
d  
i
n  
s
u
c
h  
a  
w
a
y  
t
h
a
t

T=p iB
i
,  
a n
d  
B
i  
h
a
s  
T  
a
s  
i
t
s  
s
o
c
k
,  
f
o
r  
i  
=
0
,  
k
.  
L
e
t  
V
/
B
k  
b
e  
t
h
e

sode of p "
-
k
-
l A I B
k
.  
A s  
t h
e  
s o
c k  
T  
o
f  
B
k  
i n
t e
r s
e c
t s  
U
m
_
k
_
,  
i
n  
0
,  
t
h
e  
s
u
b
g
r
o
u
p  
W

generated by Bk and U, „_
k
_ ,  i s  t h e i r  
d i r e c t  
s u m :  
W  
B
k
+  U
m
_ k _ 1 .  
T h
e  
f a c
t o r

group 14/IB, is an admissible subgroup in  VIB
k a n d ,  a s  e v e r y  
s u b g r o u p  
o f  V /
B
k

is a direct summand of V/B
k
, t h e  
L e m m a  
( w i t h  
X =  
V / B
k
,  
Y =  
W / B
k
)  
p r o v
i d e s  
t h
a t

W/B
k 
h
a
s  
a
n  
a
d
m
i
s
s
i
b
l
e  
c
o
m
p
l
e
m
e
n
t
,  
s
a
y  
B
k
„
/
B
k
,  
i
n  
V
/
B
k
.  
T
h
e  
s
u
b
g
r
o
u
p  
B
k
+
1

so chosen is admissible, contains Bk, and is contained in p m
-
k
- 1
A .  T h e  s o d e  T '

of Bk+1 contains T  and is contained in  S  n p m
-
k
- ' A ;  h e n c e ,  a s  
S  A p ' n
-
k
- 1
A  =

T + U, , _
k
_
i
,  
T '  
=  
T
+  
(
T
'  
n U ,
n
_
k
_
1
) .  
O
n  
t
h
e  
o
t
h
e
r  
h
a
n
d
,  
o
n
e  
k
n
o
w
s  
t
h
a
t

T ' n U ,
n
_
k
_
i  
B
k
+  
1  
W  
=  
B
k
,  
s
o  
t
h
a
t  
T
'  
n
U
,
n
_
k
_
l  
B
k
n  
U
n
,
_
k
_  
,  
0  
;  
h
e
n
c
e

it follows that T '  =  T+ 0  =  T. Next, note that p B
k + 1
-
-  B k  i s  a n  
i m m e d i a t e  
c o n -

sequence of the choice of B
k + 1
.  O n  t h e  
o t h e r  
h a n d ,  
i f  
b E B
k
,  
t h e
n  
B
k

p
m 
k
A

'A) implies that b =pa for some a in p " ' '  I
A ;  f o r  t h i s  a ,  
a +  B k  
E  V I  
B k  
=

= (Bk U „ ,  _k_1)1Bk+B
k+ i
/ B
k
,  s o  
t h a t  
a  u
+ b '  
w i t
h  
u E  
b ' E B
k + t
,  
a
n
d

this shows that  b =  pa =  pu +pb'  -= pb' E p B
k + 1
;  h e n c e  B
k
-
-
- p B
k +
, .  T h u s  
i n  
f a c t
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B
k
=
p
B
k
+
,
,  
a
n
d  
t
h
e
r
e
f
o
r
e  
T
=
p
k
B
k
=
p
k
+
i
B
k
+
1
.  
T
o  
s
u
m  
u
p
:  
B
o
,  
B
k
,  
B
k
+
,  
h
a
s

all the relevant properties o f  B
o  ,  B k ,  
w i t h  
k  
+ 1  
i n  
p l a c e  
o f  
l c .

I f  m is finite, this inductive process provides in a finite number of steps a sub-
group B„
T
; i n  
t h i
s  
c a
s e
,  
p
u
t  
B
=
B
„ ,
.  
I
f  
m  
=
c
o
,  
t
h
e
n  
t
h
e  
p
r
o
c
e
s
s  
p
r
o
v
i
d
e
s  
a  
s
u
b
g
r
o
u
p

B
k 
f
o
r  
e
v
e
r
y  
f
i
n
i
t
e  
o
r
d
i
n
a
l  
k
;  
i
n  
t
h
i
s  
c
a
s
e
,  
l
e
t  
B
=
U
(
B
k
:
1
3
.
-
-
k
-
<
c
o
)
.  
I
n  
e
a
c
h  
c
a
s
e
,

the sode of B is precisely T. in the first case, every non-zero element of T has height
in in A (for T -
-
- p m A  
b u t  
T  
p m
+  
A  
=  
0 )
,  
a
n
d  
i
t
s  
h e
i g
h t  
i
n  
B  
i
s  
a
l
s
o  
i
n  
(
f
o
r  
T  
p "
1
1 3
„ ,
=

p'nB); hence [e. g. by J) on p. 78 of FUCHS [1]] B is a pure subgroup in A; moreover,
B is bounded, so that a theorem of KULIKOV (Theorem 24. 5 in FUCHS [1]) implies
that B is a direct summand of A. In the second case, every non-zero element of T
is of infinite height in B (as T = p k B
k
- p k B  f o r  e v e r y  
fi n i t e  
k ) ,  
s o  
t h a t  
B  
i s  
d i v i s i b
l e

[see e. g. (f ) on p. 59 o f  FUCHS [ I
] ]
,  a n d  h e n c e ,  
a c o r d i n g  
t o  
a  
t h e o r e
m  
o f  
B A E
R

(Theorem 18. 1 in  FUCHS [1]), B is a direct summand of A. By construction, B  is
admissible; and the G-indecomposability of T implies that B is also G-indeco mpo-
sable. This completes the proof of (G).

(H) I f  A is a p-group, then A =E(C,: 2 E A) where each C
)
, i s  e i t h e r  c y c l i c  
o r  o f

the type C(p l ,  Let C= Z(C
)
, :  À E A ,  C
)
,  c y c l i c )  
a n d  
D  
= E  
( C ,
:  
2 E  
A ,  
C  
C
( r )
) ;

then D is precisely the maximal divisible subgroup of A, so that D is characteristic
in A and is therefore also admissible. Now the Lemma (with X =  A, /
7
- - - D )  p r o v i d e s
that D has an admissible complement C' in A. Of  necessity, C' C ,  so that C' is
a direct sum of  cyclic groups. Hence it  suffices to prove the Theorem under the further
assumption that  A  is  either divisible or a direct sum o f  cyclic groups.

(I) I f  A is  a divisible p-group, the Theorem is  true.
PROOF. In view of (F), the sode S of A can be written as a direct sum of finite,

admissible, G-indecomposable subgroups TA, with 2. running through some index
set A. According to (G), each T is the sode of some admissible, G-indecomposable
,direct summand A., of A. Each B
A i s  o f  fi n i t e  
r a n k ,  
f o r  
i t s  
s o d e  
T
)
„  i
s  
fi n i t e
,  
a n
d  
e a
c h

B, is divisible; hence each BA is a direct sum of finitely many (isomorphic) divisible
groups of rank one (that is, of groups of the type C ( r ) ;  by another theorem of BAER,
Theorem 19. 1 in  FUCHS [1]). The subgroup generated by the BA is their direct
sum, and i t  is divisible; moreover, i t  contains the whole sode o f  A; hence
A =E(B, :  2E A).

(.1) I f  A is  a direct sum o f  cyclic p-groups, then A  is  a direct sum o f  bounded
admissible subgroups.

PROOF. Now all the direct summands o f  A which are o f  rank one are cyclic
groups. I f  A is of finite rank, then A itself is bounded, so there is nothing to prove.
In view of (A), it  can be assumed that A is countable, so that in the remaining case
A = E(C - <  co) where all the C, are cyclic. Let S be the sode of A and S
i t h esode o f  C
i
,  f o r  
e a c
h  
i ;  
t h
e n  
S =
I
( S
i
:  
1  
i  
i
v
)
.  
A
s  
b
e
f
o
r
e
,  
V
G  
w
i
l
l  
d
e
n
o
t
e
,  
f
o
r

each subgroup V  of A, the subgroup generated by all the elements o f the form vg
with v E V, gEG; VG is always admissible; and, i f  V is finite, then so is VG. Since
A is a direct sum of cyclic groups, p''A =0, and so each finite subgroup of A must
have zero intersection with pkA for some positive integer lc

Let k(1) be the first positive integer for which S
I
G  n p k  (
1
) A  = O .  
S i n c e  S  
n p k o ) A

is characteristic in A, it  is also admissible. Let St =  S  1
G + ( S  n p
k ( 1 )
A ) ;  t h e n  S l /
S , G
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is an admissible subgroup and a direct summand in the elementary group SI S,G,
On applying the Lemma to X =  SI S
I
G ,  S
1  I  S
I
G ,  o n e  
o b t a i n s  
a n  
a d m i s s i
b l e

complement, say S
I
G ,  f o r  
S
1  S
i
G  
i n  
S I  
S , G
.  
A
s  
T
,  
a
n
d  
S
'  
g e
n e r
a t e  
S
.  
a
n
d  
a
s
.

S
I
G 
T
1
,  
T
,  
a
n
d  
S
n
p
k
o
)
A  
a
l
s
o  
g
e
n
e
r
a
t
e  
S
;  
m
o
r
e
o
v
e
r
,  
T
,  
n  
(
S  
n
p
k
(
1
)
A
)  
=
-

=  S I  n ( S  n p ' (
1 )
A )  =  S
I
G  n
( S  
n p k (
1 )
A )  
=  
0
;  
s
o  
t h
a t  
i
n  
f
a
c
t  
S  
+

± ( S n p k
( 1 )
A ) .

For an inductive construction, suppose that 1 '1
, 
T
i
,  
k
(
I
)
,  
k
(
i
)  
h
a
v
e
-

already been defined, in  such a  way that T,  , T
i  a r e  a d m i s s i b l e  
s u b g r o u p s ,
5
1  
+ 
+ 
S
i  
+ 
+ 
T
i  
,  
k  
(
1
)  
k  
(
j
)
,  
a
n
d  
S 
= 
T
,  
+ 
+ 
T
i  
+
(
5
n  
p
k
(
f
)  
A
)

for every i with I i  j .  Let it denote the canonical projection of S onto S flpku
)
A
corresponding to  the direct decomposition S  +  +  T + (S  npku)AI, and
let k( j +  1) be either k(j) or the first positive integer for which S
1
+ 1
G i t  fl p k ( i +
l ) A  —  0 ,

whichever is the larger. Check that S
i +
, G 2 1  i s  
a d m i s s i b l e .  
S i m i l a r l y  
t o  
t h e  
a p p l i c a
t i o n

in the preceding paragraph, the Lemma can be used to prove the existence o f an
admissible complement T
i  + 1  o f  
S  p k (
1  1 )
A  
i n  
S  
n p k U
)
A  
s u
c h  
t h
a t  
S
i  
+ 1
G I
E

It can easily be seen that the hypothesis carries over to I ' ,  , T
i  ,141), I c ( j  + 1).

This process defines, for each positive integer i, and admissible subgroup T
rand a positive integer Ic(i). The subgroup generated by the T

i i s  t h e i r  d i r e c t  
s u m ,
and it  contains all the S
i
,  s o  t h a t  
i t  i s  
e q u a l  
t o  
S .  
T h u
s ,  
i f  
T
,  
+  
+  
T
i  
i
s  
d e
n o
t e
d

by T
1
.  
o
n
e  
h
a
s  
t
h
a
t  
S
=  
(
T  
:  
c
o
)
.  
M
o
r
e
o
v
e
r
,  
S  
=  
+  
(
S  
p
k
(  
D
A
)  
f
o
r

every positive integer
Next, let B, be a subgroup of A maximal with respect to being admissible and

having T
1  
f o r  
i t s  
s o
d e
.  
F
o
r  
a
n
o t
h
e r  
i n
d
u
c t
i o
n ,  
s
u
p
p
o
s
e  
t
h
a
t  
B
1
,  
B
i  
a
r
e  
a
l
r
e
a
d
y

defined in such a way that they form an increasing chain of admissible subgroups
and the socte o f  B, is Ti whenever I  i  j .  Then B
i i n t e r s e c t s  T
i +
,  i n  0 ,  
f o r  i t s

socle does; so the subgroup generated by B
i a n d  T
i
,  I s  t h e i r  
d i r e c t  
s u m  
B
i  
+  T
i +
,  
,

and its sode is Ti+ Th u s  it is possible to choose B
i
, ,  a s  a  s u b g r o u p  
w h i c h  
c o n t a i n s

B
i 
+  
T
i
,
,  
a
n
d  
i
s  
m
a
x
i
m
a
l  
w
i
t
h  
r
e
s
p
e
c
t  
t
o  
b
e
i
n
g  
a
d
m
i
s
s
i
b
l
e  
a
n
d  
h
a
v
i
n
g  
f
o
r  
i
t
s

sode. This process provides, fo r each positive integer j,  an admissible subgroup
B
i
,  
s
u
c
h  
t
h
a
t  
t
h
e
s
e  
s
u
b
g
r
o
u
p
s  
f
o
r
m 
a
n  
i
n
c
r
e
a
s
i
n
g  
c
h
a
i
n
,  
a
n
d  
t
h
e  
s
o
d
e  
o
f  
e
a
c
h  
B
i
-

is the corresponding P .
Observe that, for each j
.  B
i  a n d  
p k ( l ) A  
i n t e r s e
c t  
i n  
0 ,  
f o
r  
t h e
i r  
s o c
l e s  
d
o  
s
o
.

Therefore one can speak of the direct sum C of B
i a n d  S  p k ( ) A  
i n  A .  
L e t  
U  b e

the sode of AI B
i
; c l e a r l y ,  
C I B
i  
i s  
a n  
a d m i
s s i b
l e  
s u
b g r
o u
p  
a
n
d  
a  
d i
r
e
c t  
s
u
m
m
a
n
d

in U. Hence, according to the Lemma, C/B
i h a s  a n  
a d m i s s i b l e  
c o m p l e m e n t ,  
s a y

B IB
»  
i n  
U
.  
N
o
w  
B  
i
s  
a
d
m
i
s
s
i
b
l
e
,  
a
n
d  
B  
n  
C
=
B
i
.  
T
h
e  
s
o
d
e  
o
f  
B  
c
o
n
t
a
i
n
s  
T
'
,  
a
n
d

so i t  i s  T i  +(13 fl S n p k
(
D A ) ;  b u t  
B  n
( S  n p k
( D A )  
- = -  
B  
fl  
C  
T I
( S  
A p
k o  
A
)

B
i 
n
p
k
(
i
)
A  
=
0
,  
s
o  
t
h
a
t  
i
n  
f
a
c
t  
t
h
e  
s
o
d
e  
o
f  
B  
i
s  
j
u
s
t  
P
.  
H
e
n
c
e
,  
b
y  
t
h
e  
m
a
x
i
m
a
l
i
t
y

of B
i ,  
i t  
f
o l
l o
w
s  
t
h
a
t  
B  
B
i
;  
t
h
e
r
e
f
o
r
e  
U
=  
C
/
B
i
.  
N
o
w  
i
f  
E  
i
s  
a
n
y  
s
u
b
g
r
o
u
p  
o
f  
A

such that B
i
- < E ,  
t h e
n  
E l  
B
i  
fl
U  
=  
E /
B
i  
C
/
B
i  
>
-  
0
,  
a
n
d  
s
o  
E
F
I
C
B
i
:  
i
t  
f
o
l
l
o
w
s

that E n p k
(
i )A  > -  
O .  
T h u
s  
B
i  
i
s  
m a
x i
m a
l  
a
m
o
n
g  
a
l
l  
t
h
e  
s
u
b
g
r
o
u
p
s  
o
f  
A  
w
h
i
c
h  
i
n
t
e
r
s
e
c
t

p k
(1
)A  
i
n  
0
,  
s
o  
t
h
a
t  
a  
L
e
m
m
a  
o
f  
M
.  
E
R
D
É
L
Y
I  
(
L
e
m
m
a  
I  
i
n  
[
3
]
;  
o
r
,  
t
h
e  
m
a
i
n  
s
t
e
p

in the proof of Theorem 24. 8 in  FUCHS [1]) proves that B
i i s  a  d i r e c t  
s u m m a n d

of  A.
Hence the union of the B
i i s  p u r e  
i n  A  
[ e .  
g .  
b y  
F )  
o n  
p .  
7 7  
i
n  
F U
C H
S  
[ 1
] ]
;  
a
n
d

it contains the union o f  the P ,  which is the whole sode o f  A; so that in fact
(B
i
:  
1  
c
o
)  
A  
[
e
.  
g
.  
b
y  
K
)  
o
n  
p
.  
7
8  
i
n  
F
U
C
H
S  
[
l
a  
P
u
t  
B
1  
=
1
3
1  
,  
a
n
d  
a
p
p
l
y
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the Lemma (with X  = B
i ,  / T =  B
i
)  t o  
o b t a i
n  
a n  
a d m i s
s i b l e  
c o m p
l e m e
n t  
B
i
+

for each B
i  i n  
t h e  
c o r r
e s p
o n d i
n g  
B
i
, ,
.  
T
h
e
n  
i
t  
f
o
l
l
o
w
s  
r
e
a
d
i
l
y  
t
h
a
t  
B
i

= ( B
1  
f
o
r  
e
v
e
r
y  
j
,  
a
n
d  
s
o  
A  
=  
(
B  
c
o
)  
=  
[
I  
C
B
'
:

co] -= ( B i  : c o ) .  Here  a l l  the B
i  a r e  a d m i s s i b l e  
s u b g r o u p s ,  
a n d

npkii)A -
- B
i
n p k
(
i
)
A  
=
0  
s
h
o
w
s  
t
h
a
t  
t
h
e
y  
a
r
e  
a
l
l  
b
o
u
n
d
e
d  
s
u
b
g
r
o
u
p
s  
a
s

well.
(K) I f  A is  a  direct sum o f  cyclic p-groups, the Theorem is  true.

PROOF. In view of (J), it  may be assumed that A is bounded; say, p"A =O. Let
The sode of A be S. For i = l ,  n ,  let T
i b e  a n  
a d m i s s i b l e  
c o m p l e m e n t  
o f  
S n p i A

in S n p i
- 1
A ;  
s u c
h  
c o m
p l e
m e
n t s  
e
x i
s t
,  
f
o
r  
e
a
c
h  
S
n
p
i
A  
a
n
d  
S
n
p
i
-
l
A  
i
s  
c
h
a
r
a
c
-

teristic in A and is therefore admissible, and each subgroup of S is a direct summand
in every subgroup o f  S which contains it, so that the Lemma can be applied to
X — S npi A, Y  S n p
1 - 1
A .  T h e n  
S  
=  T
1  
+  
+ T
,  
a n
d  
S  
+  
+  
T
i
+

+ n p
i
A )  
f o
r  
e v
e r
y  
i
.  
A
s  
i
n  
t
h
e  
p
r
o
o
f  
o
f  
(
J
)
,  
o
n
e  
c
o
n
s
t
r
u
c
t
s  
a
d
m
i
s
s
i
b
l
e  
s
u
b
g
r
o
u
p
s

B', B "  such that

(1(1) A  =  B
1  +  . . . +  B " ,the socle o f  _8' + + B  is  precisely T,  + +  T
i
,  a n d(K2) B i  npi A =- 0,
whenever I

One checks that the sode of Bi is precisely T
i
,  a n d  t h a t  
a s  
f o l l o w s .

The assertion is trivial for i= 1 ;  in  fact, = T
t
.  L e t  1  
a n d  t  
e  T
i
.  T h e n

t E p
1 - 1
. 4 ;  
s
a
y ,  
t  
=
p i
-
l a
,  
a  
A
.  
W
r
i
t
e  
a  
a
s  
b
i  
+  
+  
b
„
,  
a
c
c
o
r
d
i
n
g  
t
o  
(
K
1
)
.  
B
y  
(
K
2
)
,

_  p
i -
l b  
i  
1
_
0
,  
s
o  
t
h
a
t

(K3) t  p
i - l
a  ,  
+  p
i - 1  
b
n .

On the other hand, (K3) is a decomposition of t corresponding to (K1), and t E B
1 ++ Bi, so that one must have t = p i

-
l - b
i
.  T h i s  
p r o v e s  
t h a t  
S i n c
e

now the sode o f  Bi cmtains T
i  a n d  i s  
c o n t a i n e d  
i n  
T ,  
+  
+  T
i
,  
i t  
i s  
i n  
f a c
t

T
i
+
[
B
i  
n  
(
T
1  
+  
+  
T
i  
_
1
)
]
;  
b
u
t  
B
i  
(
T
1  
+  
+  
T
i
_  
1
)  
B
i  
n
(
B
1  
+  
+  
=  
0
,

and so the socle of Bi is precisely T
i
.  A l s o ,  ( K 2 )  
i m p l i e s  
t h a t  
p  
( p  
-
t  
1 B i ʻ

)  0 ,  s o  t h a t

the converse inclusion has already been seen, so that
It follows that every non-zero element in the sode o f Bi is o f  height i— 1 in

so that Bi is a direct sum of isomorphic cyclic groups of order pi. This and (K1)
imply that it  can be assumed without loss of generality that A is a direct sum of
isomorphic cyclic groups; each of order pm, say. The proof will be completed under
this additional hypothesis.

, I n  view of (F), the sode S of A is a direct sum o f finite, admissible, G-inde-
composable subgroups T,. According to (G), each T is the sode of some admissible,
G-indecomposable direct summand B, o f A. The B, are then also direct sums of
cyclic groups of order pm, as is every direct summand of A; the subgroup generated
by the B, is their direct sum, and it contains the whole sode S of A: it is also a direct
sum of cyclic groups of order pm, so that it must be the whole of A. Finally, each
B
2
.  
i
s  
f
i
n
i
t
e
,  
f
o
r  
i
t
s  
s
o
d
e  
T
,  
i
s  
f
i
n
i
t
e
.
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The steps (B),  (E),  (H),  (I ),  ( K )  together prove the Theorem.

Remark A f t e r  the preparat ion o f  the paper had been completed, PROFESSOR
REINHOLD BAER k indly  called the attent ion of  the author to the fact that a combi-
nation of  results of  KULIKOV and KAPLANSKY implies that  every direct  summand
of  A is  a direct s um of  groups o f  rank one; this would a l low some minor cuts
in the present proof .
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