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Direct complementation in groups with operators
To Professor REINHOLD BAER on his 60th birthday

By

L. G. Kovacs and M. F. NEwWMAX

1. One of the starting points of the theory of ordinary representations is Maschke’s
Theorem, which states that every representation of a finite group over a field whose
characteristic does not divide the order of the group is completely reducible (see e.g.
VAN DER WAERDEX [4], p. 182). The main step in the proof of this theorem is of much
wider application. In the theory of groups with operators (in the sense of KurosH 3],
§ 15) it can be used to prove a result on direct complementation: If 4 is a group and G
a finite group of operators of 4, then every G-admissible direct factor of 4 whose
centre is in a sense prime to the order of G has a G-admissible direct complement in 4
(Lemma 2.1 and Theorem 2.2).

Another investigation [2] led us to ask whether the restriction that G be finite could
be weakened. It is easy to construct examples (which we, therefore, omit) to show
that this is unlikely unless there is some compensating strengthening of or addition to
the other conditions of the theorem. We present a result in this direction: roughly
speaking, it says that, for direct factors whose centres are in a sense small, the same
conclusion holds whenever the group of operators is periodic with finite central factor
group (Theorem 3.2).

The paper is concluded with an example due to B. H. NEumany. This shows the
falsity of the proposition which is obtained from Theorem 3.2 when “periodic with
finite central factor group’” is replaced by ““‘countable, metabelian, and of exponent 4.
There remains a considerable gap between Theorem 3.2 and this negative result. For
instance, we do not know what happens if the replacement is chosen as ‘“‘nilpotent of
class 2, and of finite exponent’ : is the statement so obtained true or false ?

We thank Professor NEUMANN for his example.

2. In this and in the following section, we use additive notation in “‘ordinary”
groups and multiplicative notation in groups of operators. If § is a set of operators of
agroup 4, if s€ .8 and a € 4, the composition of a and s is written as as.

Let I] be a set of prime numbers. As usual, a group is called a I7-group if it is periodic
and if each prime which occurs as the order of an element of this group belongs to /1.
We call a group n-aperiodic if it has no element (other than the identity) whose order is
a divisor of n.

In order to ease the formulation of the first result of this paper, we do it in two
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parts: first, a simple lemma which reduces the problem to the abelian case, and then,
the theorem dealing with this case.

2.1. Lemma. Let 4 be a group and G a group of operators of A; let D be a G-ad-
missible subgroup which is a direct summand of A (qua group without operators); let Z
be the centralizer of D in A, and denote Z N D by C. Then Z, C, Z' (the commutator sub-
group of Z), Z|Z', (C + Z')|Z' are all G-admissible; CNZ = 0; (C + Z')|Z" is a
direct summand of Z|Z' ; and D has a G-admissible direct complement in A if and only if
(C + Z')|Z' has one in Z[Z'.

The proof of this is quite straightforward, and we omit it.

2.2. Theorem. Let A be an abelian group and G a finite group of operators of A ; let the
order of G be mn; let D be a G-admissible subgroup which is a direct summand of A
(qua group without operators) ; and let A be divisible by m, D divisible also by n, A|D
m-apertodic, and D n-aperiodic. Then D has a G-admissible direct complement in A.

Proof. Let A=B + D be a direct decomposition and §: 4 — D the correspond-
ing projection onto D (i.e.,if ac 4, a=b+d, be B, de D, let ad = d). Define a
mapping 7 : 4 — D by postulating that n(an) = Z (ag~1dg:ge &). Such an ele-
ment ax always exists in D, for the right hand side is in D and D is divisible by =.
Also, for any two elements z, ¥ of the n-aperiodic abelian group D, nz = ny implies
that x = y; so a=x is uniquely determined by this formula. It is easy to check that =
is an endomorphism of 4. Moreover, if & is an arbitrary element of G,

n{{ah)m) = Z (@ahg18g:9e @) = Z (a(gh1)"16(gh1):gh e Yh =n{an)h;

for, as g runs through the elements of @, so does gk-1, and vice versa. Thus (ak)n =
= (az)h for every h in G, and so the kernel K of m is G-admissible. If d € D, then
n(dn) = > (d:g€ @) = mnd, so that d= =md. Hence Dx =mD =D = An,
and KN D =set(deD:md=0). From this it follows that 4 = D -~ K; for if
ast = dx, then @ — d € K. Now K/(K N D), being isomorphic to (D + K)/D and so
to 4/D, is m-aperiodic, while the order of each element of KX m D divides m; hence
K N D is a bounded pure subgroup of X. It follows now from a theorem of KvLIKOV
(Theorem 24.5 in Fucas [1]) that X N D is a direct summand of X ; let

K = (KN D)~ D*

be a direct decomposition. Then also 4 = D + D* and D N D* = 0; consequent-
ly D* is isomorphic to 4/D and so it is divisible by m. Thus

[mK = m(K N D) + mD* = mD* = D*

which shows that D* is a characteristic subgroup of the G-admissible X, so that
D* is also G-admissible — in D* we have the required complement for D.

2.3. Remark. If I is a set of operators of A. if D and B are both I-admissible, and if
axg = agzx foreveryain A,z in I, and g in G, then D¥* is also I-admissible.

This follows immediately from the way D* was chosen: one notes first that in this
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case (ad)x = (ax)d and hence (axr)x = (azx)a for every ain A and z in I; thus K is
I-admissible, and therefore m K, or D¥*, is also I-admissible.

2.4. Corollary. If an abelian group A is divisible by all the primes which occur as
orders of elements in this group, then its mazimal periodic subgroup D has an admissible
direct complement in 4 with respect to every finite group G of operators.

(Of course, this complement need not be the same for every such G.) This follows
as D is divisible and hence, according to a theorem of BaEr (Theorem 18.1 in FtcHs
[1]), it is a direct summand of 4, and » can be chosen as the largest divisor of the
order of G for which 4 is n-aperiodic.

3. A group is called G-monolithic if G is a set of operators of this group and if the
intersection of all the non-trivial G-admissible normal subgroups of the group is non-
trivial; this intersection is then the G-monolith of the group.

3.1. Lemma. Let C be a G-monolithic abelian group, and suppose that G is a I1-group
with finite central factor group, while the G-monolith M of C is not a Il-group. Then C is
the direct sum of isomorphic, locally cyclic, p-groups for some prime p not in I, and only
the characteristic subgroups of C are G-admissible.

Proof. (a} First, let us discuss the structure of M. If N is a characteristic subgroup
of M, then N is also a G-admissible subgroup of C and so, according to the definition
of M as G-monolith, N is either trivial or it contains and hence equals M. Thus M is
a characteristically simple abelian group, i.e., either an aperiodic divisible abelian
group or an elementary abelian p-group for some prime p (which, by our assumption
that M is not a IT-group, cannot be in IT). We eliminate the first possibility as follows.
Suppose that M is aperiodic and z is a non-trivial element of M. The subgroup gene-
rated by the elements zg where g runs through @ is a G-admissible non-trivial sub-
group of C'; hence it is 3. As in this case M is divisible, it has an element z; such that
2z, = x; by what has been said, this z; must be expressible as Z ngxg where g runs
through some finite subset S, of G and the nq are integers. For ¢ = 1, define ;41
inductively by z;41 = Z (ngx;g : g € 8g). It is easy to see, by a straightforward in-
duction on 7, that 2x;,, = 2; for ¢ = 1, 2, ... . Now the subgroup generated by the x;
is abelian and divisible by 2; as such, it cannot be finitely generated ; on the other hand,
it is contained in the abelian subgroup generated by the finitely many elements zg
with g € S;. This contradiction completes the elimination; so we conclude that M is
an elementary abelian p-group for some prime p not in I7.

(b) We have to introduce some further terms. Let it be recalled that every element
g of G induces an automorphism ¢ —cg on C. The automorphisms induced by the ele-
ments of a subgroup H of G generate a subring in the ring of endomorphisms of C. We
call this subring the associate of H, and consider it a ring of operators rather than of
endomorphisms. Note that a subgroup of C is H-admissible if and only if it is
admissible with respect to the associate of H. The associate of G will be denoted by R,
and the associate of the centre I of @ by §; clearly, S is in the centre of R.

(c) As G is periodic and its central factor group is finite, it follows that G is locally
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finite; moreover, there is a finite subgroup F in G which together with I generates G.
Also, each element. r of R is contained in the associate of some finite subgroup G, of G.

(d) If ¢ is a prime other than p, the maximal ¢-subgroup of C is a characteristic and
therefore G-admissible subgroup which avoids M, hence it must be trivial. Thus the
maximal periodic subgroup P of C is a p-group.

(e) Let L be the lowest layer of P, i.e., the subgroup consisting of the elements
whose orders divide p; then M is contained in L. Suppose that M s = 0 but Ls =0
for some element s of 8. Clearly, Lsis R-admissible and so it contains M. Let G5 be a
finite subgroup of G whose associate contains s. By Theorem 2.2, M has a Gs-ad-
missible direct complement M* in L. Since Ms =0 and L = M + M*, it follows
that Ls = M*s, and so M* = M*s = Ls = M. This is a contradiction; therefore
Ms = 0 implies that Ls = 0.

(f) Let 0 = x € L; we claim that in this case xS is a minimal S-admissible subgroup.
The proof runs as follows. Let T be the ideal of § which consists of the annihilators of
M in S;then p8 C T. If sis an element of S but not of 7', then the kernel of s does not
contain M though it is B-admissible, hence this kernel must be trivial. The subgroup
M s is non-trivial and also R-admissible, so it must equal M. Consequently s induces
an automorphism on M. Hence the multiplicative semigroup of (the non-zero ele-
ments of) S/T is faithfully represented in the automorphism group of M. Now s is
contained in the associate U of some finite subgroup G5 of the centre I of G; this U,
and hence also U/(U N T), is additively generated by finitely many elements; more-
over, p(U/(U N T)) = 0, so that U{U N T) is finite. Thus the multiplicative semi-
group of (U + T)/T is faithfully represented by a finite sub-semigroup of the auto-
morphism group of M, i.e., by a subgroup of this group, and so s has an inverse &’
modulo T': ss' = 1 + £ where 1 is the identity of S and ¢t ¢ 7. Now if xs is a non-zero
element of 8, then Ls + 0 and hence, according to (e), M s + 0, that is, s ¢ 7. Thus
we are in the situation discussed above: there is an s’ in S and a ¢ in T such that
ss' =1+ t. Again by (e), Mt =10 implies that Lt = 0. So zss’ = z, and this
shows that the smallest S-admissible subgroup which contains zs (i.e., 2sS) will also
contain z'and hence equal #S. As xs was arbitrary, it follows that xS is a minimal
S-admissible subgroup. :

(g) We are ready to prove that M = L. Let N be a subgroup of L maximal with
respect to avoiding M and being S-admissible. If x € L, z ¢ N, then 28 £ N and so,
according to (f), x8 N N = 0. On the other hand. by the maximality of N, the sub-
group generated by N and xS intersects M non-trivially: we have 0 +zs + y =
=ueM for some s€S and yeN. Thus s =u —ye M + N and zs =0 (for
MNN=0); s0 2SN (M + N)=+0. Another reference to (f) confirms now that
rexS £ M + N, andsoit followsthat L = M + N. We have shown that M has an
S-admissible, i.e., J-admissible, direct complement N in L. Hence Theorem 2.2 with
its amendment 2.3 implies that N can be chosen to be also F-admissible; as I and F
generate G, this NV will be a G-admissible subgroup which avoids M and must there-
fore be trivial. Hence indeed L = M - N = M.

(h) The structure of P is now easily described. The elements of M whose height in
P (see e.g. Fuons [1], p. 16) is at least & where k is a non-negative integer or infinity
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form a characteristic and therefore G-admissible subgroup in C; hence all the non-zero
elements of M are of the same height in P. If this common height is infinity, then P
is divisible and so a direct product of groups of type C(p*); while if it is a finite number
k — 1, then Pis the direct product of cyclic groups of order p*. For every non-negative
integer 1, let P; be the subgroup of P generated by (and consisting of) the elements of
order at most pt. These and P are all the characteristic subgroups of P, and they are
also the only G-admissible ones: for, if B were another G-admissible subgroup of P,
there would be an integer ¢ such that P; < B but P;;) £ B, and then p BN M
would be a proper non-trivial G-admissible subgroup in 3, and this is impossible.

(i) It follows that P is a direct summand of C; for P is either a divisible or a bounded
pure subgroup of C, and so either a theorem of BAER or one of KtLkov (Theorem 18.1
or 24.5 in Fucas [1]) applies.

(j) If M is in fact an S-monolith of C, then P = C and so the conclusion of the
lemma holds. In order to see this, assume that M is the S-monolith of C and consider
an arbitrary non-zero element ¢ of C'; we have to show that ¢ P. As ¢S is a non-
trivial S-admissible subgroup, M < ¢S and so 0 + ¢s € M for some s in S. Suppose
that Ps = 0. Let G, be a finite subgroup of G such that s is contained in the associate
of Gs; then (i) and Theorem 2.2 imply that P has a Gs-admissible direct complement
P* in C. Then cse (s = (P 4 P*¥)s = P*s < P* follows, contrary to 0 +cse
e M < Pand PN P* = 0. Hence Ps =0, so that the periodic part of the kernel X
of s is a proper R-admissible subgroup of P, say it is P;. Then p*K is an R-admissible
subgroup which, being aperiodic, avoids M and therefore must be trivial. It follows
that K < P. Moreover, Ps is a non-trivial R-admissible subgroup, so it contains M
and a fortiori ¢s. If now y € P and ys = c¢s, then y — ce K < P implies that ce P,
as required. '

(k) The G-monolith M is the direct sum of finitely many minimal S-admissible sub-
groups M, ..., M. The key to this step is (f). Let « be an arbitrary non-zero ele-
ment of M, and let N be the subgroup generated by the subgroups xS for all f in F.
Then N is I-admissible and also F-admissible, so it is G-admissible and hence equal
to M. According to (f), the zf.S are minimal S-admissible subgroups. If Fy is a sub-
set of F maximal with respect to the sum Z (8 : f € Fy) being direct, then

zf' SN Y (xfS:feFo)

must be non-trivial for each f in F/Fy; this intersection is also an S-admissible sub-
group of the minimal S-admissible subgroup zf'S, so

2f'S < 3 (fS: f € Fo)
for every ' in F, and the result follows.

(1) It is easy to dispose of the case when P has finite exponent, say P = P;. For
then p¢C is a G-admissible subgroup which, being aperiodic, avoids M ; so we deduce
that p?C = 0, whence C = P, and so C has the claimed structure.

(m) So we may assume that P is divisible. Let Cobe C,and define Cifori =1,... k
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inductively as a subgroup of C;-; maximal with respeet to being S-admissible, avoid-
ing M;, and containing M-y -+ -+ + M, (if ¢ < k). It is easy to check that each
C;-1/C; is S-monolithic and its S-monolith is (M; — C;)/C;. Hence (g) and (j) apply
to each of these factors (with I in place of @): the C;-1/C; are p-groups and their
lowest layers are the (M; + C;)/C;. Tt follows that C/Cy is a p-group and its lowest
layer is (M + C;)/Cx. As Cy avoids M, it avoids P. The divisible group (P + Ci)/Cx
is contained in the p-group C/C} and their lowest layers are the same, hence

(P + Ci)[Cr = O]Ck,

and so P + Cy = C. This means that P has an S-admissible, i.e., I-admissible direct
complement Cy in C. We invoke again Theorem 2.2 and Remark 2.3 to prove that C
can be chosen to be also F-admissible and hence G-admissible. However, it will al-
ways avoid M, and so it must be trivial. Thus indeed C = P 4 Cx = P. According
to (h), this completes the proof of the lemma.

3.2. Theorem. Let 4 be a group and G a group of operators of A ; suppose that G is a
II-group with finite central factor group; and let P be a G-admissible subgroup and a
direct summand of A, such that the centre C of D is either trivial or has a G-monolith
which ts not a II-group. Then D has a G-admissible direct complement in A.

Proof. Lemma 2.1 allows us to restrict our attention to the case when A4 is abelian
and C, that is now D, is G-monolithic. The structure of C is given to us by Lernma 3.1.
Let B be a subgroup of 4 maximal with respect to being G-admissible, avoiding C,
and containing p* 4 if C has finite exponent p?. Let us consider 4/B; it will be con-
venient to denote this factor group by 4, and in general to use the bar to denote images
under the natural homomorphism of 4 onto 4. Every non-trivial G-admissible subgroup
of 4 has non-trivial intersection with ¢ and hence contains the G-monolith 3 of €, so
that M is the G-monolith of 4. Thus Lemma 3.1 can be applied to 4 (in place of C);
we obtain from this that 4 is a p-group and its lowest layer is 7. Now 4 contains the
subgroup C which has the same lowest layer as 4 ; moreover, C is either divisible or
the direct sum of cyclic groups of order p%; in the second case the exponent of 4 is
also p*; hence, in either case, it follows that ¢ = 4. Thus 4 = B < C, and this sum
is direct.

4. We conclude the paper with the example promised in the introduction.

In this section it is more convenient to use multiplicative notation in all groups,
and correspondingly to denote the composition of an element a (of an “ordinary”
group) and an operator s as af.

Let X =gp(w, z;wt=23=1, 2 =22 and Y =gp(y1.¥2,--; ¥ = L, iy = ¥%:);
X is a symmetric group of degree 3 and Y is a countably infinite group of exponent 2.
The unrestricted direct power XDp ¥ of X indexed by Y is the group whose elements
are the functions f:y — f(y) from Y to X and whose multiplication is defined by
(ff) (y) = f()f (y) for every y in Y. The support of an element f of XDp Y is the
subset, of Y consisting of all those elements on which the value of f is different from 1.
The restricted direct power Xdp Y is a subgroup of XDp Y, namely the one formed
by the elements of finite support. If 2= Y and fe XDpY, let fz be the element of
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X Dp Y defined by f2(y) = f(yz~1) for every y in Y. The set of all formal products yf
where y € Y and fe X Dp Y is a group, called the unrestricted abstract wreath pro-
duct XWrY of X and Y. under the multiplication (yf) (¥'f) = (yy’) (f*'f’). The
corresponding restricted abstract wreath product X wr Y is the subgroup of X Wr Y
which consists of the yf with fe Xdp Y.

Let B be the subgroup of X Wr Y generated by X wr Y and the element 1f; which
is such that fo(y) = « for every y in Y. It is easy to verify that B has a normal Sylow
3-subgroup A4, and that the Sylow 3-subgroup D of X wr Y is contained in every non-
trivial normal subgroup of B. As 4 is elementary abelian, D is a direct factor of 4;
and of course D is normal in B. The factor group B/4 is countable, metabelian, and
has exponent 4. Let this group be called &, and make it into a group of operators of 4
by defining a4? as b-1ab; as A4 is abelian, this definition is independent of the choice
of the representative b within the coset 4 b. It follows now that D is the G-monolith
of A; hence D is itself G-monolithic, and it cannot have a G-admissible complement
in 4.
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