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Direct complementation in groups with operators 

To Professor REI~-aOLn BA~-R on his 60th birthday 

By 

L. G. Kov.~cs and M. F. NExwIx_,r 

I. One of the starting points of the theory of ordinary representations is ~Iaschke's 
Theorem, which states that  every representation of a finite group over a field whose 
characteristic does not divide the order of the group is completely reducible (see e.g. 
VA~ DE~ WAE~DE~ [4], p. 182). The main step in the proof of this theorem is of much 
wider application. In the theory of groups with operators (in the sense of KUROS~ [3], 
w 15) it, can be used to prove a result on direct complementation: I f A  is a group and G 
a finite group of operators of A, then every G-admissible direct factor of A whose 
centre is in a sense prime to the order of G has a G-admissible direct complement in A 
(Lemma 2.1 and Theorem 2.2). 

Another investigation [2] led us to ask whether the restriction that G be finite could 
be weakened. I t  is easy to construct examples (which we, therefore, omit) to show 
that this is unlikely unless there is some compensating stren~hening of or addition to 
the other conditions of the theorem. We present a result in this direction: roughly 
speaking, it says that, for direct factors whose centres are in a sense small, the same 
conclusion holds whenever the group of operators is periodic with finite central factor 
group (Theorem 3.2). 

The paper is concluded with an example due to B. H. NEustAdt. This shows the 
falsity of the proposition which is obtained from Theorem 3.2 when "periodic with 
finite central factor group" is replaced by "countable, metabelian, and of exponent 4". 
There remains a considerable gap between Theorem 3.2 and this negative result. For 
instance, we do not know what happens if the replacement is chosen as "nilpotent of 
class 2, and of finite exponent":  is the statement so obtained true or false ? 

We thank Professor NEUM.',NN for his example. 

2. In this and in the following section, we use additive notation in "ordinary" 
groups and multiplicative notation in groups of operators. I f  S is a set of operators of 
a group A, if s e S and a e A, the composition of a and s is written as as. 

L e t / / b e  a set of prime numbers. As usual, a group is called a H-group if it is periodic 
and if each prime which occurs as the order of an element of this group belongs t o / / .  
We call a group n-aperiodic flit has no element (other than the identity) whose order is 
a divisor of n. 

In order to ease the formulation of the first result of this paper, we do it in two 
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pa r t s  : first, a simple l emma  which reduces  the  p rob lem to the  abel ian  case, and  then,  
the  theorem deal ing wi th  this  case. 

2.1. Lemma.  Let A be a group and G a group o/operators o / A  ; let D be a G-ad- 
missible subgroup which is a direct summand of A (qua group without operators) ; let Z 
be the centralizer o[D in A,  and denote Z n D by C. Then Z, C, Z'  (the commutator sub- 
group of Z) ,  Z/Z', (C -k. Z')/Z' are all G-admissible; C ~ Z'  = O; (C -b Z')/Z" is a 
direct summand o/Z/Z '  ; and D has a G-admissible direct complement in A i /and  only i/ 
(C q- Z')/Z'  has one in Z/Z'.  

The proof  of  this  is qui te  s t ra igh t forward ,  and  we omi t  it .  

2.2. Theorem. Let A be an abelian group and G a finite group o[ operators o / A  ; let the 
order o] G be ran; let D be a G-admissible subgroup which is a direct summand of A 
(qua group without operators) ; and let A be divisible by m, D divisible also by n, A /D  
m-aperiodic, and D n-aperiodic. Then D has a G-admissible direct complement in A.  

P r o o f .  I ~ t  A = B  + D be a d i rec t  decomposi t ion  and 5 : A --> D the  correspond-  
hag pro jec t ion  onto D (i.e., i f  a e A,  a ---- b -k d, b �9 B, d �9 D, le t  a5  = d). Define a 
mapp ing  g : A --> D b y  pos tu la t ing  t h a t  n(ag) = ~ (ag-l(~g : g e G). Such an ele- 
men t  a,x a lways  exists  in D, for the  r igh t  hand  side is in D and  D is d ivis ible  b y  n. 
Also, for a n y  two e lements  x, y of the  n-aper iodic  abel ian  group D, n x  ----- n y  implies  
t h a t  x = y ; so a,x is un ique ly  de t e rmined  b y  th is  formula .  I t  is easy to  check t h a t  
is an  endomorph ism of  A.  Moreover,  ff h is an a r b i t r a r y  e lement  of  G, 

n ((a h) :~) = ~ (a h g-1 ~ g : g �9 G) ---- ~ (a (g h - l )  -1 (5 (g h -1) : g h -1 �9 G) h = n (a g) h; 

for, as g runs  th rough  the  e lements  of  G, so does gh -x, and  vice versa.  Thus  (ah)g = 
= (ag)h for  every  h in G, and  so the  kernel  K of  g is G-admissible.  I f  d �9 D, then 
n ( d g ) =  ~ ( d : g � 9  so t h a t  d g - - - - m d .  Hence D r e = m D = D = A 7 ~ ,  
and  K c~ D = set ( d e  D : m d  = 0). F r o m  this  i t  follows t h a t  A = D ~- K ;  for  i f  
a ~  ---- d g ,  t hen  a - -  d E K.  Now K / ( K  ~ D), being isomorphic  to  (D -i- K) /D and  so 
to  A/D, is m-aperiodic,  while the  order  of  each e lement  of  K ch D divides  m; hence 
K ch D is a bounded  pure  subgroup of  K.  I t  follows now from a theorem of  KIrLrKOV 
(Theorem 24.5 in F~CHS [1]) t h a t  K (~ D is a d i rec t  s u m m a n d  of  K ;  let  

K = ( K N  D) § D*  

be a direct  decomposi t ion.  Then also A = D q- D* and D n D* = 0; consequent-  
ly  D* is i somorphic  to  A/.D and  so i t  is divisible  b y  m. Thus  

[ m K  = m ( K  ~ D) + mD* = mD* = D* 

which shows t h a t  D* is a charac te r i s t ic  subgroup  of  the  G-admissible  K,  so t h a t  
D* is also G-admissible  - -  in D* we have  the requi red  complement  for D. 

2.3. Remark .  I / I  is a set o/operators o[ A, i[ 1) and B are both I-admissible, and i/ 
axg = agx  for every a in A,  x in I, and g in G, then D* is aleo I-admissible. 

This follows immed ia t e ly  f rom the  w a y  D* was chosen : one notes  first t h a t  in this  
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case (a 5)x ---- (ax)5 and hence (ag) x : (ax)~ for every a in A and x in I ;  thus K is 
/-admissible, and therefore inK,  or D*, is also/-admissible. 

2.4. CoroUary. I / a n  abelian group A is divisible by all the primes which occur az 
orders o/elements in this group, then its maximal periodic subgroup D has an admissible 
direct complement in A with respect to every finite group G o/operators. 

(Of course, this complement need not be the same for every such G.) This follows 
as D is divisible and hence, according to a theorem of B A ~  (Theorem 18.1 in FUCHS 
[1]), it is a direct summand of A, and n can be chosen as the largest divisor of the 
order of G for which A is n-aperiodic. 

3. A group is called G-monolithic if G is a set of operators of this group and if the 
intersection of all the non-trivial G-admissible normal subgroups of the group is non- 
trivial ; this intersection is then the G-monolith of the group. 

3.1. Lemma. Let C be a G-monolithic abelian group, and suppose that G is a II-group 
with finite central/actor group, while the G-monolith M o /C  is not a H-group. Then C is 
the direct sum o/isomorphic, locally cyclic, p-groups/or some prime p not in I1, and only 
the characteristic subgroups o / C  are G-admissible. 

P r o  o f. (a) First, let us discuss the structure of M. I f  N is a characteristic subgroup 
of M, then N is also a G-admissible subgroup of C and so, according to the definition 
of M as G-monolith, .u is either trivial or it contains and hence equals M. Thus M is 
a characteristically simple abelian group, i.e., either an aperiodic divisible abelian 
group or an elementary, abelian p-group for some prime p (which, by our assumption 
that  M is not a/ / -group,  cannot be in / / ) .  We eliminate the first possibility as follows. 
Suppose that  M is aperiodic and x is a non-trivial element of M. The subgroup gene- 
rated by the elements xg where g runs through G is a G-admissible non-trivial sub- 
group of C; hence it is M. As in this case M is divisible, it has an element xl such that 
2xl --~ x; by what has been said, this xl must be expressible as ~ ngxg where g runs 
through some finite subset Sx of G and the n 9 are integers. For i ~ 1, define x~+l 
inductively by x~+l ~ ~ (nax~g : g ~ Sx). I t  is easy to see, by a straightforward in- 
duction on i, that  2xi+l ---- xi for i --~ 1, -,o . . . .  Now the subgroup generated by the x~ 
is abelian and divisible by 2; as such, it cannot be finitely generated; on the other hand, 
it is contained in the abelian subgroup generated by the finitely many elements xg 
with g e Sx. This contradiction completes the elimination; so we conclude that  M is 
an elementary abelian p-group for some prime p not i n / / .  

(b) We have to introduce some further terms. Let it be recalled that  every element 
g of G induces an automorphism c-->cg on C. The automorphisms induced by the ele- 
ments of a subgroup H of G generate a subring in the ring of endomorphisms of C. We 
call this subring the associate of H, and consider it a ring of operators rather than of 
endomorphisms. Note that  a subgroup of C is H-admissible if and only if it is 
admissible with respect to the associate of H. The associate of G will be denoted by R, 
and the associate of the centre I of G by S; clearly, S is in the centre of R. 

(c) As G is periodic and its central factor group is finite, it follows that  G is locally 



430 L.G. Kov~.cs and M. F. NEw.~ax ARCH..~,~rn. 

f inite; moreover, there is a finite subgroup F in G which together with I generates G. 
Also, each element, r of R is contained in the associate of some finite subgroup Gr of G. 

(d) I f  q is a prime other than p, the maximal q-subgroup of C is a characteristic and 
therefore G-a~lmissible subgroup which avoids M, hence it must be trivial. Thus the 
maximal periodic subgroup P of C is a p-group. 

(e) Let L be the lowest layer of P, i.e., the subgroup consisting of the elements 
whose orders divide p ; then M is contained in L. Suppose that  M s  = 0 but Ls  * 0 
for some element s of S. Clearly, L s  is R-admissible and so it contains M. Let Gs be a 
finite subgroup of G whose associate contains s. By Theorem 2.2, M has a G~-ad- 
missible direct complement M* in L. Since M s  = 0 and L = M ,'-- M*, it follows 
that  L s  = M ' s ,  and so M *  ~= M * s  = L s  ~ M.  This is a contradiction; thereforc 
Ms  = 0 implies that  L s  = O. 

(f) Let 0 ~ x e L; we claim that in this case x S  is a minimal S-admissible subgroup. 
The proof runs as follows. Let T be the ideal of S which consists of the annihilators of 
M in S; then p S C T. I f  s is an element of S but not of T, then the kernel of s does not 
contain M though it is R-admissible, hence this kernel must be trivial. The subgroup 
M s  is non-trivial and also R-admissible, so it must equal M. Consequently s induces 
an automorphism on M. Hence the multiplicative semigroup of (the non-zero ele- 
ments of) S / T  is faithfully represented in the automorphism group of M. Now s is 
contained in the associate U of some finite subgroup Gs of the centre I of G; this U, 
and hence also U/(U n T), is additively generated by finitely many elements; more- 
over, p ( U / ( U  ~ T)) = O, so that U/(U n T) is finite. Thus the multiplicative semi- 
group of (U + T ) / T  is faithfully represented by a finite sub-semigroup of the auto- 
morphism group of M, i.e., by a subgroup of this group, and so s has an inverse s' 
modulo T : ss'  ~ 1 ~- t where 1 is the identity of S and t e T. Now if x s  is a non-zero 
element of x S ,  then L s .  0 and hence, according to (e), M s .  0, that  is, s ~ T. Thus 
we are in the situation discussed above: there is an s' in S and a t in T such that  
s s ' - ~  1 + t .  Again by (e), M t = O  implies that  L t = O .  So x s s ' ~ x ,  and this 
shows that the smallest S-admissible subgroup which contains x s  (i.e., x s S )  will also 
contain x 'and hence equal x S .  As x s  was arbitrary, it follows that  x S  is a minimal 
S-admissible subgroup. 

(g) We are ready to prove that  M = L. Let 2u be a subgroup of L maximal with 
respect to avoiding M and being S-admissible. I f  x e L, x 6 N, then x S  �9 N and so, 
according to (f), x S  n N = 0. On the other hand, by the maximality of N, the sub- 
group generated by 2u and x S  intersects M non-trivially: we have 0 .  x s  + y 
= u e 2 ~ I  for some s e S  and y e N .  Thus x s = u - - y e M + N a n d  x s . O  (for 
M (~ N = 0) ; so x S  n ( M  + N) �9 O. Another reference to (f) confirms now that  
x ~ x S  < M + N,  and so it follows that  L = M + ~V. We have shown that M has an 
S-admissible, i.e., /-admissible, direct complement N in L. Hence Theorem 2.2 with 
its amendment 2.3 implies that  u can be chosen to be also F-admissible; as I and F 
generate G, this N will be a G-admissible subgroup which avoids M and must there- 
fore be trivial. Hence indeed L = M + N = M. 

(h) The structure of P is now easily described. The elements of M whose height in 
P (see e.g. FuoHs [1], p. 16) is at least k where k is a non-negative integer or infinity 
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form a characteristic and therefore G-admissible subgroup in C; hence all the non-zero 
elements of M are of the same height in P. I f  this common height is infinity, then P 
is divisible and so a direct product of gTOUpS of type C (p~) ; while if it is a finite number 
k --  1, then P is the direct product of cyclic groups of order pk. For every non-negative 
integer i, let P~ be the subgroup of P generated by (and consisting of) the elements of 
order at most p~. These and P are all the characteristic subgroups of P, and they are 
also the only G-admissible ones : for, if B were another G-admissible subgroup of P, 
there would be an integer i such that  Pi < B but Pi+l ~ B, and then p~ B n M 
would be a proper non-trivial G-a~tmissible subgroup in M, and this is impossible. 

(i) I t  follows that P is a direct summand of C; for P is either a divisible or a bounded 
pure subgroup of C, and so either a theorem of BAE~ or one of KVLrKOV (Theorem 18.1 
or 24.5 in FVCHS [1]) applies. 

(j) I f  M is in fact an S-monolith of C, then P ~-- C and so the conclusion of the 
lemma holds. In order to see this, assume that M is the S-monolith of C and consider 
an arbitrary non-zero element c o f  C; we have to show that c e P.  As cS  is a non- 
trivial S-admissible subgroup, M ~ cS  and so 0 .  cs e M for some s in S. Suppose 
that  P8 = 0. Let Gs be a finite subgroup of G such that  s is contained in the associate 
of Gs ; then (i) and Theorem 2.2 imply that P has a Gs-admissible direct complement 
P* in C. Then c s e C s = ( P +  P * ) s ~ - - P * s ~ P *  follows, contrary to 0 * c s  
e M _<_ P and P c~ P* = 0. Hence P s  "- O, so that  the periodic part of the kernel K 
of s is a proper R-admissible subgroup of P, say it is P, .  Then p*K is an R-admissible 
subgroup which, being aperiodic, avoids M and therefore must be trivial. I t  follows 
that  K ~ P. Moreover, P s  is a non-trivial R-admissible subgroup, so it contains M 
and afortiori  cs. I f  now y e P and ys  = cs, then y --  c e K ~ P implies tha t  c e P, 
as required. 

(k) The G-monolith M is the direct sum of finitely many minimal S-admissible sub- 
groups M1 . . . . .  M , .  The key to this step is (f). I~ t  x be an arbitrary non-zero ele- 
ment of M, and let N be the subgroup generated by the subgroups x [ S  for all ] in F. 
Then "u is/-admissible and also F-admissible, so it is G-admissible and hence equal 
to M. According to (f), the x / S  are minimal S-admissible subgToups. I f  F0 is a sub- 
set of F maximal with respect to the sum ~ ( x / S  : ] ~ Fo) being direct, then 

x / 'S  c~ ~ (x/S : ! e Fo) 

must be non-trivial for each / '  in _FIFo ; this intersection is also an S-admissible sub- 
~ o u p  of the minimal S-admissible subgroup x / ' S ,  so 

x/'S <= ~ (z/S : I e F0) 

for eve ry / '  in V, and the result follows. 

(1) I t  is easy to dispose of the case when P has finite exponent, say P ---- P~. For 
then pt C is a G-admissible subgroup which, being aperiodic, avoids M; so we deduce 
that pi C ---- O, whence C -~ P,  and so C has the claimed structure. 

(m) So we may assume that  P is divisible. Let Co be C, and define C~ for i = 1 . . . . .  k 
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inductively as a subgroup of C~-1 maximal with respect to being S-admissible, avoid- 
ing M~, and containing M~+I + "'" + M~ (if i < k). I t  is easy to check tha t  each 
C~-I/C~ is S-monolithic and its S-monolith is (Mi -:- Ci)/Ci. Hence (g) and (j) apply 
to each of these factors (with I in place of G): the Ci-1/Ci are p - ~ o u p s  and their 
lowest layers are the (Mi + C~)/Ci. I t  follows tha t  C/C~ is a p-group and its lowest 
layer is (M + C~)/C~. As Ck avoids M, it avoids P. The di~hsible group (P + C~)/Ck 
is contained in the p-group C/Ck and their lowest layers are the same, hence 

(P + Ck)/Ck = C/C~,, 

and so P q- Ck ---- C. This means tha t  P has an S-admissible, i .e. , /-admissible direct 
complement Ck in C. We invoke again Theorem 2.2 and Remark 2.3 to prove tha t  Ck 
can be chosen to be also F-admissible and hence G-admissible. However, it will al- 
ways avoid M, and so it must  be trivial. Thus indeed C = P q- C~ -~ P. According 
to (h), this completes the proof of the lemma. 

3.2. Theorem. Let A be a group and G a group o/operators o / A  ; suppose thal G is a 
H-group with finite central ]actor group ; and let D be a G-admissible subgroup and a 
direct summand o / A ,  such that the centre C o[ D is either trivial or has a G-monolith 
which is not a H-group. Then D haz a G-admissible direct complement in A. 

P r o o f .  Lemma 2.1 allows us to restrict our attention to the case when A is abelian 
and C, tha t  is now D, is G-monolithic. The structure of C is given to us by Lemma 3.1. 
Let B be a subgroup of A maximal with respect to being G-admissible, avoiding C, 
and containing p~A ff C has finite exponent p~. Let  us consider A/B;  it will be con- 
venient to denote this factor ~o-roup by  A, and in general t~ use the bar to denote images 
under the natural  homomorphism of A onto A. Every  non-trivial G-admissible subgroup 
of,4 has non-trivial intersection with C and hence contains the G-monolith M of C, so 
tha t  .~i is the G-monolith of-~. Thus Lemma 3.1 can be applied to A (in place of C); 
we obtain from this tha t  A is a p - ~ o u p  and its lowest layer is ~]~. ,Now _4 contains the 
subgroup C which has the same lowest layer as A; moreover, C is either divisible or 
the direct sum of cyclic groups of order p~; in the second case the exponent of x / i s  
also p~:; hence, in either case, it follows tha t  C = .4. Thus A = B ~- C, and this sum 
is direct. 

3, We conclude the paper  with the example promised in the introduction. 
In  this section it is more convenient to use muttiplicative notation in all ~oups ,  

and correspondingIy to denote the composition of an element a (of an "ordinary" 
~oup)  and an operator s as a s. 

Let  X----gp(w, x; w 2 ~-x  3 = 1, x w ----x z) and Y = g p ( Y l ~ Y 2 , . . . ;  ~ ~- 1, Y~Yj=YjYi); 
X is a symmetric gToup of degree 3 and Y is a countably infinite group of exponent 2. 
The unrestricted direct power X D p  Y of X indexed by  Y is the group whose elements 
are the functions / : y -7 /(y) from Y to X and whose multiplication is defined by 
(/f') (y) ~ - / (y ) f ' ( y )  for every y in Y. The support of an element / of X D p  Y is the 
subset of Y consisting of all those elements on which the value of f is different from 1. 
The restricted direct power X d p  Y is a subgroup of X D p  Y, namely the one formed 
by the elements of finite support. I f  z e Y and [ e X Dp Y, let fz be the element of 
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X D p  Y defined by /Z(y)  = / ( y z - 1 )  for every y in Y. The set of  all formal products  y~ 
where y e Y and / e X Dp Y is a group, called the unrestricted abstract  wreath pro- 
duct  X W r  Y of  X and Y. under  the multiplication (y / )  (y'/ ')  = (yy')  ( /y ' / ' ) .  The 
corresponding restricted abs t rac t  wreath product  X wr Y is the subgroup of X Wr  Y 
which consists of  the y / w i t h  ] e X dp Y. 

Let  B be the s u b ~ o u p  of  X W r  Y generated by X ~-r Y and the element 1/0 which 
is such t h a t / 0  (y) ~ x for every y in Y. I t  is easy to veri~- tha t  B has a normal  Sylow 
3-subgToup A, and tha t  the Sylow 3-subgroup D of  X w r  Y is contained in every non- 
trivial normal subgroup of B. As A is elementary abelian, D is a direct factor  of  A ; 
and of course D is normal in B. The factor  ~ o u p  B / A  is countable, metabelian, and 
has exponent  4. Let  this ~ o u p  be called G, and make it into a group of  operators of  A 
by defining a ~lb as b -1 a b; as A is abelian, this definition is independent  of  the choice 
of  the representat ive b within the coset A b. I t  follows now tha t  D is the G-monolith 
of  A ; hence D is itself G-monolithic, and it cannot  have a G-admissible complement  
in A. 
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